Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Jeffrey A. Hogan and Joseph D. Lakey
Title: Time-frequency and time-scale methods
Additional book information: Birkhäuser, Boston, 2005, xxii+390 pp., ISBN 0-8176-4276-5, US$74.95

References [Enhancements On Off] (What's this?)

  • 1. A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979-1005. MR 0507783 (80a:35117)
  • 2. Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107
  • 3. Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119
  • 4. G. B. Folland, Harmonic analysis in phase space, Princeton Univ. Press, Princeton, NJ, 1989. MR 0983366 (92k:22017)
  • 5. D. Gabor, Theory of communication, J. IEE (London) 93 (1946), no. III, 429-457.
  • 6. Loukas Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, NJ, 2004.
  • 7. Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717
  • 8. Michael Lacey and Christoph Thiele, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475–496. MR 1689336, https://doi.org/10.2307/120971
  • 9. Michael T. Lacey, Carleson’s theorem: proof, complements, variations, Publ. Mat. 48 (2004), no. 2, 251–307. MR 2091007, https://doi.org/10.5565/PUBLMAT_48204_01
  • 10. John von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, Princeton, 1955. Translated by Robert T. Beyer. MR 0066944
  • 11. David F. Walnut, An introduction to wavelet analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1854350
  • 12. H. Weyl, The theory of groups and quantum mechanics, Methuen (London) 1931, reprinted by Dover Publications, New York, 1950.

Review Information:

Reviewer: Karlheinz Gröchenig
Affiliation: University of Vienna
Email: karlheinz.groechenig@univie.ac.at
Journal: Bull. Amer. Math. Soc. 44 (2007), 285-290
MSC (2000): Primary 42AXX, 42C40; Secondary 42B20, 42B35, 42C15, 47G30, 65T60, 94A12, 94A20
Published electronically: October 4, 2006
Review copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society