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NONSMOOTH CALCULUS

JUHA HEINONEN

ABSTRACT. We survey recent advances in analysis and geometry, where first
order differential analysis has been extended beyond its classical smooth set-
tings. Such studies have applications to geometric rigidity questions, but are
also of intrinsic interest. The transition from smooth spaces to singular spaces
where calculus is possible parallels the classical development from smooth func-
tions to functions with weak or generalized derivatives. Moreover, there is a
new way of looking at the classical geometric theory of Sobolev functions that
is useful in more general contexts.

1. INTRODUCTION

The word nonsmooth in the title refers both to functions and spaces. Calculus is
a field of study where infinitesimal data yields global information. Mathematicians
have been practicing calculus with nonsmooth functions for over a century, but only
recently in spaces that are not smooth in the traditional sense. In this article, we
first survey calculus with nonsmooth functions and then move on to discuss current
advances involving singular spaces.

Calculus with nonsmooth functions began in the late nineteenth century with
attempts to understand the domain of validity for the fundamental theorem of
calculus; these studies were not motivated by immediate practical applications. By
the 1930s it had become clear that such a calculus was needed in partial differential
equations, sciences, and engineering. The so-called direct methods in the calculus
of variations argued for the existence of a solution (to a variational problem) which
a priori was not smooth; the solution was found via a compactness argument in
a complete function space. Regularity theory was then developed to show that
a posteriori the solution is, under favorable circumstances, infinitely many times
differentiable or even real analytic. It was also discovered that in many other
cases such smoothness cannot be expected, and the concept of a generalized (or
weak, distributional) solution became established in mathematics. The relevant
function spaces are the Sobolev spaces, whose development we briefly review in this
article.
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Calculus in nonsmooth spaces was first developed in particular cases in order
to solve particular mathematical problems. Systematic theories to that end were
developed later.

By the end of the 1970s it was fully recognized that much contemporary real
analysis requires little structure on the underlying space. Maximal functions, dif-
ferentiation theorems, functions of bounded mean oscillation, Hardy spaces, and so
on, make sense in spaces of homogeneous type. The latter are (quasi-) metric spaces
equipped with a doubling Borel measure. A nontrivial Borel measure on a metric
space is said to be doubling if the mass of a ball (linearly) controls the mass of its
double in a uniform manner. Analysis on spaces of homogeneous type is now a well
developed field, with applications to many areas of mathematics.

Spaces of homogeneous type are too general to allow for calculus as defined in
the beginning of this article. To that end, stronger conditions from the underlying
space are required. Recent research has shown that these conditions are still rather
weak. They are satisfied by spaces that have been with us for some time, but also
by spaces of exotic hitherto unknown geometries. The principal new requirement
is a Poincaré type inequality, which expresses global control of a function in terms
of its derivative. Other conditions of a more geometric nature can be shown to
imply such an inequality. No “final axioms” have been found; the situation is not
as sharply defined as in the case of spaces of homogeneous type

From a geometric point of view, spaces of homogeneous type offer no surprises.
For a complete metric space, there is no obstruction for the existence of a dou-
bling measure on it, provided that the trivial necessary condition that the space
has a finite uniform covering (Assouad) dimension is satisfied. In particular, ev-
ery closed subset of Euclidean space admits a doubling measure. On the other
hand, the validity of a Poincaré inequality in a space begets some hidden structure.
This is manifest in the remarkable fact, proved by Cheeger, that a metric space
with doubling measure and a Poincaré inequality possesses a generalized cotangent
structure consisting of a measurable vector bundle together with a (nontrivial)
derivation from the algebra of Lipschitz functions to the bounded sections of the
bundle. One can show, for example, that many of the classical fractal sets cannot
possess such a derivation. Moreover, there is a striking differentiation theory of
Lipschitz functions on such spaces also developed by Cheeger. This theory shows
that, under the conditions of a doubling measure and a Poincaré inequality, there is
strong stability in the infinitesimal behavior of Lipschitz functions at almost every
point. As we do not have in such general situations standard model (linear) tangent
spaces and maps between them, many fundamental notions have to be revisited.

Metric spaces with doubling measure and Poincaré inequality admit first order
differential calculus akin to that in Euclidean space. Sobolev spaces and second
order partial differential equations make sense in such contexts, and an elliptic
regularity theory along the lines of De Giorgi and Moser can be developed. It is
important to realize that all this can be carried out in spaces that do not resemble
classical (Riemannian) spaces. There are compact metric spaces of Hausdorff di-
mension any prescribed real number larger than one whose first order calculus is in
many ways indistinguishable from that of Euclidean space. (As alluded to earlier,

Hn this case, too, the situation has turned out to be more complex than previously thought;
there have been recent breakthroughs in harmonic analysis on spaces with measures that are not
necessarily doubling. See [I39] and the references therein.
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classical fractals do not serve as examples here, but more elaborate spaces need to
be constructed to this end.)

As mentioned earlier, precise conditions that allow for a first order calculus do
not seem clearly definable; at least the question remains open. For example, Keith
has subsequently shown that measurable cotangent structures as in Cheeger’s work
exist also for spaces where conditions are imposed only locally or infinitesimally. On
the other hand, the differentiation theory seems to require more global assumptions.
(The Poincaré inequality is a semi-global condition.) An important open problem
is to understand what exactly is needed for the conclusions in Cheeger’s work. For
applications, it is also important to know if there is, perhaps under some favorable
extra hypotheses, more hidden structure in spaces with Poincaré inequality than
what is currently known.

The main purpose of this article is to explain in some detail the concepts and
the scope of the new nonsmooth calculus as introduced in the preceding. In order
to fully appreciate the many facets of this theory, we begin with a review of the
classical development. Special emphasis throughout is put on the notion of the
modulus of a curve family that can be used to develop a coordinate free approach
to weak differentiation.

Essays like this one are necessarily biased towards the writer’s interests and
expertise. Among the major omissions here are the fractional Sobolev or Besov
spaces, both the classical aspects and the various generalizations to metric spaces.
I will also not consider heat kernels and Laplacians on self-similar fractals; the goals
and strategies of this topic of current interest are somewhat different from ours. An
area that is more related to the current text, but is omitted, is the growing field of
geometric measure theory in metric spaces; it would take us too far afield to discuss
these interesting developments.

Some historical references appear in the text, but in most cases the sources
are secondary. This is not meant to be an article on the history of mathematical
analysis.

Finally, rather than interrupting the mathematical narrative with references and
credits, for the most part the latter have been collected at the end of each section un-
der Notes. (Exceptions occur, especially towards the end of the article.) Although
the bibliography is extensive, it obviously cannot claim completeness. I apologize
in advance to anyone who has been inadvertedly ignored or misrepresented.

1.1. Notes. Among the classic treatises on weakly differentiable functions and
their applications are [I36], [169], [I53]. For foundational treatments of analysis
on spaces of homogeneous type, see [50], [51]. An abstract Poincaré inequality in a
metric measure space as discussed in this article was formulated in [85], [86]. The
work by Cheeger referred to in this introduction is [42]. For a subsequent work
by Keith that was also cited earlier, see [I00]. Recent monographs and surveys on
analysis on metric spaces include [12], [160], [81], [I3]. For the relevant literature
on related but omitted topics, see [105], [I80], [10], [9], and the numerous references
in these works.

Acknowledgements. I would like to thank Stephen Semmes both for being a
tireless advocate of the kind of mathematics discussed in this text and for years
of intensive and enjoyable discussions about these topics. In addition, I have had
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extensive discussions about technical as well as general points related to the ma-
terial here with Mario Bonk, Jeff Cheeger, Piotr Hajlasz, Stephen Keith, Tero
Kilpelainen, Juha Kinnunen, Bruce Kleiner, Pekka Koskela, Olli Martio, Nageswari
Shanmugalingam, Dennis Sullivan, Jeremy Tyson, and many others.

I am grateful to Jeff Cheeger for his criticism of an earlier version of this article
that led to significant improvements and additions. Many thanks also to Bruce
Hanson, David Herron, and Pekka Pankka, who read the manuscript and made
useful comments.

Finally, I thank the referees for their careful reading of the paper and suggestions.

2. CLASSICAL CALCULUS

The independent discovery of calculus by Newton and Leibniz in the latter part
of the seventeenth century is one of the greatest mathematical achievements of all
time. The fundamental theorem of calculus stands as beautiful today as it did over
three centuries ago; to wit,

b
(2.1) £(b) — f(a) = / f(x) dz.

The theorem expresses the fact that by integrating the derivative of a function
(which is infinitesimal data), one derives global information about the function
itself. That is, if we know the derivative of a function at every point, then we know
the change in the values of the function from one end point of an interval to the
other. (This entails that we know how to compute the integral in question, but
here we are interested in what, in principle, can be known.)

For over two centuries, formula (Z1]) was not challenged; it served everyone well.
When more attention was paid to the foundations of analysis in the late nineteenth
century, many started wondering about the limitations of the fundamental theorem
of calculus. Nowadays, using Lebesgue integration, the values of a function need to
be known only “almost everywhere”. So what exactly suffices for (Z1]) to hold?

The Cantor function ¢ : [0,1] — [0,1] is a continuous nondecreasing surjective
function which is constant in each complementary interval of the standard ternary
Cantor set; in particular, ¢ is almost everywhere differentiable with ¢ = 0. There-
fore, the fundamental theorem of calculus cannot hold for the Cantor function c.
This, and various other examples that became known early on, showed that there
is more required for the formula in ([2]) than the mere almost everywhere existence
and integrability of the derivative.

One of the first accomplishments of Lebesgue’s theory of integration was the
clarification of the foundational issues around the fundamental theorem of calculus.
The results are discussed in the next section.

2.1. Notes. One can read about the early history of infinitesimal calculus for ex-
ample in [33 Chapter 17]. The preface to the book by Saks [I51] contains some well
known quotes by Poincaré and Hermite related to the perceived futility of the study
of nonsmooth functions. Among the many texts on real analysis, the book [38] has
a nice discussion of the early examples of functions for which the fundamental the-
orem of calculus does not hold when the right hand side of (Z1]) is interpreted as
a Riemann integral. See, in particular, the examples due to Volterra and Pompeiu
[38, p. 54 and p. 205].
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3. ABSOLUTELY CONTINUOUS FUNCTIONS OF ONE VARIABLE
The following theorem completely characterizes the situations where (Z.I]) holds.

Theorem 3.1. Let f : [a,b] — R be a continuous function. Then f is differentiable
almost everywhere with integrable derivative such that (2.1) holds if and only if f
is absolutely continuous.

Recall that a function f : [a,b] — R is absolutely continuous if for every e > 0
there is § > 0 such that

n n
(3.1) Z la; —aiy1| <0 = Z |f(ai) = flaiy1)| <e
i=1 i=1
whenever [a1,as], ..., [an, an+1] are nonoverlapping subintervals of [a, b].

Lipschitz functions are important examples of absolutely continuous functions.
Recall that a function f : [a,b] — R is Lipschitz if there exists L > 0 such that

(3.2) |f(x) = f(y)| < Llz -y

for all z,y € [a,b]. To produce an absolutely continuous function that is not
Lipschitz, we pick an arbitrary integrable function g on [a,b] and define

(33) f@) = [ o0

Then f is absolutely continuous, but Lipschitz only if g is bounded. In fact, up to
an additive constant, all absolutely continuous functions are of the form [B3) with
g = f’ almost everywhere. Lipschitz functions are precisely those for which g is
bounded.

It is straightforward to verify that the sum and the product of two absolutely
continuous functions on [a,b] are again absolutely continuous and that the usual
rules of differentiation apply (in the almost everywhere sense). Most notably, the
integration by parts formula holds: if f,g : [a,b] — R are absolutely continuous,
then

b b
(3.4) / £ (2)g(x) da = — / f(@)g' (@) dz + F(B)g(b) — F(a)g(a).

Thus, absolutely continuous functions are precisely the functions of one real
variable that allow for calculus. These functions need not be smooth; their graphs
can have corners or other bad behavior that prevent pointwise differentiability at
many points, as the representation in (3.3) shows. For example, for any given set
E of measure zero in [a, b], there exists a Lipschitz function f : [a,b] — R that fails
to be differentiable at every point in E.

To place absolutely continuous functions in a proper context, it is necessary to
recall another important concept of classical real analysis. A function f : [a,b] — R
is said to be of bounded variation if

(3.5) SHPZ |f(ai) = flait1)| < oo,

where the supremum is taken over all nonoverlapping subintervals [aq,az], ...,
[@n, ant1] of [a,b]. Functions of bounded variation are precisely the functions that
can be written as a difference of two increasing functions. Absolutely continuous
functions are of bounded variation, but not conversely; the Cantor function is of
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bounded variation but not absolutely continuous. Functions of bounded variation
are almost everywhere differentiable, but the fundamental equality ([Z.I) may fail
for them. There is an important criterion that identifies absolutely continuous
functions among general functions of bounded variation: a continuous function of
bounded variation is absolutely continuous if and only if it maps sets of measure zero
to sets of measure zero. That the Cantor function fails to be absolutely continuous
can be seen using this criterion as well; it maps the Cantor set onto [0, 1].

There is one more important way to think about absolutely continuous functions
of one variable. It follows from ([B4]) that if f : [a,b] — R is absolutely continuous,
and if ¢ : [a,b] — R is a smooth function that vanishes at the end points of the
interval, then

b b
(3.6) / f(@)p(a) di = / f(2)g! (@)de

The converse is true as well, in the following improved form, where continuity need
not be assumed: if f : [a,b] — R is an integrable function such that

b

b
(3.7) o(e)ple) de = - / f(2)! (2)dx

a

for some integrable ¢ : [a,b] — R and for all infinitely many times differentiable,
or smooth, functions ¢ : [a,b] — R such that p(a) = 0 = ¢(b), then f agrees
almost everywhere with an absolutely continuous function; moreover, f' = g almost
everywhere in this case.

Using the language of the theory of distributions, the preceding fact can be
stated as follows: a (continuous) function is absolutely continuous if and only if its
distributional derivative is represented by integration against an integrable function.
We discuss distributions briefly at the end of Section 4l

3.1. Notes. The facts presented in this section typically belong to a first graduate
course in real analysis and measure theory. They can be found in all good textbooks
on the subject. The classic treatise by Saks [I51] is still worth reading. A nice
recent treatment of real analysis of one variable, with many historical comments
and examples, is the book [38].

4. ABSOLUTE CONTINUITY IN MANY VARIABLES

What is the right definition of absolute continuity for a function of more than one
variable? More to the point, what is the largest class of functions of many variables
that allow for calculus? In this section, we attempt to answer these questions
in a coordinate dependent manner. The coordinate free discussion is deferred to
Section [7

We let R™ denote Euclidean n-space, n > 1. Lebesgue n-measure is denoted by
m,, and we often abbreviate dm,,(z) = dz. For brevity, we consider only functions
that are defined on all of R™, although much of the discussion remains valid for
functions defined on an open subset of R™.

Let us begin with the following definition.

Definition 4.1. A function u : R™ — R is said to be absolutely continuous on lines
if u is absolutely continuous on almost every line segment parallel to the coordinate
axes.
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The definition should be clear: a function is absolutely continuous on lines if
the collection of all line segments, parallel to any given coordinate axis, on which
the function fails to be absolutely continuous projects to a set of Lebesgue (n — 1)-
measure zero on the subspace orthogonal to the given axis.

When n = 1, we recover the earlier definition given in Section Bl If n > 2,
functions absolutely continuous on lines need not be continuous. The function

1

R

(4.1) Ua () a >0,

is absolutely continuous on lines in R™, n > 2, but not continuous at the origin. (The
value at the origin can be assigned arbitrarily.) Note that u, is locally integrable
if and only if @ < n. Similarly, if (a;) is a dense countable set in R™, n > 2, then
the function

(4.2) u(z) = Z2‘i S — a7

is absolutely continuous on lines and nowhere continuous (with arbitrary assignment
of values at points a;); it is locally integrable if and only if o < n.
If w is absolutely continuous on lines, then the partial derivatives

ou ‘
8iu::ax., 1=1,...,n,
K3
exist almost everywhere in R"; in particular, the gradient
(4.3) Vu = (O, ..., 0nu)

is a well defined function almost everywhere in this case. This follows from the one
variable result (Theorem [B.I]) and Fubini’s theorem. For the function in (£1]) we
have that

Vug(z) = —az|z| ™72, z#0.

Note that Vu,, is locally integrable if and only if o < n — 1.

The preceding examples show the difference between dimensions n = 1 and
n > 2. An absolutely continuous function in R is continuous with locally integrable
derivative; a function absolutely continuous on lines in R™, n > 2, need not be con-
tinuous or even integrable, and even if it is integrable, its gradient as defined in (3))
need not be integrable. This means that Definition [£.]] needs to be strengthened so
as to become amenable to calculus.

Definition 4.2. Let 1 < p < co. A real-valued function v € LP(R™) is said to of
class ACL,(R™) if it is absolutely continuous on lines with Vu € LP(R™).

Note that the membership in the class ACL,(R") as defined here requires three
conditions from a function: absolute continuity on lines, and p-integrability for both
the function and its gradient (where the latter is defined as in ([£3])). For functions
of one variable, the last two requirements (more precisely, their local versions) follow
from the first.

For the sake of simplicity, the p-integrability condition is imposed both on the
function and its gradient. For much of the ensuing discussion, it would be enough
to assume local integrability in both cases. Either way, the measurability of both
u and Vu is implied.
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Functions as in ([@2) (when properly modified near infinity so as to guarantee
global integrability) show that members in the class ACL,(R™) need not be differ-
entiable anywhere. By using the one-dimensional result and Fubini’s theorem, we
have the following integration by parts for functions in ACL,(R™).

Theorem 4.3. Let u € ACL,(R") and let ¢ € C§°(R™). Then

(4.4) Oiupdr = —/ u0;pdx
R?L n
foreachi=1,....,n.

It follows from Theorem [£3] that the (almost everywhere defined) partial deriva-
tives Qju of a function u in the class ACL,(R"™) are the distributional partial deriva-
tives of the distribution determined by w. It is now appropriate to recall the basics
of distribution theory.

4.1. Distributions. The vector space C§°(R"™), consisting of all infinitely many
times differentiable functions with compact support in R™, can be given a natural
topology so that addition and scalar multiplication are continuous operations. A
linear map
T:CR") —-R

that is continuous in this topology is called a distribution. In fact, T is continuous
if and only if for each compact set K C R™ there exist a number C' > 0 and an
integer m > 0 such that

T < C max [07F...00"p(x

Tlp)l < € max 10} ()
for all functions ¢ € C§°(R™) with support in K and for all multi-indices o =
(a1,...,qp) with length |o| = a3 + -+ - + @, < m. Every distribution T has an ith
partial derivative 9;T, which is another distribution with action

9;T(p) = =T (i) -

A locally integrable function u determines a distribution via integration,

o= [ updr,
]R'n.

with partial derivatives
Q= — uo;pdx.
RTI,

The statement made after equation (4] is now clear: the distributional ith partial
derivative of a function v in ACL,(R") is the distribution that is determined by
the locally integrable function 9;u.

The formal theory of distributions was preceded both by the theory of functions
that are absolutely continuous on lines, as discussed above, and by the theory of
weak derivatives, which will be discussed in the next section.

4.2. Notes. Functions that are absolutely continuous on lines were considered early
on in Lebesgue’s theory, especially by the Italian school. Among the first papers
were [126], [I77]. There are several excellent sources for the theory of distributions,
for example [153], [150], [93].
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5. CLASSICAL SOBOLEV SPACES

For functions in the class ACL,(R™), the integration by parts formula [@4) is a
conclusion. In the theory of Sobolev spaces, it is taken as a definition.

Let 1 < p < oo and let u € L”(R")E Then u is said to belong to the Sobolev
space WHP(R™) if there exists, for each i = 1,...,n, a function v; € LP(R") such
that the distributional ¢th partial derivative of u is determined by v; via integration;
that is,

(5.1) /vigodxz—/ u0;pdx

for each p € C3°(R™). It is easy to see that such a function v;, if it exists, is unique
as an LP-function, and we set

Notation notwithstanding, a priori the function 0;u has nothing to do with the
partial derivative of u. Let us discuss how appropriate this notation is.

Every function in ACL,(R") is in W1P(R") essentially by definition (and Theo-
rem [£3), and for functions in ACL,(R"™) notation (5.2]) certainly is justified. Now
the definition for a Sobolev function entails only that it belongs to LP(R™), and so
is strictly speaking an equivalence class of functions whose values can be assigned
arbitrarily in sets of measure zero. In particular, a function in W?(R") can have
a representative that is not absolutely continuous on lines. For example, one can
take a function and change its values on a hyperplane. But it would be silly to
do so. The following theorem shows that there is no essential difference in the two
approaches introduced above.

Theorem 5.1. Every function in WHP(R™) agrees almost everywhere with a func-
tion in ACL,(R"™).

We will prove Theorem [5.T] later in a stronger form (Theorem [(4]). Before this,
let us discuss an alternative way to define Sobolev spaces.
The Sobolev space W1P(R") is a vector space, and it can be normed by

(5-3) |lu|

It is easy to see that the norm in (53] is complete, making WP (R™) into a Banach
space. There is an indirect but succinct description of the Sobolev space as the
closure of smooth functions under the norm (G.3)). Namely, consider the vector
subspace of C*°(R™) consisting of all functions ¢ € C*°(R"™) with |[|¢||1, < c0. In
this case, the gradient can be understood in classical terms. The completion of this
normed space as a metric space is denoted by HUP(R™). Because W1P(R") is a
Banach space, the space H''P(R") is (isometrically) contained in W1P(R™). It is
not difficult to show that in fact equality holds.

Theorem 5.2.

1p = HUHLT’(R") + ||VUHL1’(R") .

HY?(R™) = W'P(R").

Theorem implies the useful fact that every function in W1P(R") can be
approximated in the norm (B.3]) by smooth, infinitely many times differentiable
functions. This approximation is accomplished by a straightforward mollification

2For simplicity, we leave out the case p = oo, as here and there it would require a separate
treatment. See, however, Remark [6.1] (b).



172 JUHA HEINONEN

argument as follows. Fix a nonnegative function n € C§°(R™) with total integral
one, € > 0, and let u € WHP(R™). Consider the convolution

(5.4) ue(z) 1= ux e (z) = / () ez — y) dy

where
Ne(x) == € "n(x/e).

Then u. € C*°(R™) with d;ue = u * 9;n, and it is not difficult to show that both
e — u and d;ue — Gju in LP(R™) as € — 0.

To summarize, the elements in the Sobolev space W1P(R") can be viewed in
three different ways: as p-integrable functions with p-integrable distributional par-
tial derivatives; as p-integrable functions that are absolutely continuous on lines
with p-integrable partial derivatives; or as limits of smooth functions in the norm

E3).

5.1. Sobolev spaces with other measures. There is one subtlety in the preced-
ing definition for H*?(R") that is easily overlooked. Namely, H?(R") consists of
equivalence classes of Cauchy sequences of smooth functions in the norm (&.3]). A
Cauchy sequence (¢;) in HVP(R™) gives rise to two Cauchy sequences in LP(R"),
the sequences (¢;) and (V;). There are unique LP-limits ¢ and v for these two
sequences, where v : R™ — R™ is a vector valued LP-function. Obviously, two
equivalent Cauchy sequences produce the same LP-limit ¢. By using integration by
parts, it is straightforward to see that v is also independent of the particular choice
of the Cauchy sequence (¢;) amongst all equivalent Cauchy sequences. It follows
that we can assign a unique “gradient” to each element of HP(R") by setting
Vu :=v.

A similar construction makes sense in situations where integration by parts is not
available. For example, we can replace Lebesgue measure in (5.3) by an arbitrary
Radon measure p in R™, and consider the norm

(5.5) el = ( / olP )P + ( / Vol? dy)?

for every ¢ € C*®(R™) such that the quantity in (53] is finite. The closure
H'P(R™; 1) of smooth functions under the norm (5.5 is a kind of Sobolev space.
Its members are equivalence classes of Cauchy sequences of functions in LP(R™; u),
but in general one cannot assign a unique gradient to such a Cauchy sequence; in
particular, the space H1P(R™; ) is not a space of functions in general. By using
the language of functional analysis, asking for the uniqueness is equivalent to asking
if the operator V : C*°(R") N HLP(R™; u) — LP(R™; u) is closable.

For example, a Sobolev space H'2(R"; i) arises as a natural space for solutions
to degenerate elliptic equations of the type

(5.6) —div(w(x)Vu(z)) =0, du(z) =w(z)dx,

for some locally integrable nonnegative function or weight w in R™. A solution to
(E8) is a function u € H?(R™; 1) that satisfies

(5.7) /n w(z)Vu(z) - Vodr =0
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for each ¢ € C§°(R™). In other words, the divergence of the (vector-valued) dis-
tribution w(z)Vu(x) is zero. However, before one can speak about equation (5.6)),
it should be decided what Vu means for elements u € H%2(R"; ). This is the
closability problem for the gradient just discussed.

The author does not know whether the class of measures with the preceding
closability property has been characterized by other means. For sufficient condi-
tions, see [83], [(9, Section 13]. For an example of a measure that is absolutely
continuous with respect to Lebesgue measure but for which the gradient operator
is not closable, see [63, pp. 91-92].

Remark 5.3. For brevity, we have restricted our definition for Sobolev functions
and Sobolev spaces to functions defined on all of R”. Much of what we have said
goes over to the Sobolev spaces W1P(Q), where Q C R™ is an arbitrary open set.
We also ignore the higher order Sobolev spaces in this article.

5.2. Notes. The theory of Sobolev spaces dates from the 1930s; see [167], [168].
Brief historical comments can be found for example in [I36, Ch. 1.8, p. 19] and
[134, p. 29]. Among the excellent modern sources for the material in this section
are [4], [62], [192]. For the theory of Sobolev spaces with weights, see [83].

6. SOBOLEV-POINCARE INEQUALITIES

The fundamental theorem of calculus gives global information about a function
after integrating its derivative. There are important several variable versions of this
phenomenon; these are the various Sobolev-Poincaré inequalities.

Let u be a smooth real-valued function on R™. Fix two points z,y € R". We can
apply the fundamental theorem of calculus on the line segment [z, y] connecting x
and y, and obtain from the chain rule that

1
(6.1) u(y) —u(z) = /0 Vu(ty + (1 —t)x) - (y —x) dt.

Inserting absolute values in (6.1]) yields the estimate

uly) ~u(e) < [ Vulds
[z,y]
for the oscillation of the function at the end points in terms of a scalar line integral.
The above reasoning holds not only for the straight line segment from x to y but
for every rectifiable path « joining the two points; we have the estimate

(6.2) Ju(y) — u(z)] < / |Vl ds

for each such v. Now comes a technical point, which however should be conceptually
clear. Namely, by averaging over a suitable family of curves -y, the right hand side in
([62) can be turned into a volume integral over all of R™. After some manipulation,
we obtain

63 o) - u)l < o ( [

LCCIIA TP

n |z =t |z —y[*!

where C'(n) > 0 is a dimensional constant.
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The exponent n — 1 in the denominator of (63)) can be explained as follows.
Near both points = and y, one considers a radial family of curves over which (6.2))
is averaged; a polar coordinate computation in a small patch near z, say, changes

[Vu(2)]

|z — z|n—t

dz

into a number of line integrations over radial segments residing in this patch.

Inequality (63) can be thought of as a substitute for the fundamental theorem of
calculus for functions in R™. It is called a Riesz potential estimate. The expression
in the parentheses on the right in (6.3 is a sum of two convolutions with the Riesz
kernel |z|1—™.

We emphasize the fact that in estimate ([G.2]), and consequently in (G3), only
the pointwise norm |Vu| of the gradient Vu is used. The same holds in the ensuing
fundamental inequalities. This fact is a basis for the various generalizations of the
Sobolev-Poincaré type inequalities that we will discuss later in this article; there
nonnegative functions are used that are to be thought of as pointwise defined bounds
for the size of a derivative. (See Section [I1l)

Returning to Riesz potentials, the convolution integral operator

fr— \z|1_" x f=1f

has the following mapping properties:

(6.4) 1 fl|prorino @y < C,p) [ fllLr@ny, 1<p<n,
and
(6.5) 11 £l () < C(n,p) (diam(B))' /|| f||Lo(p), n < p < o0,

where in estimate (635]) it is moreover assumed that f is supported in a ball B
in R™. The second estimate (6.0 is a straightforward consequence of Hoélder’s
inequality. The proof for the first estimate (64 is more complicated involving
maximal functions.

We forgo, for a moment, estimates for the borderline case p = n (see Remark [6.1]
(a)):

Estimates ([€.4) and (G.35) can be used to obtain integral bounds for functions in
a Sobolev space.

To that end, we first explain one more technical point. When the points x and
y are given and contained in an open ball B in R", the argument leading to (6.3)
can be made so as to use curves that lie in B. In particular, we can restrict the
gradient |Vu| to the ball B, whence the estimate

(6.6) lu(z) —u(y)] < C(n) (L(|Vul - xB)(@) + L(Vul - x5)(Y))

where xp is the characteristic function of B.
By using estimates (6.0) and (6.4)), and integrating over = and y separately, we
arrive at the following Sobolev-Poincaré inequality, valid for 1 < p < n:

(6.7) (][ lu — up|™? ") dz) (n=p)/mp C(n,p)(diam(B))(][ |Vul? dx)l/p )
B B

where upg denotes the average of u in the ball B, as does the barred integral sign:

(6.8) vp Z:][BU = mnl(B) /B vdz.
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(An analogous notation will be used later in other metric spaces and for other
measures.) In ([G71), the pointwise estimates have all disappeared, and hence by
an approximation argument using convolutions as in ([5.4]) we conclude that the
Sobolev-Poincaré inequality (67) is valid for each function u € WHP(R™) whenever
Bisaballin R" and 1 < p < n.

In fact, (67) is true also when p = 1 by a different argument which we forgo
here.

For future reference, let us record the following consequence of (6.7), known
simply as the Poincaré inequality. With notation as in (67), we have that

(6.9) ]{3|ufuB|p dx < C(n,p)(diam(B))? ]{B [VulP dx ,

whenever u € W1P(R") and 1 < p < oo.
Let us now turn to the case p > n. As before, we obtain from (G.0) that

(6.10) Ju(2) - uly)| < Cln,p) |z — g~/ /B Vup dz) /"

whenever B is a ball containing x and y. It follows that u is Hélder continuous
of order 1 — n/p > 0. This a priori bound for smooth functions can be used, via
density, to pass to a similar inequality for functions in W1P(R") for p > n. It
follows that every function in WHP(R™), p > n, can be changed in a set of measure
zero so as to become Hélder continuous and satisfy (610) in every ball B.

By the discussion in the preceding sections, we know that functions in the
Sobolev space W1P(R™) have regularity slightly beyond their mere definition as
LP-functions; they have representatives that are absolutely continuous on almost
all lines. In this section, we have seen a different kind of improvement. Namely, for
the range 1 < p < n, a function in W1P(R") is locally integrable to a higher degree
than required by the definition. For p > n, we even have (Holder) continuity of the
functions in W'?(R"™). These statements are independent of the previous discovery
of absolute continuity on lines.

Finally, the above estimates and embeddings are all sharp, as can be seen by
considering functions that behave like the functions wu, in (ZI]) near the origin, for
appropriate values « (also for positive « in the case p > n).

Remark 6.1. (a) As alluded to earlier, the borderline case p = n is somewhat
delicate. The integral operator I; maps L™(R™) to BMO(RR™), the space of functions
of bounded mean oscillation. In particular, we get local exponential integrability
for the functions in Wm(R"™). Such integrability is sharp, because functions with
singularities of the type

(6.11) loglog|z|, = ~ O,

belong to W1 (R™). By moving the singularities around as in (ZZ), one can exhibit
nowhere continuous functions in WHm(R"). The borderline case p = n exhibits
many interesting and unique phenomena, but it would take us too far afield to
discuss them here.

(b) We have not included the case p = oo in the preceding discussion. One
can show that functions in W1 (R") are Lipschitz continuous (in the sense of
having representatives). A converse holds as well: a bounded Lipschitz function
u: R™ — R belongs to W1°°(R"). The definition for the Sobolev space W1°°(R")
is as for W1P(R™) using the space L>°(R") in place of LP(R").



176 JUHA HEINONEN

6.1. Notes. For more information about Sobolev-Poincaré inequalities, potential
estimates, and related issues, see, for example, [3], [I71], [172], [70], [62], [134],
[192).

7. CAPACITY AND MODULUS

To reiterate, functions in WP (R™) are integrable beyond the initial requirement,
and they have representatives that are absolutely continuous on lines. In addition,
they can be chosen to be everywhere continuous if p > n. For 1 < p < n, functions
in W1P(R") need not be continuous anywhere, but there is more that can be said
about the continuity in this case, too. Moreover, the absolute continuity on lines
can be improved in all cases to include curves other than line segments that are
parallel to the coordinate axes. In this section, we discuss such improvements. The
goal is a coordinate free description of Sobolev functions.

One improvement in the continuity properties of a Sobolev function can be de-
scribed by saying that a function in W1?(R") is continuous when restricted to the
complement of a small set. This is a Lusin type phenomenon. In the present con-
text, it is called p-quasicontinuity; the smallness of the exceptional set is tied to the
integrability exponent. Although an important property of Sobolev functions, the
quasicontinuity plays only an implicit role in our story. We concentrate more on
the improvement of the absolute continuity on lines property; it is this aspect that
matters more when the theory is generalized. However, the latter cannot fully be
discussed without the former.

7.1. Capacity. Let 1 < p < co. The p-capacity of a subset £ C R" is the number
(7.1) cap,(E) := inf / (lu? + |Vul?) dz,
R‘n

where the infimum is taken over all functions v € W1P(R™) such that u > 1
almost everywhere on a neighborhood of E. If no such function u exists, we set
capp(E) = oo. There are various alternatives and generally equivalent ways to
define capacity, but we choose this one.

It is not too hard to verify that the set function

E +— cap,(E)
is an outer measure defined on all subsets of R™. That is, it takes values in [0, co];
it is monotone,
cap,(E) < cap,(F),  ECUF;

it is countably subadditive,

cap,, (U EZ> < anpp(Ei);
i=1 i=1

and it assigns the value zero to the empty set. A subset E of R™ is said to be of
zero p-capacity if Capp(E) = 0. Capacity measures sets in a more refined way than
Lebesgue measure. Hausdorff measures and contents are close relatives of capacity,
and the following relations are valid:

(7.2) cap,(E) =0 = H, pi(E)=0 foralle>0,
and
(7.3) Ho—p(E) <oo = cap,(E)=0
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whenever 1 < p < nf Moreover, singletons have positive p-capacity if p > n.
Here and later H, denotes the s-dimensional Hausdorft measure. (See [133] for the
definition.)

Theorem 7.1. Let 1 < p < n. Every function in WYP(R™) has a representative
that is p-quasicontinuous in the following sense: for every € > 0 there is an open
set U C R™ such that cap,(U) < € and the representative is continuous in R™ \ U.
Moreover, such a p-quasicontinuous representative is well defined pointwise, and
unique, up to an ambiguity of a set of p-capacity zero.

By combining Theorem [l with (C2]) and (73], we have that every function
in W1P(R™) has an essentially unique representative with pointwise defined values
outside a set of Hausdorff dimension n — p. This is a definite improvement for the
initially only almost everywhere defined function. It means, among other things,
that every function in WP (R™) has an (essentially) well defined trace on smooth
surfaces of dimension larger than n — p.

The proofs for the Hausdorff measure estimates in ((.2)) and (Z3)) are based on
covering lemmas and maximal function estimates. The proof for the existence of a
quasicontinuous representative follows the standard proof of Lusin’s theorem. The
key fact is that the mollified functions u, converge in W1P(R"). Then one chooses
a sufficiently rapidly converging subsequence and computes that this subsequence
converges uniformly outside a given open set of arbitrarily small capacity. This
leads both to the quasicontinuity and to the quasieverywhere pointwise defined
representative.

The uniqueness of the quasicontinuous representative is not obvious. A direct
proof of the uniqueness can be given, but it can also be deduced from the following
interesting fact: for every function u € W1P(R") the limit

(7.4) lim u(y) dy

r—0 B(z,r)
exists for z outside a set of zero p-capacity, and this limit defines the quasicontinuous
representative of u. Thus, in principle, quasicontinuous representatives of Sobolev
functions can be identified via ([T4).

We now turn to the second type of improvement of Sobolev functions, promised
in the beginning of this section. The principal question is the following: on how
many curves is a given Sobolev function v € WHP(R") absolutely continuous?
If we are content with an arbitrary ACL,(R")-representative of u (which exists by
Theorem [5.]), then nothing more can be said than what the definition for ACL,(R"™)
dictates. Indeed, we can take any set ' of n-measure zero such that the projection
of E to each of the coordinate hyperplanes has (n—1)-measure zero and then change
the values of u arbitrarily on E. But again, it would be silly to do this.

In the definition for ACL,(R"™)-functions, a fixed coordinate system was used,
but membership in a Sobolev space is easily seen to remain intact after linear (say)
coordinate changes. Is it reasonable to expect that every Sobolev function has a
representative that is, simultaneously, absolutely continuous on almost every line,
in every given direction in R™? This indeed is the case, and even more is true. To
explain the full answer here, it is necessary to introduce the concept of the modulus
of a curve family.

3In the borderline case p = n, something more precise can be said, but we forgo it here.
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7.2. Modulus. Let I' = {7} be a family of rectifiable curves in R™, where a curve
in R™ is a continuous map 7 : [a,b] — R™, and a curve is rectifiable if it is (com-
ponentwise) of bounded variation. A Borel measurable function p : R™ — [0, 0] is
said to be an admissible function, or density, for T if

(7.5) / pds >1
¥

for each v € I'. The p-modulus of T" is the number
(7.6) mod,(T) :=inf | pPdz,

R’IL
where the infimum is taken over all admissible functions p. The definition can
be extended, in a routine way, to all curve families consisting of locally rectifiable
curves. The p-modulus of the family of all curves that are not locally rectifiable is

defined to be zero.
It is not hard to see that the set function

I' = mod,(T)

is an outer measure on the collection of all curve families in R™; it takes values in
[0, 00]; is monotone,

mod,,(I'") < mod,(T), I CT;

countably subadditive,
o0 o0
modp(U ;) < Z mod,,(T;);
i=1 i=1

and the empty family has zero modulus.
There is another property that follows directly from the definitions: if IV and T’
are two curve families such that every curve in IV has a subcurve in I", then

(7.7) mod,,(I') < mod,(T).
A family T is said to be p-exceptional if mod,(I') = 0. If a property of curves

holds outside a p-exceptional family, then it is said to hold on p-almost every curve.
Property ([C7) implies the following useful result.

Lemma 7.2. A family of curves is p-exceptional if each curve in the family has a
subcurve in a fized p-exceptional family.

The next lemma can be used as an alternative definition for p-exceptionality.
The proof is an easy exercise.

Lemma 7.3. A family T’ of curves in R™ is p-exceptional if and only if there exists
a Borel function p : R™ — [0, 00] such that p € LP(R™) and

/pds:oo
¥

We now state the following main relation between modulus and Sobolev func-
tions.

for each locally rectifiable v € T'.

Theorem 7.4. Every function in WHP(R™) has a representative that is absolutely
continuous on p-almost every curve.
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This result provides a coordinate free good representative for a Sobolev function.
We will consider the uniqueness and pointwise ambiguity for such representatives
after we outline the proof of Theorem [T 4l

The proof is an adaptation of the real analysis argument, which shows that an
LP-convergent sequence has a pointwise almost everywhere convergent subsequence.
We have the following general result.

Lemma 7.5 (Fuglede’s lemma). If a sequence of Borel functions (gi) converges in
LP(R™) to a Borel function g, then there is a subsequence (gx;) such that

/gkjds—>/gds
¥ ¥

for p-almost every curve v in R™.

Proof. We may assume that g = 0 and pick a subsequence (gi,) such that

(7.8) gk, |l Le@ny <277

Fix I > 1, and let T'; denote the family of all curves v : [a,b] — R™ such that there

are infinitely many functions gx, with

/gkjdsZI/l, vely.

.

By the subadditivity of modulus, it suffices to show that
(7.9) mod,(I';) =0.

Indeed, the function

oo
9= Z Gk;
j=1

is p-integrable by (8] and satisfies

/gds=oo
¥

for each v € T';. Thus (3] follows from Lemmal[73] and the proof is complete. O

To prove Theorem [.4] we use Lemma Recall that the mollifications wu. of
a function u € WP (R") satisfy u, — v and |Vu| — |Vu| in LP(R"), as € — 0.
Now fix an arbitrary Borel representative of |Vu| (so that line integrations can be
performed). We have that the relations

(7.10) u2(@)) = uo®)| < [ [Vulds
and
(7.11) €£iin0/\Vu6j|ds :/|Vu\ds

hold except for a p-exceptional family of curves v : [a,b] — R"™, for some subse-
quence €;. In particular, in view of Lemma[.2] p-almost every curve in R™ has the
property that both (TI0) and (7I1]) hold for the curve and for all its subcurves.
If the sequence (u.) converged pointwise to u, then (ZI0) and (IT]) would hold
true for u and for p-almost every curve v along with all subcurves of v. The desired
absolute continuity then follows, because |Vu| is integrable on p-almost every curve
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by Lemma The problem one encounters here is that such everywhere pointwise
convergence need not hold. However, as explained right after Theorem [l we can
pass to a rapidly converging subsequence to assure that pointwise convergence takes
place outside an exceptional set E of zero p-capacity. The key observation now is
that if E has zero p-capacity, then the collection of all curves in R™ that meet F
is p-exceptional. (We omit the proof of this, but see, however, the proof of Theo-
rem [[0.5]1) This fact accepted, the above argument, where pointwise convergence
everywhere was assumed, can be used; we simply ignore one more p-exceptional
curve family.

This finishes the outline of the proof for Theorem [7.4l

The preceding proof reveals that for the good representative in Theorem [7.4]
one can choose the p-quasicontinuous representative; conversely, one can show
that every such representative is p-quasicontinuous and well defined up to a set of
p-capacity zero.

We close this section by providing the following alternative, coordinate free
description of Sobolev functions in R".

Theorem 7.6. A function u € LP(R™) has a representative in W1P(R") if and
only if there exists a Borel function p € LP(R™) such that the inequality

(r.12) utr(@)) ~ uy0))| < [ pds

Y

holds for the representative, for p-almost every curve v : [a,b] — R™.

Proof. The necessity part follows from the proof outlined for Theorem [[4l One
can take p to be any Borel representative of |Vul.

To prove the sufficiency, one uses Fubini’s theorem and proves that for almost
all lines parallel to the coordinate axes, the function w is absolutely continuous and
satisfies

|Oiu| < p

almost everywhere on such a line. It follows that the partial derivatives are
p-integrable and hence that u € W1P(R"). O

A refinement of the final argument in the preceding proof shows that the length
of the distributional gradient |Vu| is the (almost everywhere) smallest function p
that satisfies (T.IZ) for p-almost every curve 7. It follows that the norm in WP (R™)
can be defined as

(7.13) lullip = [[ullLe @ny + inf ||pl| Lo @n)

where the infimum is taken over all Borel functions p satistying ([((.I2)) for p-almost
every curve 7.

This characterization of Sobolev functions requires no smooth structure of the
underlying space. One uses the metric structure for the line integration and measure
for the modulus. This lead is followed later when Sobolev spaces in arbitrary metric
measure spaces are discussed in Section [[0l In preparation for this discussion, we
first give examples of nonsmooth spaces that are particularly suitable for a general
Sobolev space theory or where such a theory is needed for external reasons.
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7.3. Notes. The relationship between various capacities and pointwise behavior
of functions was first studied in classical potential theory; see [123], [58]. For
general estimates between capacities and Hausdorff measures, see [123], [3], [134].
Elementary proofs for the particular estimates in (Z2)) and ([C3]) can be found in
[83, Chapter 2]. There is a large literature on fine behavior of Sobolev functions;
see, for example, [I34], [3], [132], and the many references there. For a slick proof
of the uniqueness of the quasicontinuous representative in Theorem [1] see [106].
Modulus was first used as a tool in geometric function theory, especially by Beurling
and Ahlfors [23], [5]. Its usefulness in real analysis was probably first realized by
Fuglede [69]; in particular, Theorem [.4] is due to him. Theorem and equality
([TI3) are due to Shanmugalingam [163].

8. SINGULAR SPACES

We give definitions for a “smooth” and a “singular” metric space, but for the
purposes of this article only. Several examples of singular spaces and their role in
analysis and geometry are discussed.

8.1. Smooth spaces. Let us call a metric space smooth if it is locally isometric
to a finite dimensional Riemannian manifold. Thus, a space is smooth if it locally
looks like an open region in some R"™, equipped with a metric

(8.1) d(z,y) == inf/ VG ") ds,

where G is a smooth symmetric matrix-valued function on the region, and the
infimum is taken over all smooth curves - joining x and y in the region. We also
call a metric space smooth at a point if the point has a neighborhood that is smooth.

Metric spaces of this kind were first considered by Riemann in his famed 1854
Habilitationsschrift. They are very special metric spaces, as Riemann himself was
aware of. Here we quote a passage from Riemann’s lecture (in Spivak’s translation
[T70, p. 152]):

Still more complicated relations can occur if the line element cannot be repre-
sented, as was presupposed, by the square root of a differential expression of the
second degree. Now it seems that the empirical notions on which the metric deter-
minations of Space are based, the concept of a solid body and that of a light ray,
lose their validity in the infinitely small; it is therefore quite definitely conceivable
that the metric relations of Space in the infinitely small do not conform to the
hypotheses of geometry; and in fact one ought to assume this as soon as it permits
a simpler way of explaining phenomena.

A crucial feature of metrics as in (BI) is that infinitesimally they become
Euclidean. More precisely, if x¢ is a point in a smooth metric space (X,d), then
the pointed metric spaces

X = (X, e d, x0)

converge, as € — 0, to some finite dimensional Euclidean (Hilbert) space. Con-
vergence of metric spaces is an important concept in synthetic geometry, and we
will discuss it in more detail in subsection In the present context of smooth
spaces, the convergence X, — R™ means that, given any R > 0 and any A\ > 0,
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there exists €y > 0 such that the closed ball B, (_a:o, R) in the metric space X, is
(1 4+ A)-bi-Lipschitz equivalent to the closed ball B(0, R) in R"™ whenever € < €.
We now discuss Lipschitz maps.

8.2. Lipschitz maps. Lipschitz maps form the right substitute for smooth maps
in metric geometry.
Recall that amap f : X — Y between two metric spaces is said to be L-Lipschitz,
L>1,if
dy (f(a), f(b)) < Ldx(a,b)
whenever a,b € X. An embedding f : X — Y is said to be L-bi-Lipschitz, L > 1, if

L~ Ydx(a,b) < dy(f(a), f(b)) <L dx(a,b)

whenever a,b € X. We use the terms Lipschitz, or bi-Lipschitz, if the parameter L
is not important for the discussion at hand.

A 1-bi-Lipschitz embedding is called an isometric embedding. If there is a
bi-Lipschitz bijection between two metric spaces, then these spaces are said to
be bi-Lipschitz equivalent. Spaces that are bi-Lipschitz equivalent through a 1-bi-
Lipschitz map are called isometric. The terms locally bi-Lipschitz equivalent and
locally isometric should be clear.

Metric spaces that are locally bi-Lipschitz equivalent to a region in R™ are called
(n-dimensional) Lipschitz manifolds]é3

In our definition for the Lipschitz manifold the metric is given first. It is a differ-
ent issue that a topological manifold may be metrized so as to become a Lipschitz
manifold in our sense. (The latter holds in fact for all topological manifolds outside
dimension four; see subsection [[T.4l) Recall here that a (topological) n-manifold is
a metrizable separable space where every point has a neighborhood that is homeo-
morphic to R™. We will call 2-manifolds surfaces.

8.3. Singular spaces. The main message of this article is that calculus is possible
in spaces that are not smooth (in the sense defined in subsection [B] for example).
We restrict our discussion to a first order calculus, which should be preserved by
bi-Lipschitz maps. In particular, calculus is possible on Lipschitz manifolds.

The preceding understood, let us call a metric space X singular at a point p,
p € X, if no neighborhood of p is bi-Lipschitz equivalent to a smooth space. We
also say that p is a singular point of X in this case. A metric space is singular if it
has at least one singular point

Notice that our terms “smooth” and “singular” are not complementary concepts.
Easy examples show that a metric space can be simultaneously nowhere singular
and nowhere smooth. (Consider the graph of a nowhere smooth Lipschitz function.)

It is in general a difficult task to recognize whether a given point in a metric
space is singular or not. Equivalently, it is in general a difficult task to recognize
whether a given metric space is a Lipschitz manifold as defined in the preceding.
We will return to this question later in subsection

We next display some examples of singular spaces and their constructions that
appear in analysis and geometry.

4Lipschitz manifolds are typically assumed to be separable, in addition, but as we are mainly
interested in local questions this amplification is immaterial.

5By this definition, every point in an infinite dimensional Banach space is singular, which
may be a cause of objection to the terminology. However, the focus of this article is on finite
dimensional spaces.
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8.4. Alexandrov spaces. These were, quite likely, the first singular spaces to be
systematically studied in geometry. There are two essentially different classes of
spaces here. The first class is defined via a triangle comparison; it allows one to
say whether a space has curvature bounded from either above or below by some
constant. The spaces in the second class are topological surfaces, where the total
curvature makes sense as a measure

The starting point for the first class is the model 2-dimensional simply connected
Riemannian surface M, ,f of constant Gaussian curvature k, where k is a given real
number. Thus, M} is the Euclidean plane if £ = 0, or a properly scaled 2-sphere, or
hyperbolic plane, if £ > 0, or k < 0, respectively. Assume now that X is a metric
space that is locally geodesic in the sense that every point in X has a neighborhood
whose points can be joined by a geodesic. A geodesic [a,b] joining two points
a,b € X is the image of an isometric map of the interval [0, dx (a,b)] C R to X[1 In
such a space, we can speak about a triangle A(a, b, ¢), which is a union of geodesics
[a,b], [b, c], and [¢, a]. In the model space, we have a unique (up to isometry) triangle
with side lengths determined by the lengths of the three geodesics. Now X is said
to have curvature at most k, or at least k, if all sufficiently small triangles in X
are thinner, or thicker, respectively, than the corresponding model triangle in M.
More precisely, X has curvature at most k, or at least k, if every point in X has a
neighborhood such that for every geodesic triangle A(a,b,c) in the neighborhood
the distance from every point z € [a,b] to ¢ is at most, or at least, the distance
between the corresponding points in the model triangle in Mj,.

(In the general theory of spaces with bounded curvature, as defined in the pre-
ceding, some additional a priori assumptions are typically placed on the metric
space X. For example, a standard assumption is that X be a length Spaceﬁ Also,
local compactness or completeness is often assumed.)

One obtains singular spaces with bounded curvature, for example, by cone
or gluing constructions. To describe the former, let X be a metric space with
diam(X) < 7. We can define a metric on X x (0, 00) by the formula

de((w,s), (4,1)) = /52 + £ — 2st cos(dx (z,y))..

The cone over X, Cone(X), is the completion of X x (0,00) in the metric dc.
The unique point that will be added to X x (0, 00) in the completion is called the
cone point. For many spaces X with curvature at least 1, or at most 1, Cone(X)
is a space of curvature at least 0, or at most 0, respectively [40, p. 91, p. 132].
Typically, Cone(X) is not a manifold at the cone point.

Examples of larger singular sets can be constructed by using gluing methods.
For example, Reshetnyak’s gluing theorem asserts that if two complete and locally
compact spaces with curvature at most k are glued together along isometric convex
subsets, then the resulting space has curvature at most k [40, p. 316].

The concept of a metric space with curvature bounded from above or below gen-
eralizes the notion of a Riemannian manifold with similar bounds for the sectional

SDespite being singular in appearance, the spaces in this second class are in fact Lipschitz
manifolds; that is, they are locally bi-Lipschitz equivalent to open regions in R2. This follows
from a recent result of Bonk and Lang [32].

"More generally, a geodesic metric space is one where every pair of points can be joined by a
geodesic.

8 A metric space is a length space if the distance between every pair of points in the space is
the infimum of the lengths of paths joining the points.
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curvature. In fact, the concept exactly specializes to that of sectional curvature
bounds in case of Riemannian manifolds. Many classical theorems of Riemannian
geometry, describing the effect of sectional curvature bounds on global geometry,
have been generalized to spaces with bounded curvature. Such generalizations have
applications also to the study of Riemannian manifolds via compactness arguments,
as discussed later in subsection B8 Many spaces with bounded curvature are ob-
tained as limits of smooth manifolds; it is an open problem to what extent the
converse is true

The second class of Alexandrov spaces is defined by using triangles as in the
preceding, but now computing their “excesses”; the outcome is turned into a global
quantity in the form of a signed measure. We give an alternate but equivalent
definition. Let X be a metric space that is also a topological 2-manifold. Then
X is said to be a surface of bounded curvature (in the sense of Alexandrov) if it is
locally isometric to a domain G C R? that is conformally deformed by a density
e, where u is a locally integrable function in G whose distributional Laplacian is
a signed measure of finite total mass with every point mass less than 27. Let us
make this definition more precise. First, the assumption on u means that u satisfies

(8.2) /uAgpdxz/ pdu
G G

for all functions ¢ € C§°(G), where p is a signed measure on G with
H(G) <o and pu({z}) < 2r

for every z € G. (Here |u| = u* + p~ denotes the total variation of p.) Second,
given such a function u, by a conformal deformation of G by the function e* we
mean a metric d,, on G that is defined by

(8.3) dy(a,b) = inf/ e*ds,
¥

where the infimum is taken over all rectifiable curves 7 in G joining a and b. Al-
though u need not be smooth, one can show that the requirement ([82) implies
that « has a Borel representative for which the line integration in ([83]) is well de-
fined and for which d,, defines a metric in G. Indeed, a function v as in [82) is
a d-subharmonic function, i.e., a difference of two subharmonic functions u™ and
u~ that satisfy Aut = pu* and Au~™ = p~ in the sense of distributions for the
positive measures u™ and p~. It follows from the classical potential theory that
every d-subharmonic function is well defined outside a set of 2-capacity zero, in
particular outside a set of Hausdorff dimension zero; cf. (T2]).

If u is smooth, then a conformal deformation of the Euclidean metric in G by e*
as in ([B3) leads to a smooth metric whose Gaussian curvature K at a point € G
is given by K(z) = —e~2%(*) Au(x). Because the volume element in this deformed
space is dV = e®* dx, we see that

(8.4) /KdV:—/Auda:.

Thus, surfaces of bounded curvature are metric surfaces where the classical Gauss-
ian curvature makes sense not pointwise but as a measure, replacing the integral
on the right in ([84]).

9See the discussion in [45] p. 469ff.] or in [40, p. 402].
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Examples of surfaces of bounded curvature are polyhedral surfaces with uniform
bounds on the vertex complexity. It is a difficult theorem that all surfaces of
bounded curvature arise as limits of polyhedral surfaces with curvature concentrated
as atoms in the vertices, with appropriately bounded total mass. Thus, surfaces
of bounded curvature can be viewed as a closure of polyhedral spaces under an
appropriate kind of convergence.

As mentioned in a footnote in [B.4] surfaces of bounded curvature in the sense of
Alexandrov are not singular as defined in[83] but this is only a recently discovered
fact.

8.5. Sub-Riemannian spaces. The starting point is a (connected) Riemannian
manifold M and a proper subbundle H of the tangent bundle TM. We assume
that H satisfies Hormander’s condition, meaning that sufficiently many brackets of
vector fields with values in H generate the tangent space at each point. Under this
assumption, a metric can be defined on M by the formula as in ([&I]), but now the
infimum is taken over a smaller class of curves, namely those whose tangent vectors
lie in H. Such a metric is often called a Carnot metric on M, and the resulting
metric space a Carnot-Carathéodory space.

The Hausdorff dimension of a Carnot-Carathéodory space is always larger than
the dimension of M, so we have a singular space The local geometry of a Carnot-
Carathéodory space is rather complicated and currently the subject of extensive
study. Carnot-Carathéodory spaces can be viewed as limits of Riemannian mani-
folds, where one lets the length of the vectors that are perpendicular to the sub-
bundle H grow without bound.

Special cases of Carnot-Carathéodory spaces are Carnot groups, where the un-
derlying manifold M is a nilpotent Lie group and the Carnot metric is invariant
under left translations. In this case, there is also a natural one-parameter family
of dilations on M that behave with respect to the Carnot metric much like the
FEuclidean dilations « — Az for A > 0. These dilations provide a mild form of
symmetry in otherwise very singular Carnot groups.

In proving his celebrated rigidity results, Mostow was forced to perform some
delicate calculus on Carnot groups that naturally arise as boundaries of rank one
symmetric spaces. Thus, after Alexandrov spaces, Carnot-Carathéodory spaces
were perhaps the next singular spaces where analysis and geometry were considered.

Carnot-Carathéodory spaces also arise as natural model geometries for hypoel-
liptic partial differential equations; in the general case, they play the role played
by Euclidean or Riemannian geometries that can be recovered from the associated
Laplace equation.

8.6. Precompactness and convergence of metric spaces. It is a simple but
extremely effective idea to consider convergence of metric spaces. Many singular
spaces arise naturally this way. For subsets of a fixed space, we have the Hausdorff
convergence, or Hausdorff distance. The general case of (separable metric) spaces
can either be reduced to the preceding case or can be handled in a different manner
applicable to all metric spaces.

Let us first consider compact spaces. The Gromov-Hausdorff distance between
two compact metric spaces X and Y is defined as

(8.5) den(X,Y) = inf dist%(X,Y),

10The Hausdorff dimension of a metric space is a bi-Lipschitz invariant.
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where the infimum is taken over all compact metric spaces Z that contain (isomet-
ric) copies of X and Y and where distZ(X,Y) is the Hausdorff distance between
X and Y in Z. Recall that the latter is defined as the infimum of the positive
numbers € > 0 such that X lies in the e-neighborhood of Y in Z and Y lies in the
e-neighborhood of X in Z. (Note that we have suppressed the isometries from the
notation in ([8H]) and consider X and Y as subsets of Z.)

Unlike the classical Hausdorff distance, which uses a fixed underlying reference
space, the Gromov-Hausdorff distance assigns value zero for each pair of mutually
isometric spaces.

The family of isometry classes of compact metric spaces equipped with the
Gromov-Hausdorff distance is a complete, separable, and contractible metric space
C = (C,dgn)- The contractibility is obvious, for X; = (X,tdx), 0 <t < 1, provides
a path from X to the one point space. The separability follows from the fact that
the isometry classes of finite metric spaces are dense in C.

The completeness of C is a consequence of Gromov’s compactness theorem, which
asserts that a family M(D, N) C C is precompact if two geometric quantities are
uniformly bounded for all members in the family. These bounds are described by a
positive number D > 0 and by a positive function N : (0, 00) — (0, 00). We require
for each space X in the family M(D, N) that the diameter of X does not exceed
D and that the cardinality of every maximal e-nefl] in X does not exceed N (€).
Gromov’s theorem states that every sequence from such a family M(D, N) has a
convergent subsequence in C.

It is more important to have a notion of convergence of spaces rather than an
actual distance. In particular, one can define a suitable convergence notion in the
case of noncompact spaces that restricts to the convergence in C for compact spaces.
To this end, we consider pointed prope metric spaces X = (X, z).

One would like to say that a sequence of pointed and proper spaces X, =
(X, x,) converges to a pointed proper space Xoo = (X0, Too) if the closed balls
B, (n,7) C X,, converge in the Gromov-Hausdorff distance to B(Zs0,7) C X for
each r > 0. This definition is indeed correct for a large class of spaces, for example
for length spaces. Unfortunately, in general such a definition would not agree with
the convergence in the Gromov-Hausdorff distance for compact spaces. (Consider
the sequence X,, = ({—1/n,1+ 1/n},—1/n) of pointed subsets of R.)

The correct general definition stipulates the following. We say that a sequence
of pointed proper metric spaces X,, = (X, z,) Gromov-Hausdorff converges to a
pointed proper metric space Xoo = (Xoo, Zoo) if for every r > 0 and for every € > 0
there exists ng such that, whenever n > ng, there exist maps

fn :B(x'rL;T)—)Xoo’ fn(mn):xoo;

such that the ball B(zs,r — €) belongs to the eneighborhood of the image
fu(B(xpn,r)) in Xo and such that

dx, (a,b) —e < dx__(fn(a), fn(b)) < dx, (a,b) +¢€

for every a,b € B(x,,r). We also say that the pointed space X, is a Gromouv-
Hausdorff limit of the pointed spaces X,, in this case.

1A maximal e-net, € > 0, in a metric space is a maximal subset in the space with the property
that distinct points in the subset lie at least distance € apart.

12 A metric space is proper if every closed metric ball in the space is compact. The term
boundedly compact is also used.
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If (X, x,) Gromov-Hausdorfl converges to (X0, Zo), and if (y,,) is a sequence
of points such that y,, € X,, for each n, we say that y,, — y € X, if for every r > 0
such that y,, € B(z,,r) and for every € > 0 there exist ny and maps f,, as in the
preceding such that doo (fr(yn),y) < €.

In the next subsection, we discuss how the Gromov compactness theorem can be
used to show the existence of (weak) tangent spaces to general metric spaces.

8.7. Tangent spaces. In general, there are many tangent spaces at a given point,
depending on the small scales considered. A convenient class of metric spaces,
where tangent spaces can be expected, is the class of doubling spaces.

A metric space is said to be doubling if there exists a constant C' > 1 such that
every ball in the space can be covered by at most C balls of half the radius. The
doubling condition promotes itself to the following ostensibly stronger requirement:
there exist constants C' > 1 and a > 0 such that the cardinality of every maximal
eR-mnet, 0 < e < %, in a ball of radius R > 0 does not exceed C'e~%. The infimal
« such that the preceding condition holds in a doubling metric space for some C'
is called the Assouad dimension of the metric space It is easy to see that the
Assouad dimension is always at least the Hausdorff dimension and can be larger.

Suppose now that X = (X, d) is a complete doubling space. Then X is proper,
and by employing Gromov’s compactness theorem, it is not hard to see that the
sequence

(8.6) X=X, e'dz), >0, z€X,

of pointed proper spaces has a subsequence (X, ) which Gromov-Hausdorff con-
verges to a pointed proper space (X, Too) as €, — 0. Moreover, X, is doubling as
well. Every such space X, is called a tangent spac@ of X at z. Roughly speaking,
such tangent spaces exist because doubling spaces can be approximated (locally)
by finite spaces with cardinality bounds independent of the given scale.

Although in the definition of Gromov-Hausdorff convergence we assume the
spaces to be proper, it is clear that in the present context the definition can be
altered so as to apply to locally compact doubling Spaces

It follows that tangent spaces always exist for X locally compact and doubling.
If X is a Riemannian manifold, then these spaces are always isometric to some
Euclidean space. For a Carnot-Carathéodory space (at least under some additional
assumptions [135]) each tangent space is a Carnot group, and for a Carnot group
each tangent space is the same Carnot group.

More generally, a weak tangent space (or cone) of a proper metric space (X, d) is
a Gromov-Hausdorff limit (X, 2o ) of pointed proper metric spaces (X, A, d, x,,),
where A\, > 0 and z, € X. Note that here we do not impose any additional
requirement for the numbers \,; in particular, X (with a base point) is its own
weak tangent space always. Weak tangent spaces play an important role in the
study of the local structure of Riemannian manifolds with curvature bounds and in
geometric rigidity questions, for example. However, we will not need weak tangent
spaces in this article.

130ther names are also used, e.g., a uniform covering dimension.

14The term tangent cone is also used in this context, although this term has a different meaning
in geometric measure theory [64} 3.1.21].

15Without this remark, noncomplete Riemannian manifolds, for example, would be left out of
the discussion.
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Along with tangent spaces, we need to discuss tangent functions. Given any
metric space X = (X,d) and an L-Lipschitz function f : X — R, we form the
rescaled functions
(8.7) far (W) ::w, zeX, r>0.

Every such rescaled function f, , is an L-Lipschitz function on the rescaled (pointed)
metric space

Xy = (X,r71d, x)
and satisfies f, »(z) = 0.

Now, let X be a locally compact doubling space, let x € X, and let X, =
(Xoos Too) be a tangent space to X at z; i.e., X is a Gromov-Hausdorff limit of a
sequence X, ., = (X, r;ld, x) as r; — 0. Standard Arzela-Ascoli type arguments
imply that there is a subsequence (r;,) of (r;) such that the rescaled functions fy ;.
converge (in a suitable sense) to a Lipschitz function

(8.8) foo i Xoo @ R, foo(Z) =0.

Such a Lipschitz function f., is called a tangent function to f at x.

Differential analysis on metric spaces deals with the structure of tangent spaces
and tangent functions on them.

For example, smooth functions on smooth manifolds have unique tangent func-
tions that are linear functions from the (unique, linear) tangent spaces to R. This
fact is a direct consequence of the definitions. There is a deeper fact, proved by
Rademacher in 1919: for every Lipschitz function f : R™ — R, the rescaled functions
for as in B1) converge, as v — 0, to a linear function at almost every x € R™.
In its classical setting, one easily forgets that there are two separate statements to
Rademacher’s theorem: the almost everywhere existence of a limit and the special
structure of the limit function. We will discuss some far-reaching extensions of
Rademacher’s theorem in Section

8.8. Singular spaces as limit spaces. Uniform bounds on curvature and diam-
eter for a collection of compact Riemannian manifolds ensure that the collection is
precompact in the Gromov-Hausdorff metric. For example, given n > 2, D > 0, and
k € R, we have that every collection R(n, D, k) of closed Riemannian n-manifolds
with diameter not exceeding D and with sectional curvature at least k at every
point is a precompact family. In fact, one can show that the spaces in each such
collection are uniformly doubling.

Gromov-Hausdorff' limits of manifolds in R(n, D, k) need not be smooth Rie-
mannian, but they are metric spaces with curvature bounded from below in the
sense of Alexandrov, as defined in [B4l One can draw a parallel to the Sobolev
space theory. A collection of smooth functions in R™ with uniform bound in the
Sobolev norm ||¢]|1,, 1 < p < 00, as given in (B.3)) is precompact in the Sobolev
space in the weak topologyl™™ The limit functions need not be smooth, but as mem-
bers of WP (R™) they possess a certain degree of regularity. On the other hand,
every Sobolev function is a (strong) limit of smooth functions. As mentioned earlier
in subsection [B4lit is not known whether every space with curvature bounded from
below in the sense of Alexandrov is a limit of smooth spaces.

16We need 1 < p < oo here for the reflexivity of the pertinent Sobolev spaces. A variant of
this result for p = 1 would involve functions whose distributional gradients are measures.
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The precompactness for a collection R(n, D, k) as in the preceding is true under
weaker bounds on the curvature. The main point is to obtain a uniform bound
for the doubling constant for each member in the family, and for this it suffices to
assume a uniform lower bound for the Ricci curvature by classical volume compar-
ison theorems. In other words, every collection R(n, D, k) of closed Riemannian
n-manifolds with diameter not exceeding D and with Ricci curvature at least k at
every point is a precompact family

Bounds on Ricci curvature are weaker than bounds on sectional curvature, and
more complicated limit spaces occur than those that have curvature bounded in
the sense of Alexandrov. However, limits of Riemannian manifolds with uniform
lower bound on Ricci curvature are known to possess enough geometric structure
so as to allow for calculus. This is discussed more in subsection In general,
the structure of these spaces is not as well understood as the structure of spaces
with bounded curvature in the sense of Alexandrov.

8.9. Geometrized decomposition spaces. Geometric topology has produced
many fascinating examples of spaces that are “nearly manifolds”. We now discuss
some of them as they pertain to calculus.

Given a collection G = {F'} of closed sets in a topological space X, one can
form a quotient space X /G, where the members of G are crushed to points. Under
mild conditions on the collection G, the resulting quotient space equipped with the
quotient topology is metrizable if X is metrizable. Such quotient spaces are called
decomposition spaces.

The Bing school in topology created extraordinarily sophisticated techniques
to study decomposition spaces. One of the primary questions was to understand
the conditions under which X/G is an n-manifold if X is an n-manifold. Even if
X/@G is not a manifold, it is in many cases a homology manifold, which means that
it cannot be distinguished from a manifold by means of local algebraic topology.
More precisely, if X is a topological n-manifold and G is an upper semicontinuous
decomposition of X into cell-like compact sets, then Y := X /G satisfies

(8.9) H.(Y,Y\{y}:Z) = H.(R",R"\ {0} : Z),

where H, stands for singular homology Condition ([BJ) is sufficient for man
geometric and analytic arguments, for the degree theory of mappings, for example

Traditionally, in the theory of decomposition spaces, little attention has been
paid to metric questions. Recently, Semmes used some of the classical decom-
position spaces to construct interesting examples of singular metric spaces where
calculus is possible. In these examples, the (metric or topological) singularities that
are formed by crushing the members of G to a point turn out to be inconsequential
from the point of view of differential analysis, provided the construction is done
with care. Semmes’s spaces are limits of smooth manifolds, where certain metric
constraints are kept within bounds. At the end, calculus, like algebraic topology,
cannot tell whether X/G is smooth or even a manifold.

7By the lower bound for the Ricci curvature we mean that the Ricci curvature tensor Ric
satisfies Ric> kg, where g is the Riemannian metric.

18See [54, p. 191] for this result as well as for the terminology.

9n general, a locally compact space that satisfies the local homological condition (&3) for
some positive integer n is called a homology n-manifold.
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Classical geometric topology provides many challenging problems of a metric
nature where analysis may play a role.

8.10. Boundaries at infinity. A source of examples of singular spaces, where it
is desirable to develop calculus for external reasons, is provided by the theory of
negatively curved, or Gromov hyperbolic, groups. With every such group one can
associate a boundary at infinity whose geometry reflects the asymptotic geometry of
the group. More generally, one can consider negatively curved Gromov hyperbolic
metric spaces and obtain a similar asymptotic theory. Examples of such spaces are
simply connected Riemannian manifolds with negative curvature bounded away
from zero and fundamental groups of negatively curved closed Riemannian mani-
folds. Some Carnot groups appear in this role as boundaries of negatively curved
homogeneous spaces (in the sense of Riemannian geometry). Exotic geometries
appear also on the boundaries of certain hyperbolic buildings.

In many interesting cases, it is unknown whether the boundary carries a nice
geometric structure or not. For example, it seems to be unknown what kind of
geometries can be carried on the boundary of the fundamental group of the nega-
tively curved 4-manifolds constructed in [75]. Spaces with interesting features arise
also in the case of compact hyperbolic manifolds with totally geodesic boundaries
or when closed hyperbolic manifolds are glued along totally geodesic submanifolds
[98], [122]. The structure of the boundary of their universal covers is unknown.

8.11. Other examples. Examples of exotic singular metric spaces where calculus
is possible can be constructed by hand. Most notable in this respect are the spaces
constructed by Laakso in [12I]. He showed that for every given Hausdorfl dimen-
sion at least one, there are topologically one-dimensional spaces with this given
Hausdorff dimension that are suitable for calculus. These spaces cannot resemble
the classical fractals; they must contain lots of rectifiable curves, for example.

8.12. Notes. Spivak’s book [I70] contains a nice analysis of Riemann’s lecture. Of
course, there is a huge literature on this topic. The most immediate generalization
of a Riemannian metric leads to Finsler geometry, where one equips each tangent
space of a smooth manifold with an arbitrary (smoothly varying) Banach norm;
see, for example, [2I]. Basic references to Lipschitz manifolds are [131], [175], [I81].

The monographs [37], [40] contain much information about spaces with bounded
curvature in the sense of Alexandrov. See also the survey [I44]. For the theory of
surfaces of bounded curvature in the sense of Alexandrov, see [0], [I], [148]. The
work [32] by Bonk and Lang on bi-Lipschitz parametrizations of these surfaces was
cited in subsection B4l A weaker result along these lines (under a small mass
assumption) was proved earlier by Fu [68]. We return to the general question of
bi-Lipschitz parametrizations later in subsection

Carnot-Carathéodory spaces are currently under extensive study. For the origins
of the analytic aspects of the theory, related to hypoelliptic partial differential
equations and complex analysis, see [I72] and the references there. Excellent sources
for more geometric aspects of the theory are the articles [22], [72]. For Mostow
rigidity, see [I37], [I38]. The contemporary literature on harmonic analysis, partial
differential equations, and geometric measure theory in sub-Riemannian contexts
is large and growing.

For a thorough discussion of the Gromov compactness theorem and convergence
of metric spaces, see [(3, Chapter 5], [40, Chapters 7 and 8]. Cheeger’s lectures [43]
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contain a survey of some of the applications of these ideas to Riemannian geometry,
together with further references. Weak tangent spaces and tangent functions have
been extensively used by Cheeger and Colding [45], [46], [47], Cheeger [42], David
and Semmes [56], Keith [I00], Bonk and Kleiner [29], [30], and others. The concepts
of a doubling metric space and Assouad dimension ( under a different name) can
be found in Larman’s paper [124] from 1967, but they have received more attention
after Assouad’s embedding theorem [14] became a well known and effective tool in
metric geometry. See [56], [159], [81], [160] and the references there.

Rademacher’s theorem was proved in 1919 [I45]. A proof can be found, e.g., in
[62], [64].

An accessible account of the decomposition space theory is Daverman’s book [54],
where references to the original works of Bing and others can be found. The con-
structions of Semmes, alluded to in[B9] can be found in [I56], [I57]. Although the
spaces by Semmes are singular as defined in this article, they still admit “branched
Lipschitz parametrizations” by Euclidean space [89).

The fundamental source for Gromov hyperbolic spaces is [71]. See also [40], [37],
and references there. For the boundaries of homogeneous spaces and buildings, see
[137], [91], [143], [35], [36].

Further examples or references related to singular spaces can be found in [160],
[81].

9. SPACES OF HOMOGENEOUS TYPE

At this juncture, it is instructive to briefly discuss spaces of homogeneous type.
These are spaces where much of the classical real analysis (without derivatives) is
possible.

Let X = (X,d,u) be a separable metric space equipped with a Borel regular
measure  such that the measure of every metric ball in X is finite and positive.
Henceforth, such a triple is termed a metric measure space.

A metric measure space X = (X, d, p1) is said to be a space of homogeneous type
if the measure satisfies a doubling condition: there exists a constant C' > 1 such
that

(9-1) w(B(x,2r)) < Cp(B(z,r))

for every ball B(x,r) in X.

In fact, the term “homogeneous space” usually stands for something more gen-
eral; the distance function d : X x X — [0, 00| is only assumed to be a quasimetric,
where both the triangle inequality and the symmetry condition are required to
hold up to a multiplicative constant. We forgo these more general conditions here.
Moreover, we choose to use the term doubling metric measure space for a metric
measure space X as above if p satisfies ([@I)). Finally, in this case, we call p a
doubling measure.

By the 1970s it had become clear that much of the basic zeroth order analysis can
be done in spaces of homogeneous type, in particular in doubling metric measure
spaces. By “zeroth order” analysis we mean analysis involving functions only, and
not their derivatives in any disguise. As a prime example, we have that the Hardy-
Littlewood maximal operator,

1
MJ(@) = sup g ) /B@,,n) fu,
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maps L'(X) to weak-L'(X), and by interpolation LP(X) to LP(X) for 1 < p <
oo. The maximal operator and its mapping properties provide one of the most
important technical tools in classical harmonic analysis in Euclidean spaces. Behind
the basic properties of the maximal operator are fundamental covering theorems of
Vitali type, valid in spaces of homogeneous type.

From the preceding maximal function theorem one derives some standard con-
sequences, such as the Lebesgue differentiation theorem: if w is a locally integrable
function on a doubling metric measure space X, then

. 1 -
i BT e, 1) )l dn) =0

for almost every z € X.

These two examples give a flavor of what can be done in metric measure spaces
satisfying the doubling condition (@II). It is not the purpose of this article to go
further in this direction, but it should be emphasized that much of the zeroth order
analysis in homogeneous spaces, such as the maximal theorem, is crucial in the
development of the (first order) calculus in metric measure spaces to be discussed
later.

The structure of a doubling metric measure space is not strong enough to allow
for calculus as defined in the beginning of this article. For example, consider the
“snowflake” doubling metric measure space

(9'2) X = ([Oa 1]v |.’L‘ - y|1/2’H2) )

where Hs is the 2-dimensional Hausdorff measure. The function f(z) = x is Lips-
chitz on X, with
[f(z) = f(y)]

|x_y‘1/2 :lf—y‘1/2—>0
as y — x for every x € [0,1]. Thus, if a reasonable notion of a derivative existed
for Lipschitz maps on X, it would vanish for this f. Such infinitesimal information
would then imply that f is constant, which is not the case.

The preceding example presupposes a requirement that should be consequential
to any reasonable calculus. From the point of view of this paper, the space X in
[@2) fails this requirement in a fundamental way because it has no nonconstant
rectifiable curves.

A similar phenomenon persists on many classical fractals, which have some but
not enough rectifiable curves. In such cases, the analysis is more subtle.

Finally, we point out that there are essentially no geometric obstructions for a
metric space to carry a nontrivial doubling measure. If such a measure exists, then
it is easy to see that X as a metric space is doubling as defined in subsection B It
turns out that every complete doubling metric space carries a nontrivial doubling
measure.

Later we will see what extra conditions are needed so that a metric measure
space would allow for calculus. These conditions impose geometric restrictions on
the space.

9.1. Notes. A fundamental work on spaces of homogeneous type is the book [50]
by Coifman and Weiss; see also the survey [51]. For an excellent account on more
recent developments as well as connections to geometric problems, see Semmes’s
article [I59]. For constructions of doubling measures on doubling spaces, see [185],
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[130], [190], [81]. For the use of the Vitali covering theorem in this connection, see
e.g. [159], [&1].

10. SOBOLEV SPACES IN METRIC MEASURE SPACES

We finally begin to explain more precisely what is meant by calculus on metric
measure spaces. We will see in this section that with each metric measure space
X = (X,d, ) there is canonically associated a first order Sobolev space N1?(X)
for every 1 < p < oo. This Sobolev space is a Banach space and agrees with the
classical Sobolev space W1P(R") if X = R™.

The letter NV in the terminology is used to separate N1 (X) from other Sobolev
spaces that can abstractly be defined, even though some of these may actually
coincide. This is in keeping with the tradition of using the notations H':?(R™) and
WLP(R"), as discussed earlier.

First we make some remarks about rudimentary calculus on metric measure
spaces based on rectifiable curves.

10.1. Modulus in metric measure spaces. Curves and their rectifiability, and
consequently line integration of nonnegative Borel functions, can be considered
in every metric space. Every rectifiable curve 7 : [a,b] — X has an arc length
parametrization

Yo : [0,length(v)] — X,

length(y)
[oasi= [ oo
¥ 0

whenever p : X — [0, 00] is a Borel function.

In particular, the definition and basic properties of modulus as described in
Section transfer over to general metric measure spaces. We can talk about a
property holding on p-almost every curve in a metric measure space X. The basic
lemmas [.2] [7.3], and remain valid with the same proofs.

Much of the ensuing discussion can be seen as a reduction to one dimensional
calculus, with modulus as an outer measure exerting some global control.

and we define

10.2. Upper gradients. Let X = (X,d) be a metric space. A Borel function
p: X —[0,00] is said to be an upper gradient of a function u : X — R if

(10.1) |w@fu@|s/p@
2l
whenever a,b € X and < is a rectifiable curve in X with end points a and b.

As trivial examples, we note that p = co is an upper gradient of every function,
and if X contains no rectifiable curves, then p = 0 is an upper gradient of every
function on X. If f: X — R is Lipschitz, then p = Lip(f) is an upper gradient,
where

(10.2) Lip(f) := ii%W

is the Lipschitz number of f.
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More interesting examples of upper gradients are the pointwise infinitesimal Lip-
schitz numbers

(10.3) Lipf(z) := limsup sup Lf(@) = )l
r—=0  d(z,y)<r r
and
(10.4) lipf(z) :=liminf sup [f(z) — f)l 7
"0 d(@y)<r r

for a Lipschitz function f: X — R. It is not hard to see that indeed the functions
Lipf and lipf are upper gradients of f.

By standard measure theoretic arguments, and by using the fundamental the-
orem of calculus, one verifies that p = |Vu| is an upper gradient of every smooth
function on R™ (or more generally on a Riemannian manifold), where |Vu| denotes
the length of the (Riemannian) gradient of w.

The definition for upper gradients is purely metric, but the concept is most
useful in the context of metric measure spaces. In fact, even in R"™ we cannot
expect p = |Vu| to be an upper gradient of an arbitrary Sobolev function u. To
counter this problem, we next introduce a weaker notion of an upper gradient. The
modulus of a curve family is an essential notion here.

10.3. p-weak upper gradients. Let X = (X,d, u) be a metric measure space
and let 1 < p < oco. A Borel function p : X — [0, 00] is said to be a p-weak upper
gradient of a function v : X — R if the inequality in (I0]) holds for p-almost every
curve vy in X.

If u is a p-quasicontinuous function in W1P(R™), then it follows from the proofs
for Theorems [ and [.6] that every Borel representative p of [Vu| is a p-weak upper
gradient of w. In fact, it is necessary to take the quasicontinuous representative here,
for every locally integrable function in R™ that possesses a p-integrable p-weak upper
gradient is p-quasicontinuous. We will see this momentarily.

Functions that have p-integrable p-weak upper gradients are the analogs of
Sobolev functions on metric measure spaces. The precise definition, presented mo-
mentarily, requires a little care because of issues related to the pointwise definition.
Let us first study functions with p-integrable upper gradients without further for-
malism. Thus, all functions are assumed to be defined pointwise everywhere, unless
otherwise stipulated.

First we observe, by Lemma [.3] that every p-integrable p-weak upper gradient
of a function can be approximated in LP(X) by upper gradients. In fact, if p is
p-integrable and satisfies (I0) outside a p-exceptional family T' of curves, there
exists a p-integrable Borel function o : X — [0, 00] such that

/UdS:OO
.

(10.5) pe:=p+teo, €>0,

for every v € I'. Consequently,

is an upper gradient of u and p. — p in LP(X) as € — 0.

In view of the preceding, the difference between upper gradients and weak upper
gradients seems small, at least if the latter exist and are appropriately integrable.
However, there is no viable theory based on upper gradients alone, even for functions
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in WHP(R™), as should be clear to the reader by now. Modulus provides the precise
conceptual framework in dealing with the failure of the fundamental theorem of
calculus on all curves and is especially indispensable in spaces with no rectilinear
coordinate system, or system of “preferred curve families”.

A function u : X — [0,00] is said to be absolutely continuous on a rectifiable
curve v if wo 7 : [0,length(y)] — R is absolutely continuous, where g is the arc
length parametrization of ~.

The next proposition is essentially built into the definitions; cf. Theorem [T.4

Proposition 10.1. A real-valued function that possesses a p-integrable p-weak up-
per gradient on a metric measure space is absolutely continuous on p-almost every
curve.

10.4. Minimal p-weak upper gradients. Generally a given function has infin-
itely many upper gradients; but if there exists one that is p-integrable, then there
exists one that is minimal.

Proposition 10.2. Suppose that a function u : X — R has a p-integrable p-weak
upper gradient. Then there exists a minimal p-weak upper gradient p,, characterized
by the following two properties: p, is a p-integrable p-weak upper gradient of u;
and if p is another p-integrable p-weak upper gradient of u, then p, < p almost
everywhere.

Proof. First one proves (we omit the details) that p-integrable p-weak upper gra-
dients form a lattice in the sense that if 7 and o are two p-integrable p-weak upper
gradients of a given function, then so is min{7, c}. Consequently, any sequence (p;)
of p-weak upper gradients of a given function u satisfying

Jm ol e (x) = il;f lollLe(x) »

where the infimum is taken over all p-weak upper gradients p of u, can be chosen
to be pointwise decreasing;:

p1 Z p2 Z e .
Clearly, then, (p;) converges in LP(X) to a Borel function p, whose LP-norm as-
sumes the above infimum. By Fuglede’s lemma [T3 p, is a p-weak upper gradient
of u. It is also clear from the lattice property of upper gradients that p,, is minimal
as asserted. (]

It is not difficult to verify, by using Fubini’s theorem and the fundamental the-
orem of calculus, that if u is a function on R™ that possesses a p-integrable p-weak
upper gradient, then the partial derivatives of u exist and p, = |Vu| almost every-
where.

A similar remark holds in other situations, where |Vu| makes sense more classi-
cally, e.g. in Riemannian or sub-Riemannian contexts.

In conclusion, we can canonically attach a p-integrable function p, with a
given function v in an arbitrary metric measure space, provided that w has one
p-integrable upper gradient. The function p,, is unique up to a set of measure zero,
and it measures the size of the rate of change of u along most curves in the space.
Moreover, p, agrees with the more classical notion of the length of the gradient
whenever the latter is available.

The minimal upper gradient satisfies the following locality property satisfied by
the usual gradients.
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Lemma 10.3. Suppose that a function v : X — R has a p-integrable p-weak upper
gradient. If A C X ‘s a Borel set and u|A = ¢ for some constant ¢ € R, then
pulA =0 almost everywhere.

The lemma is not hard to derive from the definitions.

Remark 10.4. As defined, p, depends a priori on the fixed parameter p € [1, 00),
although this dependence is suppressed in the notation. In many situations,
although not always, p, is known to be independent of p (see Section [[2).

10.5. Sobolev spaces N'*(X). Consider the vector space N'?(X) consisting of
all functions v : X — R such that u is in LP(X) and there exists an upper gradient
p of uwin LP(X). Then we can define a seminorm in N*?(X) by

(10.6) ullp o= llullLex) + llpullLex) »
where p,, is the minimal p-weak upper gradient of u defined in the previous sub-

section. The Sobolev space N'P(X) is obtained by dividing out the elements of
NYP(X) of zero norm. That is,

N2 (X) = N2 (X)) ~,

where
u ~ v if and only if ||u — v||1, = 0.

As is customary, we will talk about functions in N*P(X) rather than equivalence
classes.

The Sobolev space N'*(X) normed by (I0.6]) is a Banach space, although this
fact is not obvious from the definitions.

To show the power of the modulus method in connection with Sobolev spaces
NYP(X), we formulate and sketch a proof for the following property of weak com-
pactness type.

Theorem 10.5. Let X = (X,d,u) be a metric measure space and let 1 < p <
0o. Then every bounded sequence (u;) of functions in the Banach space N'P(X)
contains a subsequence (u;, ) that converges weakly in LP(X) to a function u €
NYP(X). Moreover, we have that

(10.7) 1 < i nf |, |

1,p-

Proof. (For the standard functional analytic facts in the ensuing argument, see
[T91l pp. 120 and 126] for example.) Because LP(X) is reflexive for 1 < p < oo,
and because the LP(X)-norms of the functions u; are uniformly bounded, we can
find a weakly convergent subsequence (u;, ). By passing to a further subsequence
if necessary, we may assume that the corresponding sequence of minimal p-weak
upper gradients (p;, ) also converges weakly in LP(X). Let u denote the weak limit
of the sequence (u;, ) in LP(X), and let p be the weak limit of the sequence (p;, )
in LP(X). We claim that an appropriate representative of u belongs to N17(X)
and that p is a p-weak upper gradient of w. Then ([I0.7) follows from the lower
semicontinuity of norms under weak convergence in Banach spaces.

To prove the claim, we first invoke Mazur’s lemma asserting that from every
weakly convergent sequence of elements in a Banach space one can form a sequence
of convex combinations that converges strongly or in the norm. Let (v;) be such a
sequence of convex combinations of functions u;,. By passing to a further subse-
quence if necessary we may also assume that the correspondingly indexed sequence
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o; of convex combinations of the functions p;, converges in L”(X) to p. The upper
gradient inequality (I0.J]) is preserved under convex combinations in the sense that
if v and w are functions with upper gradients p and o, and if 0 < A < 1, then
Ap+ (1 = X\)o is an upper gradient of Au + (1 — A)w. It follows therefore that for
each j, we have that o; is a p-weak upper gradient of v;. Moreover, by (I0.H), we
can assume that o; is an actual upper gradient of v;. By Fuglede’s lemma [T.5]

(10.8) lim [ o;ds :/pds
¥ g

J—00

for p-almost every curve v in X. Next, we will show that for p-almost every curve
~ we have both that (I0.8]) holds and that

(10.9) JILHOIO vj(z) =u(r) €R

for every x that is an end point of , provided that we properly choose a represen-
tative of u. In fact, we can pass to another subsequence and assume that (I0.9)
holds outside a set E of measure zero. Then set

1
(10.10) u(z) = §(hm sup v;(x) + liminf v;(z))
j—o00 J—0

whenever this expression makes sense; for other points z we can set u(x) = 0.
Because p-almost every curve v meets E in a set of linear (Hausdorff 1-measure)
zero (use as a test function oo - xps for a measure zero Borel superset of E and
Lemma [(3]), we have for some y € v that y ¢ E. In particular, if also v satisfies
([I0.8)) and z € + is arbitrary, then

5] = [ (w)] < [o5(a) = 0s)| < [ s,
¥
which gives that limsup;_, ., [v;(z)| < oo. In particular, with the definition (I0.10),
we have that
|u(a) — u(b)| < limsup |v;(a) —v;(b)] < limsup/ ojds = /pds
Jj—o0 j—oo Jy v

for p-almost every curve «, where a and b are the end points of . It follows that p
is a p-weak upper gradient of the representative of u given in (I0I0) as required,
and the theorem follows. O

Remark 10.6. Theorem does not assert that every bounded sequence in
NYP(X) contains a weakly convergent subsequence. In fact, this would imply that
NYP(X) is reflexive by the Eberlein-Shmulian theorem [59, Theorem 1, p. 430, and
Theorem 7, p. 425]. However, N1'P(X) is not always reflexive; an example will be
given in subsection The general lack of reflexivity can be compensated by the
result in Theorem

The combination of the lemmas of Fuglede and Mazur as in the preceding proof
has turned out to be a powerful tool in the analysis on metric measure spaces based
on modulus.

10.6. Cheeger’s definition. The fact that inequality (6.2]) need not hold for every
rectifiable curve, for a given Sobolev function u in R"™, is a source of technical
problems if one wants to found a Sobolev space theory on upper gradients. We
preferred to deal with this problem by using the p-modulus (cf. Theorem [T6]).
Cheeger proposed a different approach which we next describe.
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Let X = (X,d, 1) be a metric measure space, and let 4 : X — R be a function
in LP(X), 1 < p < co. We say that a p-integrable Borel function p : X — [0, 00] is
a generalized p-upper gmdz’en of w if there exists a sequence (u;) of functions in
L?(X) and a corresponding sequence of upper gradients (p;) such that u; — u in
LP(X) and that p; — p in LP(X). The Cheeger-Sobolev spacd] C1P(X) consists
of all LP-functions u for which there exists a generalized p-upper gradient. Then
C1P(X) is a Banach space with the norm

(10.11) |l

where the infimum is taken over all generalized p-upper gradients of w.

In NY?(X), for p > 1, there is a kind of weak compactness stemming from
Fuglede’s lemma[7.5 and Mazur’s lemma as explained in Theorem 0.5 In C1P(X),
for all p > 1, this property and the lower semicontinuity of the C'P-norm are built
into the definition. The equality between N**(X) and C1'?(X) for p > 1 essentially
follows from Theorem

1p = [Jullp +inf||p|],,

Theorem 10.7. We have that
O (X) = N'P(X)
isometrically when 1 < p < co.

Proof. 1f u € NYP(X), then obviously u € C'P(X). Moreover, the embedding is
norm nonincreasing because for every p-weak upper gradient p of u we can find a
sequence of upper gradients converging to p in LP(X) as explained around (I03).
Conversely, it follows from Theorem that every function v € C'P(X) has
a representative that belongs to N'?(X) and that this embedding also is norm
nonincreasing. O

When p = 1, the two spaces are generally different. Whereas N!(X) typically
is a substitute for the classical Sobolev space, C!(X) is a substitute for the space
BV of functions whose distributional derivatives are measures.

Cheeger also defined a minimal generalized p-upper gmdien of a function u €
L?(X) to be a generalized p-upper gradient p, such that

ull1.p = lullp + llpullp -

Minimal generalized upper gradients can directly be shown to exist for every func-
tion u € C1P(X), for 1 < p < oo, by using the uniform convexity of LP(X). On
the other hand, it follows from the preceding discussion that minimal generalized
p-upper gradients are precisely the minimal p-weak upper gradients for p > 1, so
the existence also follows from Proposition

It should be emphasized that all the results about the space N'?(X), and about
minimal p-weak upper gradients, that are attributed to Cheeger later in this paper
were actually proved in the context of the space C*P(X) and in the context of
minimal generalized upper gradients, that is, by using the definitions given in this
subsection.

Even though the two spaces N1'?(X) and C''P(X) agree (isometrically) for p > 1,
there is one fundamental difference between them that we wish to stress. Namely,

20 Cheeger omitted the prefix p from the terminology.

21Cheeger [42] used the notation H1,,(X) for this space, but we prefer to reserve the letter
for spaces that are defined by a completion operation; cf. Theorem and subsection 511

22 Again, Cheeger did not use the prefix p in this terminology.
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the functions in N*?(X) are automatically “good” representatives analogous to
Theorems [I1] and [.4l We next discuss the pointwise behavior of functions in
NYP(X).

A capacity theory can be developed in metric measure spaces in analogy with
that in Section [l If 1 < p < oo and E C X, we define the p-capacity of E to be
the number (possibly infinite)

(10.12) capy(E) = mf(|lullZ, 0, + l10ul 20 x))

where the infimum is taken over all u € N1P(X) such that v > 1 on a neigh-
borhood of E. We can talk about sets of zero p-capacity on X, as well as
p-quasicontinuity of functions. It turns out that functions in N1?(X) are automat-
ically p-quasicontinuous. The preceding procedure of forming the Sobolev space
NUYP(X) automatically produces good representatives for the Sobolev functions.
Here is a precise statement for R”.

Theorem 10.8. If u € NYP(R™), then u is p-quasicontinuous and belongs to
WLP(R™). Conversely, every p-quasicontinuous representative u of a Sobolev func-
tion in WP (R™) belongs to NVP(R™). Moreover, the corresponding Sobolev norms
agree.

As before, we have a corresponding statement about Sobolev functions and
spaces in Riemannian and sub-Riemannian contexts.

10.7. Nontriviality of N*?(X). The Sobolev space N'?(X) is a vector subspace
of LP(X), and the identity map gives a continuous embedding,

(10.13) NYP(X) — LP(X).

If the metric measure space X is lacking in rectifiable curves, it may happen that this
embedding is onto. If X has no nonconstant rectifiable curves, then p, = 0 is the
minimal p-upper gradient of every function, and we have that N1P(X) = LP(X)
isometrically. This is an example of a degenerate situation, where the Sobolev
space N1'P(X) carries no information beyond measure theory. Let us call N1P(X)
nontrivial if the embedding in (I0.13) is not surjective.

One can establish the following criterion for nontriviality of N1P(X). A metric
measure space is said to have nontrivial p-modulus if there exists a curve family in
the space with positive p-modulus.

Proposition 10.9. The Sobolev space NYP(X) is nontrivial if and only if X has
nontrivial p-modulus.

Proof. The necessity of the assertion is obvious. For the sufficiency, one uses the
separability of X and finds that under the hypothesis of the nontriviality of the
p-modulus, there must be a ball whose characteristic function cannot belong to
NYP(X). We omit the details. O

Thus, the nontriviality of the Sobolev space N'P(X) carries some geometric
information about the underlying metric measure space. It is known that some
classical fractals, such as the Sierpinski carpet and gasket, have trivial p-modulus
for every p > 1, so the associated Sobolev spaces are trivial as well. These examples
are interesting in that the pertinent spaces have rectifiable curves, just not enough
of them.
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To obtain a setting where calculus is possible, we need a space that has nontrivial
modulus in a uniform scale invariant manner. Such an assumption is made precise
in the next section.

10.8. Notes. Upper gradients were introduced and studied by Koskela and the
author in [85], [86], [87]. The concept of a weak upper gradient was defined by
Koskela and MacManus in [I16]; they also noted the approximation procedure in
().

Sobolev spaces C1P(X) for 1 < p < oo were introduced by Cheeger in [42]. The
important concept of a minimal upper gradient was first introduced by Cheeger, in
the context of the space C*P(X). As mentioned in the text, Cheeger used the term
minimal generalized upper gradient. He proved an existence and uniqueness theorem
for minimal generalized upper gradients in [42, Theorem 2.10]; this result preceded
the theory of minimal p-weak upper gradients. Minimal p-weak upper gradients
for p > 1 were considered by Shanmugalingam in her thesis [I62, Corollary 2.3.4],
[164, Corollary 3.7]. She proved that Cheeger’s minimal generalized upper gradients
agree with minimal p-weak upper gradients. The proof given in this section for the
existence of a minimal weak upper gradient (Proposition [[0.2)) is due to Hajlasz
[78], who also observed that minimal weak upper gradients exist for p =1 as well.

We note that Cheeger’s definition for the Sobolev space does not rely on the
modulus of a curve family. Independently of Cheeger, a systematic study of Sobolev
spaces based on the concept of modulus and weak upper gradients was made by
Shanmugalingam in [162], [163]. Theorems [0.5] [0.8 and the equality C1?(X) =
NUP(X), for 1 < p < oo, are due to her; see also [97]. (The assertion for the
equality C'?(X) = N1P(X) appears in [163, Theorem 4.10], but full details can
only be found in [162] Chapter 2].)

I do not know if the spaces C**(X) and N1'1(X) have been studied more sys-
tematically. For studies of BV-functions in metric spaces, see [7], [8], [I1].

The definition for (weak) upper gradients, and hence that for Sobolev spaces,
readily extends to functions with values in a Banach space. For such a theory, see
[88].

The question of nontriviality of modulus in a metric measure space has interesting
applications beyond Sobolev spaces, especially to geometric rigidity questions. See
[102], [31]. Proposition[I0.9should be well known to the experts, but may not have
been explicitly recorded before.

The recent survey [78] by Hajtasz contains a more detailed discussion of Sobolev
spaces N'P(X). A full treatment of Sobolev spaces of general Banach-valued func-
tions will appear in a forthcoming monograph by Koskela, Shanmugalingam, Tyson,
and the author 23 Finally, we note that the term Newtonian space is often used for
NUYP(X) (because the definition is ultimately based on the fundamental theorem of
calculus.)

11. POINCARE INEQUALITY IN METRIC MEASURE SPACES

We discuss a principal condition on a metric measure space X = (X,d, 1) that
implies that X allows for calculus. This condition is an axiomatization of the
classical Poincaré inequality ([6.9). Recall the fact, emphasized in Section [6] that

23 Sobolev spaces on metric measure spaces: an approach based on upper gradients. A mono-
graph in preparation.
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the fundamental inequalities stemming from the potential estimate in (63]) employ
only the size of the gradient of a function.

11.1. Poincaré inequality. We say that a metric measure space X supports a
p-Poincaré inequality, 1 < p < oo, if there exist constants C' > 0 and A > 1 such
that

1/p
(11.1) ][ |lu —up|dp < Cdiam(B) (][ or d,u)
B AB

for every ball B in X, for every function v : X — R, and for every upper gradient
p of u. (Recall the mean value notation from (6.8]).)

To require that (III]) holds in X is to require that X has plenty of rectifiable
curves, uniformly at all scales. The parameter p measures in a subtle way the
amount of curves; it is akin to the parameter p in the definition of modulus. In
fact, the validity of a Poincaré inequality can sometimes be stated in terms of
modulus. In general, the connection is more suggestive than formal.

We have seen in Section [6] that R™ supports a p-Poincaré inequality for each
p > 1. On the other hand, the snowflake space X in (@2]) cannot support a
p-Poincaré inequality for any p.

It follows from Holder’s inequality that if a space supports a p-Poincaré inequal-
ity, it supports a g-Poincaré inequality for each ¢ > p. On the other hand, given
any two numbers 1 < ¢ < p, one can construct spaces that support a p-Poincaré in-
equality, but not a ¢g-Poincaré inequality. Such constructions can be accomplished,
for example, by gluing two copies of R™ along an appropriate Cantor set. The size
of the Cantor set dictates how many curves can connect the two copies, and this is
reflected in the exponent of the Poincaré inequality.

It is a rather deep fact that in some instances the validity of a Poincaré inequality
for some p > 1 implies a similar inequality for some smaller ¢ < p. This will be
discussed more in subsection 1.7

11.2. Doubling p-Poincaré spaces. Let us call a metric measure space X =
(X, d, 1) a doubling p-Poincaré space if p is a doubling measure and if X supports
a p-Poincaré inequality.

A doubling p-Poincaré space provides fertile soil for a first order calculus. In this
regard, the stipulation of (II]), in addition to the doubling condition (@), seems
to be a correct specialization down from general spaces of homogeneous type. In
subsequent sections, we will see more precisely what can be accomplished under
these hypotheses.

Notice that condition (II.]) depends on the parameter p. However, many con-
sequences of this condition seem to be independent of this parameter. The picture
is not yet completely clear.

How does one recognize doubling p-Poincaré spaces? Do such spaces, apart from
certain trivial or standard examples, occur naturally in mathematics? The answer
to the second question is a resounding yes. For example, many of the singular
spaces introduced in Section [ are examples of doubling p-Poincaré spaces. The
answer to the first question is more complicated. There exist techniques that can
be employed here; some are similar to those which we used earlier to prove that a
Poincaré inequality holds in R™. On the other hand, most of the currently known
techniques are quite ad hoc, and there is room for improvement.
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The analogous questions for spaces of homogeneous type are much easier to
answer. As mentioned earlier, in Section [ every complete doubling metric space
carries a nontrivial doubling measure.

To summarize, there are rather exotic metric measure spaces, of fractional Haus-
dorff dimension for example, that support a Poincaré inequality and hence allow
for calculus. Some of these spaces arise naturally in other areas of mathematics,
and calculus is needed to solve specific problems. Some examples of metric measure
spaces have been constructed by hand in order to show the robustness of condi-
tion (ITJ). These latter examples raise further questions: where exactly lie the
boundaries for first (or higher) order calculus?

11.3. Singular spaces supporting a Poincaré inequality. Several of the sin-
gular spaces presented in Section [§ support a Poincaré inequality.

The validity of a Poincaré inequality in Alexandrov spaces with curvature
bounded from below does not seem to be well known, so I will record the following
result.

Theorem 11.1. Let X be a complete and geodesic metric space of finite Hausdorff
dimension. If X has curvature at least zero, then the Hausdorff dimension of X
is an integer, the corresponding Hausdorff measure is doubling, and the associated
metric measure space supports a 1-Poincaré inequality.

The measure theoretic conclusions in Theorem [IT] can be found in [40, Chap-
ter 10], and a proof of the Poincaré inequality in [146] (see also [120]).

Surfaces of bounded curvature in the sense of Alexandrov also support (locally)
a 1-Poincaré inequality. This follows from the Bonk-Lang parametrization theorem
cited earlier.

Carnot-Carathéodory spaces typically support a Poincaré inequality. See [05],
[184], [79), Section 11].

The validity of a Poincaré inequality carries over to Gromov-Hausdorff limits of
metric measure spaces, where a convergence of measures has to be incorporated in
the definition. We will discuss this is in more detail in subsection This leads
to many nontrivial examples of singular spaces supporting a Poincaré inequality, in
light of the discussion in subsection B8 and the fact that every complete Riemannian
manifold with nonnegative Ricci curvature supports a 1-Poincaré inequality [41].
See [47] for applications.

Some singular spaces that arise as boundaries of Gromov hyperbolic groups sup-
port a Poincaré inequality; in many cases, it is not known whether or not a Poincaré
inequality holds. A better understanding of the issue here would be of great im-
portance for geometric rigidity questions.

The Laakso spaces alluded to in subsection B.I1] support a Poincaré inequality.

We discuss the decomposition spaces together with topological manifolds in the
next subsection.

11.4. Manifolds and the Poincaré inequality. Many of the decomposition
spaces mentioned in subsection support a Poincaré inequality. This follows
from the metric nature of the constructions and from the following further result
of Semmes [I55].

Theorem 11.2. Let X be a metric space that is an n-homology manifold and of
Hausdorff dimension n, where n > 2. Suppose that the Hausdorff n-measure H,
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satisfies the following Ahlfors regularity condition: there exists a constant C > 0
such that

(11.2) —r" < Hp(B(z,r)) < Cr"

for all balls B(x,r) C X with r < diam X. Suppose further that X satisfies the
following linear local contractibility condition: there exists a constant C' > 1 such
that every metric ball B(x,r) in X with r < C~1 diam X can be contracted to a
point in B(x,Cr). Then X supports a 1-Poincaré inequality (with respect to the
Hausdorff measure).

This theorem is highly nontrivial; it also carries remarkable consequences. The
hypotheses are (quantitative) topological and measure theoretic. The outcome
is that significant first order calculus is possible on a space that satisfies these
hypotheses. There are also geometric consequences.

According to a theorem of Sullivan, alluded to earlier in [82] every topological
manifold outside dimension four is homeomorphic to a metric space that is a Lip-
schitz manifold as defined in subsection In particular, it follows easily that
every compact topological manifold outside dimension four can be metrized so as to
satisfy the hypotheses in Theorem [T1.2]

It was known to Whitney in the 1950s that Lipschitz charts on a manifold can be
used to set up a measurable or L>° de Rham theory [I89]. Other similar analytic
tools have been developed on Lipschitz manifolds. For example, using Lipschitz
(or, more generally, quasiconformally) invariant notions of geometric analysis to-
gether with ideas from noncommutative geometry, Connes, Sullivan, and Teleman
constructed local formulas for certain characteristic classes on quasiconformal man-
ifolds [53]. The consequences of Theorem are of a somewhat different nature;
they allow for global quantitative calculus on a manifold, including second order
partial differential equations.

A four dimensional topological manifold need not admit a Lipschitz or even
quasiconformal structure. More precisely, there are compact simply connected four
manifolds that cannot be metrized so as to become Lipschitz or even quasiconformal
manifolds. This follows because the Donaldson gauge theory can be extended to the
setting of Lipschitz or quasiconformal manifolds [57]. However, the lack of Lipschitz
structures does not preclude the possibility that metrics as in Theorem [T.2]exist on
a given compact four manifold. The following question was first raised by Semmes
in [I55] p. 282].

11.5. Question. Is every compact four manifold homeomorphic to a metric space
that satisfies the conditions of Ahlfors 4-regularity and local linear contractibility as
defined in Theorem [11.2]7

In the preceding, by Ahlfors 4-regularity we mean that (IT.2) holds for n = 4.

An affirmative answer to this question would bring all four manifolds into the
realm of analysis. Moreover, if the answer indeed is in the affirmative, it would
mean that there are limits to the calculus made possible by a Poincaré inequality.
Namely, one cannot hope to set up a Donaldson type gauge theory, as in the pres-
ence of Lipschitz or quasiconformal structures. In order to address Question 1.5
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one could start by investigating some of the specific simply connected four man-
ifolds constructed by Freedman that are known not to have smooth or Lipschitz
structures

Little is known about metric structures in general on nonsmoothable four man-
ifolds. For example, as a first step towards answering Question [[1.5], one could
ask if a given four manifold can be metrized so that it has locally finite Hausdorff
4-measure ] There is a conjecture, attributed to Freedman, stating that every four
manifold admits Holder continuous charts mentioned above |2, Problem 4.71]. This
conjecture is distantly related to Question

Finally, Semmes has also asked what kind of metric structures can exist on
the exotic homology n-manifolds, n > 5, constructed by Bryant, Ferry, Mio, and
Weinberger [39]. Can they be metrized so that the hypotheses of Theorem are
valid or just so as to have locally finite Hausdorff n-measure?

11.6. Poincaré inequality and Gromov-Hausdorff convergence. We first
require the concept of a measured Gromov-Hausdorff convergence. Let X =
(X, d, u, x) be alocally compact doubling p-Poincaré space with a base point x € X.
For ¢ > 0 we consider the pointed renormalized metric measure spaces

(11.3) X = (X, e ', pe, ),
where
(11'4) )U’E(E) = M(Be(xv 1))_1M(E)

for E C X. Here and later B, refers to a ball in the metric e 'd. Thus, (II3) is
analogous to rescalings of X as in (B4), with an additional renormalization of the
measure as in (TTA4]).

For the purposes of this article, we adapt the following definition for a mea-
sured Gromov-Hausdorff Convergence A sequence (X, ), where ¢, — 0 as
n — oo, of pointed renormalized metric measure spaces is said to converge in
the measured Gromov-Hausdorff sense to a pointed metric measure space X, =
(X ooy dooy floos Too ), if the pointed metric spaces X., = (X, e,%d,z) Gromov-
Hausdorff converge to (X0, doo, Too) as explained in subsection and if, in addi-
tion, the following holds: for every sequence (y,) of points such that vy, € X, and
Yn — Y € Xoo, and for every r > 0, we have that pie, (Be, (Yn,T)) = fioo(Boo(y, 7))
as n — 0o, where B, refers to a ball in X .

We will call every such limit space a measured Gromov-Hausdorff limit space
based at x € X.

Under the current hypotheses, one can show that measured Gromov-Hausdorff
limits exist for every choice of a base point € X (cf. subsection 7). Moreover,
every such limit space is a proper and doubling p-Poincaré space. This latter result
is fundamental for many applications of the theory; cf. subsection

24See [66], [67] for constructions of such manifolds.
Every noncompact four manifold is smoothable [67, p. 116], so the question is interesting
only for compact manifolds.
26Here we follow [42] Section 9]. The given definition in the context in which it is used here
can be shown to coincide with the more standard definition as in [56] Section 8.6] for example.
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11.7. Self-improving property of the Poincaré inequality. There are well
known phenomena in harmonic analysis, where uniform and scale invariant con-
ditions “self-improve”. The first and perhaps best known of such instances is
Gehring’s lemma, which asserts that if a nonnegative locally integrable function
in R™ satisfies a uniform reverse Hélder inequality for some exponent, then it sat-
isfies a similar inequality for some larger exponent. An important consequence of
Gehring’s lemma is the fact that the so-called Ap-condition is an open-ended con-
dition. To describe the latter, recall that a nonnegative function w € L} .(R") is

loc

said to be an A,-weight, 1 < p < oo, if there exists a constant C' > 1 such that

1-p
(11.5) ][wdx <C (][ w!/(=P) dx)
B B

for each ball B in R™. (For p = 1, the integral in the right hand side is taken to
mean the essential infimum of w over the ball B.) Obviously, an A,-weight is an
Ag-weight for every ¢ > p, but it is also true that every Ap,-weight, p > 1, is an
Ag-weight for some g < p (depending on the weight). This latter fact is nontrivial.

Self-improving inequalities of the Gehring lemma type are widely used in many
proofs for the regularity properties of solutions to partial differential equations, for
example. Weights that satisfy a reverse Holder inequality also have a connection
to Poincaré inequalities in R™. Namely, if w is an A,-weight in R", then dp = wdx
determines a doubling measure that satisfies a p-Poincaré inequality. By the open-
ended property, we have that du satisfies a ¢g-Poincaré inequality for some g < p if
p> 1.

Recently, Keith and Zhong proved that such a self-improving property holds in
the context of a Poincaré inequality in general [I04]. More precisely, they proved
the following.

Theorem 11.3. Let p > 1 and let X be a complete and doubling p-Poincaré
space. Then there exists ¢ < p such that X supports a q-Poincaré inequality. The
statement is quantitative in the sense that q and other parameters involved in the
conclusion depend only on the parameters in the hypotheses.

Theorem [[T.3]has several important consequences; we will mention some of them
later. The proof for Theorem is rather intricate involving several rescaling and
limiting arguments for metric spaces. Moreover, the result is nontrivial already
in R™ where it is still not known whether a doubling measure that supports a
p-Poincaré inequality has to be absolutely continuous with respect to Lebesgue
measure. In fact, all known (to the author at least) doubling measures p in R™
that satisfy a p-Poincaré inequality for some p > 1 are of the form dy = wdx for a
weight w in some A, (the exponents p and ¢ need not be the same here).

11.8. The Poincaré inequality and removability. Theorem [I1.3] is not true
without the assumption that X be complete as a metric space. Given any num-
ber p > 1 there exists a locally compact doubling metric measure space X that
supports a p-Poincaré inequality but does not support a g-Poincaré inequality for
any g < p. One can choose X to be a domain in Euclidean space, with Euclidean
distance and Lebesgue measure. This remark follows from the following theorem of
Koskela, which illustrates how the concept of a Poincaré inequality sheds new light
on classical questions as well [113].
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We say that a compact set K C R” is removable for the Sobolev space WP if
every function in W1?(R™\ K) has an extension to a function in W1P(R").

Theorem 11.4. Let K be a compact set of measure zero in R™, n > 2, and let
p > 1. Then R"\ K supports a p-Poincaré inequality if and only if K is removable
for the Sobolev space WP, Moreover, there are compact sets of measure zero that
are removable for WP, but not for W4 for any q < p.

11.9. Notes. An abstract Poincaré inequality as in (TI]) was introduced together
with upper gradients by Koskela and the author [85], [86]. Naturally, Poincaré type
inequalities in various situations have a long history in analysis. There are several
rather deep results in geometric analysis that are known to require only a Poincaré
type inequality and a doubling measure. See, for example, [152], [52], [16], and the
many references there. See also [115].

For examples of doubling p-Poincaré spaces, see [86], [79], and references therein.
Semmes’s article [I55] introduced an important method to verify the validity of a
Poincaré inequality; this method has been used later e.g. in [35], [I2I]. For an
earlier article in this regard, see [55]. There are by now several equivalent ways to
express inequality (ITI)). See [86], [79], [87], [99], [103].

References related to singular spaces and Poincaré inequalities have been given
in the text of this section. The fact that a Poincaré inequality passes to limit
spaces was first proved by Cheeger [42, Theorem 9.6, p. 486] in a slightly weaker
form that what is formulated in subsection Later Cheeger (unpublished), as
well as Keith and Koskela, independently, found the optimal statement; see [99]
Theorem 3, p. 260], [114].

For a survey on Gehring’s lemma and its use in analysis, see [94]. For the use of
Ap-weights and Poincaré inequalities in partial differential equations, see [83].

For removability questions for Sobolev functions in abstract settings, see [I1§].

12. MEASURABLE COTANGENT STRUCTURES AND DIFFERENTIABILITY

In this section, we discuss Cheeger’s work which implies that every doubling
p-Poincaré space admits a measurable cotangent structure. The existence of such
a structure is an example of a geometric restriction that spaces that support a
Poincaré inequality must satisfy. A crucial aspect of this work is a careful analysis
of the infinitesimal behavior of Lipschitz functions.

I reiterate what was already mentioned in subsection (see also Notes to
Section 10) that in the ensuing results Cheeger used a different definition both for
the Sobolev space and for the minimal p-weak upper gradient. For p > 1, the
concepts are the same, however, and we will make this standing assumption for the
rest of this section. (In fact, as will become clear, such an assumption entails no
loss of generality in what follows.)

12.1. Rademacher’s theorem. Recall the definition of rescaled functions and
tangent functions from [RX1) and ). If X is R, then Rademacher’s classi-
cal theorem (cf. subsection B7]) implies that every tangent function of a Lipschitz
function f : R™ — R is a unique linear map at almost every point.

In doubling Poincaré spaces, we have the following remarkable extension of
Rademacher’s result due to Cheeger.
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Theorem 12.1. In a doubling p-Poincaré space, there are, up to a decomposition
of the space into countably many measurable parts, finitely many Lipschitz func-
tions whose tangent functions generate the vector space of the tangent functions of
arbitrary Lipschitz functions almost everywhere. The cardinality of the generating
set of functions has an upper bound depending only on the data in the hypotheses
of the theorem.

It is necessary to make the assertion in the preceding theorem more precise.
To this end, recall the two pointwise infinitesimal Lipschitz constants from (I0.3)
and (I0.4]). Also recall the notation for the minimal p-weak upper gradient from
subsection [T0.4

Theorem 12.2. Let X = (X,d,u) be a doubling p-Poincaré space. Then there
exists a countable decomposition of X into disjoint measurable sets U,, a € A,
together with Lipschitz mappings Xo : Uy — RN such that the following holds:
with every Lipschitz function f : X — R there is associated a collection of bounded
functions dof : Uy — RN o € A, such that

f(@) = f(y) = (da f(2), Xa(z) = Xa(y))

(12.1) yhir; d(z,y) =0

for almost every x € U,. Moreover, for almost every x € U, we have
(12.2) Lipf(z) = lif(z) = py(2)

and there is a norm | - |, in RNV(®) such that

(12.3) lda f(2)]e = ps ().

Finally, the integers N(a) are bounded from above by a finite constant depend-
ing only on the constants associated with the Poincaré inequality and the doubling
condition.

The information in Theorem [12.2] can be reformulated as follows.

Theorem 12.3. With every doubling p-Poincaré space X there is canonically as-
sociated a measurable Banach space bundle T* X with fibers of uniformly bounded
dimension such that every Lipschitz function f : X — R determines a bounded
measurable section df of the bundle and that

(12.4) |df (z)|. = Lipf(x) = py(z)
for almost every x € X.

The preceding results have several notable consequences. The existence of a
nontrivial differential as in (I24]) when coupled with the validity of a Poincaré
inequality allows for differential analysis on X akin to that in classical situations.
One can set up second order differential equations on X and run the basic elliptic
regularity arguments of De Giorgi and Moser type, for example. We make more
remarks on this in Section

Note that the exponent p in the hypotheses of the preceding theorems has no
role in the conclusions. (Except in formulas (I2Z3]) and (IZ4]), where the minimal
p-weak upper gradient depends a priori on p. The conclusion is of course that it
is independent of p.) In subsection [2.3] we discuss a partial extension of these
results, where the hypotheses are weakened so as not to depend on p.
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There are several interesting open questions about the cotangent bundle T* X,
especially about the measure theoretic properties of the Cheeger coordinates X, :
U, — RN(@_ There should be more information available than what is currently
known, perhaps under some additional assumptions on X. In this direction, Keith
has shown that if X is a complete and doubling p-Poincaré space, then the compo-
nents of the Cheeger coordinates can be taken to be distance functions [I01].

We will discuss the proof of Theorem in the next two subsections.

12.2. Differentiability and infinitesimal structure of Lipschitz functions.
Cheeger’s theorem has more information than just the existence of a nontrivial
cotangent structure. Namely, it implies that we have stability in the infinitesimal
Lipschitz constants and that these agree with the minimal upper gradient; this
is expressed in (I22). Moreover, analogous to the Euclidean case, the tangent
functions of a Lipschitz function have a special structure called generalized linearity.
These facts are perhaps the deepest among Cheeger’s findings in [42]. We will
discuss them briefly in this subsection.

Let X = (X,d, 1) be a metric measure space and let 1 < p < co. A function
u : X — R is said to be p-harmonic in X if, for every bounded open set 2 C X,
we have that u € NP(Q) and that

(12.5) /Qpﬂdu < /prjdu

for every v € N1P(Q) such that u — v vanishes in a neighborhood of X \ Q. If
X = R", then w is 2-harmonic in the above sense if and only if u is a harmonic
function in the classical sense (up to a redefinition in a set of measure zero). This
follows from the remarks made in Section [[0.4] and from the classical interpretation
of harmonic functions as local minimizers of the Dirichlet energy functional

ur—>/|Vu|2.

More generally, if X = R", then u is p-harmonic as defined in the preceding if and
only if u is in W1P(§2) for every bounded open set 2 and satisfies the p-harmonic
equation

(12.6) —div(|Vul[P~2Vu) = 0

in the sense of distributions.

A Lipschitz function L : X — R is called generalized p-linear if the following
three conditions hold: (i) either L =0 or L(X) = R, (ii) L is p-harmonic, and (iii)
pr =constant.

One can easily show that the generalized p-linear functions in R™ are precisely
the ordinary linear functions. Indeed, a linear function L : R™ — R obviously
satisfies (i) — (iii). On the other hand, if L : R™ — R is generalized p-linear, then
pr = |VL| = ¢ and we have that

0 = —div(|VLPP VL) = —div(¢* 2 VL) = —c* "> AL,

so that L is harmonic and hence smooth. Then a direct computation using the
harmonicity gives that

(12.7) 0= A|VL* = 2[Hess(L)|?,
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where Hess denotes the Hessian and where the Euclidean norm for the matrix
Hess(L) is used. It follows that L must be linear. (Note that (T2 is the so-called
Bochner formula in the special case of R™. Compare [43] p. 19].)

A proof of the preceding statement can be given without using the smoothness
of generalized linear functions. See [42] Theorem 8.11, p. 483]. The fact that this
can be done ultimately means that Cheeger’s proof for the Rademacher theorem is
essentially different from the previously known proofs even in R™.

Next, we have the following theorem.

Theorem 12.4. Let X = (X, d, 1) be a locally compact doubling p-Poincaré space
and let f: X — R be a Lipschitz function. Then for almost every point x € X and
for every measured Gromov-Hausdorff limit X, based at x, every tangent function
fo @ Xoo — R of f is generalized p-linear. Moreover, the minimal p-weak upper

gradient of foo satisfies py.. = Lipf(z).

In the preceding formulation of the theorem, it is understood that the tangent
function f. is obtained through the same sequence of scalings of (X, d, i, ) as the
measured Gromov-Hausdorff limit (cf. subsections [R77] and [IT.6]).

One should note the remarkable fact that the minimal p-weak upper gradient of
foo is independent of the particular limit space, tangent function, and p.

Next I will briefly explain the ideas behind the proof of Theorem[I2.4l The actual
rigorous proof is quite intricate in [42], and we have to ignore many technical points.

The first step in showing that the tangent function f, is generalized p-linear is
to establish that the Lipschitz function f asymptotically minimizes the p-energy at
almost all points in X. More precisely, this means that
(12.8) lim ( ][ Pl dp — inf ][ ph dp) =0

B(z,r) B(z,r)

r—0 Uy

for almost every € X, where the infimum is taken over all functions v, € N1P(X)
such that f — v, vanish in a neighborhood of X \ B(xm) To prove that a
Lipschitz function satisfies (IZ.8]) almost everywhere, one relies on two ingredients:
a Vitali covering theorem and the lower semicontinuity property for the Sobolev
norm (I07). The idea is that if (IZ8)) failed in a set of positive measure, then by
adding essentially disjoint small bump functions to f one could create a bounded
sequence of functions in the Sobolev space, converging to f in LP, such that the
Sobolev norm for the members in the sequence would be less than the Sobolev norm
of f. Such conclusion contradicts (I0.7)). This elegant argument is very general and
works for every metric space where a Vitali covering theorem holds

The asymptotic p-harmonicity as in the preceding can be shown to imply the
global p-harmonicity for the tangent function, but crucial in that argument is the
knowledge that we have stability in the infinitesimal Lipschitz constant and that
this constant agrees almost everywhere with the minimal p-weak upper gradient;
see ([22)). Tt is at the points of density of the minimal p-weak upper gradient that
tangent functions are considered. We cannot enter the technical discussion of this
argument here. It suffices to say that the Poincaré inequality is used decisively in
this argument.

27TFunctions satisfying ([I23) are called asymptotically p-harmonic at x in [42] p. 446].
28 According to Cheeger, it was the demands of this proof in [@2, Theorem 3.7, p. 447] that
led him to define Sobolev spaces such that the lower semicontinuity of norms as in ([0.7) holds

automatically; see (IOIT).
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For a technically well versed reader, I would like to emphasize that the Poincaré
inequality enters the proof in the form of a “telescoping argument” which gives semi-
global Lipschitz type control on Sobolev functions in terms of the upper gradient.
In particular, one obtains that locally Lipschitz functions are dense in the Sobolev
space and moreover that the minimal p-weak upper gradient of a Sobolev function
can be approximated in LP by continuous upper gradients of an approximating
sequence of Lipschitz functions. Note that for continuous upper gradients p the
inequality Lipf(z) < p(z) is immediate; it is a rather elaborate approximation
procedure that gives the same in general. See [42] Section 10] for the details.

12.3. Discussion of proof for Theorem I will discuss a part of the proof of
Theorem (In particular, (I2:2)) will not be discussed; cf. the preceding subsec-
tion.) The ensuing argument is from Keith’s paper [I00], although the underlying
ideas are similar to those of [42].

The starting point is the following property of Lipschitz functions on doubling
p-Poincaré spaces: there exists a constant K > 1 such that

(12.9) Lipf(z) < Klipf(x)

for all Lipschitz functions f : X — R, for almost every x € X.
It is instructive to explain why a p-Poincaré inequality implies (I2.9). Because
lipf is an upper gradient of a Lipschitz function f, (ITI]) implies

diallan ]{B|f*fB|du < C(]{B(lipf)pdp>l/p

By the Lebesgue differentiation theorem, the right hand side of this inequality tends
to lipf(z) for almost every x € X, where B = B(x,r) and r — 0. On the other
hand, by using the theorems of Egoroff and Lusin, one can show that for almost
every point x the mean oscillation of a Lipschitz function, or the left hand side of
the preceding inequality, is close to Lipf(z) for all small enough balls centered at z.
In fact, the same argument shows that Lipf(z) < C ps(z) for almost every z € X
for some constant depending only on the constants associated with the Poincaré
inequality and the doubling condition. With a slightly different argument, using
maximal functions, this was first proved in [42], Proposition 4.26].
Now we have the following partial generalization of Theorem

Theorem 12.5. Let X = (X,d, u) be a doubling metric measure space such that
condition (IZ3)) holds for some K > 1. Then there exists a countable decomposition
of X into disjoint measurable sets U,, a € A, together with Lipschitz mappings
X, : Uy — RN such that the first assertion including (IZ1) in Theorem 2]
holds. The integers N(a) are bounded from above by a finite constant depending
only on K and the constant associated with the doubling condition.

There is also an analog of Theorem under the hypotheses of Theorem
On the other hand, there is no analog of (I2.2)) in this generality, for the hypothesis
([I23]) allows for spaces where upper gradients may degenerate; it allows for totally
disconnected spaces, for example.

It is not well understood what exactly is required for nontrivial cotangent struc-
tures as in Theorem [[2.3] to exist. An abstract functional analytic approach to this
question is described in the next section.

Let us now return to the idea of proof based on ([I2Z9]). First one shows by a
rescaling argument that condition (I2.9)) passes on to tangent functions as a global
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condition: if f: X — R is Lipschitz, then

(12.10) Lipf(z) ~ Lip(foo) = var(feo : B(2,7))
for every ball B(z,r) C X. Here Lip(fs) denotes the (global) Lipschitz number
of foo as defined in (I0.2),

(12.11) var(feo : B(z,7)) := sup [foo(2) = foo (W)

yEB(z,r) r
is the variation of the map f., in a ball, and ~ means that the three numbers in
(I2I0)) are comparable up to multiplicative constants that depend on the original
data only. Moreover, we can only ascertain that (IZI0) holds for tangent spaces
and maps at almost every point z in X.

By employing the fact that the tangent spaces to X are also doubling, a packing
type argument shows that the vector space spanned by tangent functions satis-
fying (I2.I0) must be finite dimensional, with an upper bound on the dimension
depending only on the original data.

From these finite conclusions, by a maximality argument, one further obtains
that (almost everywhere) every tangent function of a Lipschitz function must lie in
a finite dimensional space as required in the theorem.

In sum, the existence of (nontrivial) cotangent structures, as in the preceding
results, owes to rescaling and packing arguments, where one repeatedly uses the
precompactness of doubling metric spaces with measure theory mixed in. The
scale invariant assumptions, whether the doubling condition, Poincaré inequality,
or condition (I29)), give stability in the difference quotients formed as in (87]).

We reiterate that proofs for the infinitesimal stability of Lipschitz functions on
doubling p-Poincaré spaces, e.g. property (I2Z2) and Theorem [[2.4] require more
sophisticated analysis that we must forgo here.

In the next section, we will see that there is canonically associated with every
metric measure space a (possibly degenerate) cotangent structure. This conclusion
is achieved by pure functional analytic methods.

12.4. Density of Lipschitz functions. One can show that in a doubling
p-Poincaré space X, the Sobolev space N1P(X) for 1 < p < oo equals the clo-
sure of locally Lipschitz functions f : X — R in the Sobolev norm. In this case, we
have that

£l = ( /X |F(@)[P dpa(z)) P + ( /X (df ()2 dpa(z))

for such functions by (I2Z3) and ([I2Z4)). I do not know whether locally Lipschitz
functions are always dense in N1'P(X) for an arbitrary metric measure space X.

12.5. Reflexivity of Sobolev spaces. If X is a doubling p-Poincaré space, it
follows from Theorem [[2.3] that the Sobolev spaces N 7 (X) are reflexive for p > 1.
Indeed, the norms on fibers have uniformly bounded dimension and (the upper
gradient part of) the Sobolev norm is an integral norm using the pointwise defined
norms on fibers. The reflexivity of the Sobolev space N'?(X) is used in a crucial
way in the proof of (IZ2) in [42], Section 5.

While the p-Poincaré hypothesis reflects the fact that X must have lots of recti-
fiable curves, it is not correct to view the reflexivity in this light. Indeed, if X has
no rectifiable curves, or few such, then N1?(X) = LP(X) and hence is reflexive for
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p > 1. (See Proposition [0.91) Moreover, it follows from Theorem (as in the
previous paragraph) that N1P(X) for p > 1 is reflexive under the hypotheses of
that theorem.

It is not clear exactly under what assumptions on X we have reflexivity of the
Sobolev space N1P(X). The next example shows that this need not always be the
case. Let

X = ano [O, an]

for some sequence a = (a,) of real numbers such that a,, — 0 as n — co. We view
X as a compact subset of the Banach space ¢ consisting of all sequences z = (z,,)
of real numbers, lim,, o x, = 0, with ||z|| := max |z,|. There is a natural product
(probability) measure p on X, that is the product of normalized Lebesgue measures
on each factor [0, a,]. Now consider a sequence (f,,) of functions f,, : X — R that
are the projections on the factors; i.e., f,(z) = z, for z = (z,) € X. Because
each function f, is 1-Lipschitz on X, and bounded by ||a||, the sequence (f,) is
a bounded sequence in N1'P(X). Assuming that the Sobolev space in question is
reflexive, a weakly convergent subsequence could be found with weak limit f. By
passing to Mazur’s lemma [I91, p. 126], we would further find a sequence (g,)
consisting of convex combinations of the functions f,,,

9m = )\m,lfrm ot )\m7kmfmkm )

where 0 < Ay, and A1 4 -+ + Ak, = 1, with my, — oo as m — oo, such
that g,, — f strongly in NYP(X). It follows that f = 0. Moreover, from the
norm structure it is easy to check that the minimal upper gradient of each g, is
identically Ay,1 + -+ + A k,, = 1, which contradicts the fact that g,, — 0 in
NLP(X).

Stephen Keith has asked the interesting question whether N1?(X) is always
reflexive for p > 1 if X is a doubling metric space.

12.6. Notes. The classical theorem of Rademacher dates from 1919 [145]. For the
standard proof, see e.g. [64], [62]. As mentioned in the text, Theorems 2.1 - 124
are due to Cheeger [42]. The concept of an (abstract) p-harmonic function and
a generalized p-linear function was also introduced by Cheeger in [42]. For the
Euclidean theory of p-harmonic functions, see [83]. Theorem is due to Keith
[100]. Unlike the proof of Theorem [I2:5] the proofs for (I2:2) and for Theorem [[2.4]
use the Poincaré inequality in a substantial way. It is not known if there are
essentially weaker hypotheses on X (than what is assumed in Theorem [[2.2]) that
give (122).

There is an important classical generalization of Rademacher’s theorem, due to
Stepanov [64]. For an extension of this theorem to metric measure spaces, see [20].

Cheeger’s proof of Rademacher’s theorem in [42] is new even in the case X = R™.
This is carefully explained in the introduction to [42]. One of the points is that,
as already mentioned in the text, the generalized linear functions in R™ can be
shown to be linear without using the fact that linear functions are differentiable or
smooth; cf. [42, Remark 8.14]. A similar intrinsic characterization of linearity was
used earlier by Cheeger and Gromoll in their celebrated splitting theorem [49]. In
this connection, one should also mention works by Mostow [137], [138], and Pansu
[143], where differentiability theorems in non-Riemannian settings were proved.

As mentioned in subsection [2Z2] the proof (in [42, Theorem 3.7, p. 447]) for
the asymptotic p-harmonicity of Lipschitz functions works in every metric measure
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space where a Vitali type covering theorem holds (as formulated in [81, Theorem 1.6,
p. 3] for example). Thus, it holds in R™ for every Radon measure and in many
infinite dimensional cases as well. See [133] p. 34 and p. 40].

Cheeger has conjectured that in Theorem the Lebesgue measure in RV (@)
of the image X,(U,) of each “chart” U, is positive; see [42, Conjecture 4.63,
p. 463]. Cheeger’s paper contains more information about doubling p-Poincaré
spaces, especially about their fine scale structure, than what is mentioned here.
For applications of Cheeger’s work to Riemannian geometry, see [47].

The proof that is sketched in subsection [2:3]is from Keith’s paper [I00]. The
argument moreover allows for underlying measures that are not necessarily doubling
but satisfy a condition called chunkiness in [100]. See [I00] for details.

The density of Lipschitz functions in the present context, as explained in [12.4]
was proved both by Cheeger [42] and by Shanmugalingam [163]. Recall that Cheeger
used a different definition for a Sobolev space, as explained in subsection See
also [65].

The reflexivity of N1'P(X) for doubling p-Poincaré spaces, p > 1, is due to
Cheeger; as explained in the text, this fact essentially follows from Theorem [12.3]
[42]. For similar reasons, N1P(X), p > 1, is reflexive under the weaker hypotheses
on X appearing in Theorem [[2.5} see [I00]. The example in of a nonreflex-
ive Sobolev space N'P(X), p > 1, seems to be the first such known. (See also
Section [14])

13. LIPSCHITZ ALGEBRAS AND DERIVATIONS

There is a purely algebraic construct, discovered by Weaver, that leads to a
canonical cotangent structure on every metric measure space. In the present section,
we will discuss this construct and its produce, a measurable exterior derivative
defined on an algebra of bounded Lipschitz continuous functions. We point out
how the measurable exterior derivative can be used to associate a Sobolev space
with every metric measure space X in a canonical way.

13.1. Measurable derivations and the exterior differential. Let X = (X, d)
be a metric space. Denote by Lip™(X) the Banach space of all bounded Lipschitz
functions f : X — R with norm

[ £1lz = max{Lip(f), || f]lec}

where Lip(f) is the Lipschitz number of f defined in (I0.2)).

The space Lip®(X) can be isometrically realized as a weak*-closed subspace of
the Banach space

L>(X) @ L™ (X x X \ {diagonal})
by the embedding
f— (f,difference quotient map)

with self-explanatory terminology. Here L>°(A) refers to the Banach space of
bounded functions on a set A. Note that L>(A) is the dual of L'(A), the
Banach space of absolutely summable functions on A. The preceding embedding
understood, it follows from standard functional analytic arguments that Lip®> (X) is
itself a dual Banach space and thus owns a weak*-topology. One can show that the
weak*-topology on norm bounded sets in Lip™(X) agrees with the weak*-topology
of L*°(X) and that weak*-convergence is the same as pointwise convergence of
functions with uniformly bounded norm.
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Assume now that X = (X, d, ) is a metric measure space. Associated with this
triple there is a Banach space Y(X) of all derivations,

5 Lip™ (X) — L=(X, ),
which are by definition bounded and weak* continuous linear mappings that satisfy

6(fg) = fo(g) +gd(f)
for all f,g € Lip*(X). The boundedness means the usual boundedness of the
Banach space theory,

(13.1) sup |[6(f)lpee (x,u) =t [10]] < o0,
Iz <1

and the weak*-continuity in this case means that

/X5(fi)gdu—>/x5(f)gdu

for all g € L' (X, 1) whenever (f;) is a net in Lip®(X) such that

sup ||fillr < oo and  f; — f pointwise.
i

The space of derivations is a module over L™ (X, u) with the obvious action:

(b0)(f) :=0b0(f), beL™(X,pn).
The dual module
QX) = T(X)
consists of all bounded module maps
a:T(X)— L¥(X,p)
with the norm as in (I31]),

sup || (6)]| e (x ) =t [la]] -

loll<1
It can be shown that Q(X) is a dual Banach space and so equipped with a weak*-
topology.

The members of YT(X) are called the measurable vector fields on X, and the
members of Q(X) are called the measurable 1-forms on X.

The two algebraic constructs, T(X) and Q(X), have both the structure of a
Banach space and a module over L* (X, ut). They are canonically attached to each
given metric measure space, and in fact they depend only on the given measure
class; in other words, two mutually absolutely continuous measures on a metric
space X give rise to the same modules of derivations and 1-forms.

Next, we consider a weak*-continuous bounded linear map

d: Lip™(X) — Q(X)
defined by
df (6) := o(f).
The measurable 1-form df € Q(X) is called the measurable exterior differential of
a Lipschitz function f.

It can be shown that the exterior derivative operator d, as defined above, is in a
sense a universal derivation on the algebra Lip® (X).
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Perhaps surprisingly, the abstract constructs T(X) and £2(X) harbour nontrivial
geometric information about the underlying metric measure space. We will discuss
some examples in subsection [[3.2]

Theorem 13.1. There is a unique map
(13.2) 1 Q(X) = L=(X, )
with the following properties:
lal 20, laf| =1llel [l [fal = [f]la]

for every a € Q(X) and f € L™(X,u). Here ||a|| denotes the (dual) norm on
Q(X).

The function | - | in ([I3:2)) should be considered as a pointwise defined norm on
measurable sections of a measurable Banach bundle over X.

Theorem 13.2. If Q(X) as a module over L (X, u) is finite dimensional, then
there exists a measurable partition X = UN X, such that associated with almost
every x € X, there exists an n-dimensional Banach space (Vy, |+|,) and an isometric
isomorphism from Q(X) to bounded measurable functions (sections)

s: X = U, V,, s(x)eV,,

where

[|s]| ;= esssup|s(z)|, -

It seems to be unknown when exactly one can realize Q(X) as the set of sections
on a measurable Banach bundle where fibers are allowed to be infinite dimensional
[188, p. 74].

The key property emerging from the definitions is the following locality:
Proposition 13.3. For every Borel set A C X of positive measure we have that
(13.3) T(A) =xa - T(X).

It is instructive to see how (I3.3) follows from abstract principles. The proof
relies on two facts. The first fact is that every Lipschitz function f: A — R can be
extended to a Lipschitz function F : X — R such that ||F||r = ||f||z. (This is the
well known McShane-Whitney extension lemma.)

The second fact is that every derivation 6 € T(X) can be localized as in the
following lemma. (Compare Lemma [I0.3])

Lemma 13.4. If f €Lip>®(X) satisfies f|A = ¢ for some constant ¢ € R, then
0(f)|A =0 almost everywhere.
Proof. Because 6(1) = 0, we can assume that ¢ = 0. Let f € Lip®™(X) be such that
f]A = 0. Fix e > 0 and consider ¢ (t) := V% for t > ¢, p.(t) := e /%t for 0 < t < e,
and extend ¢, to be an odd function ¢, : R — R. Define f. := . o f and set

ge = |fel - fe, O0<e<l.
It is straightforward to check that

[lgellz < 10max{][f]|z, 1}

Because also g. — f pointwise, as € — 0, we have that g. — f weak® in Lip™(X).
Therefore, by the definition of the derivation 6, we have that §(f) is the weak*-limit
of the functions 2f.-§(fe), as € — 0, in L>°(X, u). Because f.|A = 0 for every ¢ > 0,
we have that §(f)|A = 0. The lemma follows. O
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With these remarks, the proof for the locality (I33) is straightforward.

13.2. A Sobolev space. By the preceding discussion, we can associate with each
metric measure space X a Banach space Q(X) whose members are called measurable
1-forms. A pointwise defined “fiber norm” |a| € L*(X,u) can be defined for
elements o € Q(X). Moreover, there is an exterior derivative that associates with
each bounded Lipschitz function f on X an element df of Q(X).

It is now easy to define a Sobolev space O'P(X), 1 < p < 0o, as the closure of
Lip*(X) under the norm

(13.4) 1l = ( /X 1P )7 + ( /X ([P dy) VP

More precisely, we consider those functions in Lip™ (X) for which the norm in (I3:4)
is finite and then form a Banach space completion.

In addition to the underlying metric, the construction of Q(X) depends only on
the measure class of u. Thus, if 4 is a measure on R™ of the form du(z) = w(z) dx
for some almost everywhere positive locally integrable function w, then Q(R™, u) =
Q(R™) is the collection of differential 1-forms with bounded measurable coefficients,
and we have

(13.5) O'P(R"; p) = H'(R"; 1)

as defined in subsection 5.1l In particular, we cannot always expect that the mem-
bers of O1'P(X) are represented by LP-functions.

The relationship between the spaces O1?(X) and N'P(X) has not been studied
much. Equality (I3.5) and the remark after it shows that the equality NP (X) =
O'P(X) does not hold in general.

The Sobolev space N'?(X) may reduce to LP(X) if X is poor in rectifiable
curves (Proposition [[0.9). Similarly, in the present case it may happen that

(13.6) Q(X)=0.

In particular, df = 0 for all f € Lip>™(X) in this case, and the corresponding
Sobolev space O1?(X) reduces to LP(X).

Let us say that X is differentiably trivial if (I3.6]) holds. By the Hahn-Banach
theorem (for modules) we have that X is differentiably trivial if and only if T(X) =
0.

Weaver has computed some examples suggesting that the triviality of T(X)
seems to be related to the lack of curves much as in the case of N''P(X). For
example, if X is the ternary Cantor set or if X is a snowflake space as in (@.2]), then
YT(X) = 0. The first example can be seen by using the stipulated weak™ continuity
and density of simple functions in Lip®(X) for uniformly disconnected spaces; the
second example follows essentially from the fact that

|df|(x) < Lipf(z)

for almost every x € X, which easily follows from Theorem [[3] and the locality
Proposition (Recall the definition for the Lipschitz number Lipf(z) from
(@.3).)

More interestingly, we have that some of the standard rectifiably connected frac-
tals, such as the Sierpinski carpet, are differentiably trivial. One also knows that
NYP(X) = LP(X) for the Sierpinski carpet. (This follows from Proposition
and the arguments in [160], pp. 29-33]; see also [102].)
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Finally, it can be shown that if X is complete and connected and if ||df|| = Lip(f)
for all f € Lip™(X), then X is a geodesic metric space.

In conclusion, out of abstract principles we have arrived at concepts of a measur-
able (co-)tangent bundle and a first order Sobolev space. As earlier, these concepts
canonically arise from the underlying metric measure space structure. The non-
triviality of these concepts carries definite information about the underlying metric
space, akin to the nontriviality of N1*(X). Moreover, the following fact is known.

Theorem 13.5. If X is a doubling p-Poincaré space, then Q(X) is isomorphic to
the Cheeger cotangent bundle. In particular,

(13.7) NYP(X) = 0" (X)
isomorphically as Banach spaces.

Theorem follows because the exterior differential is uniquely determined by
certain characteristic properties satisfied by the Cheeger differential as in Theo-
rem I2Z.3l In fact, for the same reason, the conclusion of Theorem remains
valid if X satisfies the weaker hypotheses as discussed in subsection

As mentioned earlier, equality (I37)) does not hold in general. In the definition
for Q(X) only the measure class structure of a metric measure space was used, while
the modulus of curve families is more sensitive to the underlying fixed measure.
Consequently, the space O'?(X) depends more on the infinitesimal structure of the
metric measure space than that of the space N1'P(X). (This suggests a study of
weak tangent spaces in this connection.) For example, if X is a totally disconnected
measurable set in R” of positive Lebesgue measure, then N'?(X) reduces to L?(X),
while X is not differentiably trivial by (I33). In fact, we have in this case that
df is the approzimate differential which exists almost everywhere on X for every
Lipschitz function f: X — R.

It would be interesting to further clarify the relationship between the Sobolev
spaces N1P(X) and O'P(X) in general spaces.

13.3. Notes. Most of the material in this section is from Weaver’s paper [I88]. See
also [I87]. Weaver introduced the Banach modules of measurable vector fields and
forms, and virtually all results and facts mentioned here are due to him (Lemma[I3.4]
has a more high-brow proof in [I88, p. 83 ff.]). The fact that the Cheeger differential
agrees with the differential constructed in [I88] was jointly proved by Cheeger and
Weaver [42] Remark 4.66, p. 463], [188, pp. 94-95]. Theorem [I3.H] follows from this
fact.

The Sobolev spaces O'P(X) seem not to have been considered before in the
literature.

14. OTHER SOBOLEV SPACES

A variety of definitions for Sobolev spaces on metric measure spaces have been
suggested in recent years. Some of these agree with the space N1?(X) introduced
earlier in this article, but others are different, yet a new one was introduced in the
previous section. Recall also that with Cheeger’s definition, we have N1P(X) =
C1P(X) for p > 1, but not in general if p = 1; see subsection

Here we review an important predecessor for the space N'P(X).
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14.1. Hajtasz-Sobolev space. The Hajtasz-Sobolev space M1P(X), 1 < p < oo,
on a metric measure space X = (X, d, u) is defined as the vector space of all LP(X)-
functions u : X — R for which there exists an L?(X)-function g : X — [0, 00) such
that

(14.1) lu(z) —u(y)| < d(z,y) (9(x) +9(y))

for z,y outside an exceptional set of measure zero in X. The norm in M'?(X) is
given by

ullip = [[ullp + inf [[g]l,,

where the infimum is taken over all g that satisfy the preceding requirement. Then
M*?(X) is a Banach space. Moreover, for 1 < p < oo there exists, for each given
u € MYP(X), an essentially smallest function g, that satisfies the requirement in

In many situations, the Hajlasz-Sobolev space is isomorphic (as a Banach space)
to the standard Sobolev space. For example, we have that M1?(R") = W1P(R")
for 1 < p < 0co. One can also show that M1?(X) and N'?(X) are isomorphic as
Banach spaces if 1 < p < co and if X is a doubling p-Poincaré space. (The proof for
this requires the self-improving Theorem [[T.31) When p = 1, the Hajlasz definition
([I41) gives a new function space; we have a strict inclusion

Ml,l(Rn) g WLl(]Rn) — NLl(Rn) .

The Hajtasz-Sobolev space M?(X) hardly ever degenerates into LP(X). There-
fore it is possible to study Sobolev functions on disconnected fractals, for example.
In fact, interesting Banach space structures emerge in such situations. One can
show that for many self similar Cantor type sets, equipped with the Hausdorff
measure, the Hajtasz-Sobolev space M1?(X), 1 < p < oo, contains an isomorphic
copy of the Banach space ¢>°. In particular, M1'?(X) is not reflexive in these cases.

The main difference between the definition (I41]) and the definitions based on
upper gradients or measurable derivations is that the “derivative” g, cannot be
localized (compare Lemmas[I0.3land [34]). Indeed, essentially the optimal function
gu to use in ([IZT) is the maximal function of |[Vu|, if X = R™ and p > 1. In this
sense, the Hajlasz-Sobolev space cannot be used for calculus as defined in the
beginning of this article. On the other hand, even in classical settings, it is useful
to have the simple metric characterization (IZ1]) for Sobolev functions.

The Hajlasz-Sobolev spaces were introduced by Hajlasz in [77]. These spaces
precede the theory of Sobolev spaces C1'P(X) or N'P(X), and they have been
extensively studied during the past decade. For applications of Hajtasz-Sobolev
spaces to classical problems, see for example [80]. The nonreflexivity of general
Hajlasz-Sobolev spaces, mentioned in the text, was proved by Rissanen [149].

For an excellent survey of the Hajlasz-Sobolev spaces, as well as other related
function spaces, see [78]. For a full technical treatment and references, see [79)].
Equivalent definitions for various Sobolev spaces appear also in [103].

One can also develop a theory of Sobolev mappings with values in a Banach
space. Ambrosio [7] was probably the first person to systematically study such
mappings (in the context of mappings of bounded variation). For Riemannian
domains, Sobolev mappings were studied in [112], [I47]. For the general theory, see
[88]. These studies have applications to harmonic mappings with singular targets;
see for example [112], [61], [119], [141], [140].
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15. POTENTIAL THEORY ON SINGULAR SPACES

Cheeger’s theory, as explained in Section [[2] gives the possibility to develop
a theory of elliptic partial differential equations on singular spaces satisfying a
Poincaré inequality. In this section, we briefly discuss such developments.

Let X = (X,d, 1) be a doubling p-Poincaré space. Then we can choose a mea-
surable bundle of inner products (-, ), on X so that

(15.1) (du(z), du(z))s =~ |du(z)|? = Lip u(z)?

for almost every x € X and for every Lipschitz function v : X — R, where d is
the Cheeger differential and |- |, is the Banach norm given in Theorem The
constants of comparability in (IZJ) depend only on the data associated with the
Poincaré inequality and the doubling measure.

The preceding understood, a function u € Nllo’f(Q), where 2 C X is open, can
be declared harmonic if

(15.2) | @e(@). du@) duto) = o

for each compactly supported Lipschitz function ¢ in .

More generally, one can consider nonlinear second order equations such as the
p-Laplace equation on X. Recall that the p-Laplace equation, 1 < p < oo, in the
weak formulation and in our general context, reads

(15.3) /Q (dip (), |du() P~ 2du), du(z) = 0

for u € Nﬁ)’f (), for each compactly supported Lipschitz function ¢ in Q.

Armed with the assumptions that the underlying measure is doubling and that
an appropriate Poincaré inequality holds, one can develop much of the classical
potential theory of R™ in the setting of metric measure spaces. The said assumptions
suffice to run the usual machinery of iteration of various Sobolev type inequalities
in order to conclude (Holder) regularity of the solutions. Broadly speaking, the
standard techniques go over as such, but there are some surprises in the details.

In equations ([[5.2)) and ([I53]), a choice has been made for the bundle of inner
products. Therefore, the associated (p-)harmonic functions depend on this choice,
and we do not have just one potential theory but many such theories. (Naturally,
different choices yield very similar theories.)

There is a more natural potential theory that is canonically attached to each
doubling p-Poincaré space. In this theory, one considers (local) minimizers of the
p-energy functional

(15.4) / |du(z) 7 du(z)

where the fiberwise Banach norm | - |, on X is (almost everywhere) canonically
determined by the underlying metric measure space structure, as explained in The-
orem [[2.3] Equivalently, one considers local minimizers of

(15.5) [ duan

as in (IZ0). In the Euclidean case, when X = R" with the standard metric
and Lebesgue measure, the two approaches are equivalent, the p-Laplace equation
being the Euler equation for the functional (I5.4). In general, there need not be an
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associated Euler equation for the minimizers of (I54). This happens already when
X = R" equipped with a nondifferentiable Banach norm. More generally, one can
consider Finsler manifolds. This fact brings interesting aspects to the theory, for
one has to work with the minimizing property of solutions only.

Under the uniform bounds as in (I5.1l), the minimizers of (I53) are quasimini-
mizers of the energy associated with the chosen inner product bundle. The theory
of quasiminimizers of the usual p-energy in R™ goes back to the fundamental ideas
of De Giorgi from the 1950s and has been particularly important in this general
context. In this vein, Holder continuity and a Harnack inequality for minimizers
can be established in doubling Poincaré spaces.

It was already known to Cheeger that the basic elliptic theory applies to solutions
of (IZX); see [42] Remark 4.60, p. 462]. The usefulness of the quasiminimizer ap-
proach to regularity questions in this general context was first realized by Kinnunen
and Shanmugalingam [109].

There is a growing literature on potential theory in doubling p-Poincaré spaces.
References include [164], [165], [I07], [I08], [24], [25], [117], [110]. Note that these
studies contain as special cases potential theories on Carnot-Carathéodory spaces
or on Euclidean spaces with weights (on which a large older literature exists).

16. APPLICATIONS

The theory of calculus on metric measure spaces has shown that the scope for
much of the classical first order differential analysis is broader than anticipated. On
the other hand, there have been direct applications to previously existing mathe-
matical problems as well. In this last section, I review some such successes of the
theory.

16.1. Quasiconformal mappings. Upper gradients and Poincaré inequalities, as
defined earlier in this article, were first considered in connection with quasiconfor-
mal mappings between metric spaces. Quasiconformality is, at the heart of it, a
metric property of a homeomorphism. It is customary to call a homeomorphism
f: X — Y between metric spaces quasiconformal if there exists a constant H > 1
such that

 sup{dy (F(@), F)) ¢ dx () < 1}
A6.1) s (F@), f)  dxany) =7} = 0 <

for every x € X. In general, this definition is too weak to give an interesting class
of homeomorphisms; for example, every diffeomorphism f : R — R would then be
quasiconformal. It is however a remarkable fact that in R™, n > 2, definition (I6.1))
contains plenty of nontrivial information and yields a rich class of homeomorphisms
that we have learned to call quasiconformal. In particular, every homeomorphism
f: R* - R™ n > 2, that satisfies (I6.]) also satisfies the following stronger
condition: there exists K > 1 such that

sup{dy (f(2), f(y)) : dx(z,y) <7} _
inf{dy (f(z), f(y)) : dx(z,y) 27} —
for every x € R™ and r > 0. (Here we understand that X =Y = R™ with the usual

metric.) Homeomorphisms f : X — Y between metric spaces that satisfy ([6.2)
are called quasisymmetric.

(16.2)
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A natural question to ask is: on which situations does the infinitesimal condition
([I6.1)) imply the global condition [I6.2))7? The following answer was given by Koskela
and the author.

Theorem 16.1. Let X and Y be Ahlfors Q-regular spaces that support a Q-
Poincaré inequality for some Q > 1. If f : X — Y is a homeomorphism that

satisfies ([IG.T), then f also satisfies (I6.2).

Moreover, one can show that the statement in Theorem [6.1] is quantitative;
under appropriate normalization of the mapping, the constant K in (I6.2]) depends
only on the constant H in (I6.]]) and on the data associated with the spaces X and
Y.

The idea behind Theorem [6.0] is that the validity of a Q-Poincaré inequality
in an Ahlfors @-regular space can be shown to be equivalent to another condition,
called a Loewner condition, which is expressed in terms of moduli of curve families.
More precisely, a pathwise connected Ahlfors Q-regular space X, @ > 1, is called a
Loewner space if

(16.3) @(t) ;== inf modg(E,F) >0

for every t > 0, where the infimum is taken over all pairs of nondegenerate continua
FE,F C X such that

dist(E, F) < t min{diam(F), diam(F)},

and where modg (E, F) stands for the Q-modulus of the curve family consisting of
all curves joining F and F'in X. (Recall the definition for modulus from subsections
[7.2] I0.J] and recall that in an Ahlfors regular space the measure is understood to
be the Hausdorff measure; see (IT.2)) for the definition.)

In other words, a space is a Loewner space if it contains lots of curves, as mea-
sured by modulus, at all locations and scales and in all directions. The following fact
links the Loewner condition and Poincaré inequality: an Ahlfors Q-regular space
for @ > 1 is a Loewner space if and only if it supports a Q-Poincaré inequality.

The study of quasiconformal mappings in abstract settings has applications to
geometric rigidity theories. Such applications go back to Mostow, and we will dis-
cuss them in more detail in the next subsection. There are also other, perhaps
unexpected, applications of these ideas. Namely, in the search of new methods to
study quasiconformal mappings, Koskela and the author observed that for home-
omorphisms f : R® — R"™ n > 2, one can replace limsup by liminf in definition
([I61) and still obtain [I6.2]). This fact has successfully been applied in holomorphic
dynamics of one complex variable.

The work on quasiconformal mappings in Loewner spaces and the associated
Poincaré inequalities began in [84], [85], [86]. In particular, the aforementioned
results can be found in these papers. There is a growing literature on these topics.
Tyson’s work [I82], [I83] in particular has been important for rigidity studies. The
Loewner condition has also been used in the study of Gromov hyperbolic spaces; see
[27), [18], [92]. For further refinements on definitions for quasiconformal mappings
in Euclidean spaces and beyond see [96], [I7], [19]. For the applications to dynamics,
see [127], [76].

There are also applications of the concepts of an upper gradient and Banach-
valued Sobolev mappings to the theory of boundary behavior of quasiconformal
mappings in half spaces [15].
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16.2. Geometric rigidity. It has already been mentioned that one of the first
applications of nonsmooth calculus was the proof of the Mostow rigidity theorem
for lattices in rank one symmetric spaces. The boundaries at infinity of these
spaces have (locally) a description as a Carnot group, and a detailed analysis of
quasiconformal homeomorphisms were critical to Mostow’s theory.

Mostow’s ideas have been expanded in later years. In particular, in proving
further rigidity results, Pansu also furthered quasiconformal analysis on general
Carnot groups.

Recently, Bourdon and Pajot established a rigidity property of certain nega-
tively curved spaces, called Fuchsian buildings. Such buildings themselves are sin-
gular spaces, where hyperbolic planes are glued together along boundaries of fixed
hyberbolic polygons. The rigidity result of Bourdon and Pajot states that every
quasiisometry of a Fuchsian building is a finite distance from an isometry. Thus,
the rigidity found in Fuchsian buildings is similar to that found by Pansu in the
quaternionic and Cayley hyperbolic spaces. The Bourdon-Pajot theorem is proved
by a Mostow type analysis using quasiconformal mappings. The given quasiisome-
try between the buildings descends to a quasiconformal (quasisymmetric) mapping
between the boundaries; these boundaries are shown to be certain exotic Ahlfors
regular spaces of fractional dimension, with a Poincaré inequality, and the task is
to show that the induced quasiconformal mapping is in fact “conformal”, hence the
restriction of an isometry. The abstract analytic theory of quasiconformal mappings
and calculus on singular spaces are invoked in the proof.

Other remarkable rigidity results were proved recently by Bonk and Kleiner. In
their work, results and techniques of nonsmooth calculus as presented here are de-
cisively used. To mention one concrete example, we recall the well known Cannon’s
conjecture which predicts that every negatively curved word (or Gromov) hyper-
bolic group with boundary homeomorphic to the two dimensional sphere admits a
discrete and cocompact action on hyperbolic three space. An affirmative answer to
this conjecture is known to have deep consequences for three manifold theory; in
particular, it implies the hyperbolization conjecture asserting that every negatively
curved closed three manifold admits a metric of constant curvature By using
analysis based on the abstract Poincaré inequality (among several other things),
Bonk and Kleiner have reduced Cannon’s conjecture to the problem of finding a
minimal Hausdorff dimension among all spheres that can occur as boundaries of
such groups.

Mostow’s fundamental work is [I37]. For Pansu’s work, see [143], [142]. An
excellent survey on these matters is [74]. Works of Bourdon and Pajot related to
the subject here include [34], [35], [36]. The cited work of Bonk and Kleiner is [31].
See also [26] and [IT1] for forthcoming surveys.

16.3. Manifolds with Ricci bounded below. Gromov-Hausdorff limits of Rie-
mannian manifolds with uniform lower bounds on their Ricci curvature tensor are
examples of doubling Poincaré spaces. This was alluded to earlier in subsection [B.8l
In a series of remarkable papers, Cheeger and Colding have studied Riemannian
manifolds with Ricci curvature bounded below by exploiting this fact (among many

29 Although Perelman’s recent work may yield a positive solution to the hyperbolization con-
jecture, Cannon’s conjecture remains open as of this writing.
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other things). They have proved results that describe the structure of such mani-
folds at a small but definite scale. Some of the theorems of Cheeger and Colding
are proved via a limit space analysis, although the hypotheses as well as the conclu-
sions in these theorems are expressed purely in smooth, Riemannian terms. I refer
to [45], [46], [47], [43] for a more detailed discussion of these results. See also [44]
p. 64] and [48, p. 910] for specific instances, where the results of [42] were used

In subsection R4 we discussed a synthetic treatment of sectional curvature
bounds, going back to Alexandrov in the 1950s. Similar questions for spaces with
Ricci curvature bounds have attracted much attention recently. For an informative
discussion of this problem, see [45, Appendix 2]. Lott and Villani [128], and Sturm
[173], [174] have independently proposed an approach for defining metric mea-
sure spaces with Ricci curvature bounded from below. Lott and Villani also prove
a logarithmic Sobolev inequality for metric spaces with Ricci curvature bounded
from below. A global Poincaré type inequality then follows for spaces with positive
lower curvature bounds. As far as I know, it is an open question whether the spaces
considered by Lott-Villani and Sturm support a Poincaré inequality as defined in

subsection [[T1]

16.4. Nonembedding results. An interesting question, also from the point of
view of applications, asks when a given metric space admit a bi-Lipschitz embed-
ding in some finite dimensional Euclidean space. For example, every subset of R™
with the induced metric is clearly doubling as defined in subsection [87 but there
are doubling metric spaces that do not embed in any R", or even in any Hilbert
space. Every known example to this effect is somewhat nontrivial, and prior to
Cheeger’s work [42], each such nonembeddability result was verified by some ad hoc
method. For example, it is known that none of the Carnot-Carathéodory spaces
(subsection R admit a bi-Lipschitz embedding in a Hilbert space. The Laakso
spaces mentioned in subsection BT also do not admit a bi-Lipschitz embedding in
any Hilbert space

Cheeger applied his differentiation theory (as partially explained in Section[I2]) to
provide a uniform statement that covers many of the known nonembedding results
of this type. More precisely, he proved that if a doubling p-Poincaré space X ad-
mits a bi-Lipschitz embedding in some finite dimensional FEuclidean space, then for
almost every point x € X, every tangent space of X at x is bi-Lipschitz equivalent
to some RY. The more precise result is that if {U,} is a measurable decomposition
of X as in Theorem 22 then for almost every x € U,, every tangent space of
X at z is bi-Lipschitz equivalent to R™V(®), This is a strong structure theorem for
doubling p-Poincaré spaces that are subsets of finite dimensional Euclidean spaces.
One can easily deduce from it the previously known nonembeddability results both
for the Carnot-Carathéodory spaces and the Laakso spaces. It also follows from it
that the boundaries of the Fuchsian buildings mentioned in subsection do not
admit bi-Lipschitz embeddings in any Euclidean space.

30T am grateful to Jeff Cheeger for these references.

31Added in October 2005: Lott and Villani [I29], and also Renesse [I86], have meanwhile
addressed this issue.

32There are even stronger statements known regarding nonembeddability of these spaces in
nice Banach spaces, e.g. in uniformly convex spaces.
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One can also view this structure theorem as an indication that the truly exotic
geometries that allow for calculus cannot be found inside Euclidean spaces, where
by “truly exotic” we mean spaces whose infinitesimal or tangent space structure is
singular as defined in subsection

Incidentally, the first proof of the nonembeddability of the Carnot-Carathéodory
spaces was also based on a differentiability result, namely that of Pansu [143].
Pansu’s differentiability theorem takes into account the algebraic structure in
Carnot groups, which typically appear as tangent spaces in this case [135]; when
mapping into a commutative group, such as RY, the differential always has non-
trivial kernel, which is impossible for bi-Lipschitz embeddings. This deduction of
nonembeddability of Carnot groups in Euclidean spaces from Pansu’s result is due
to Semmes [I57, Section 7] (who also acknowledges that the fact was independently
known to Assouad).

Cheeger’s aforementioned theorem (which can be found in [42], Section 14]) was
in turn applied in a totally different context by Bonk and Kleiner [31]. See also
[125] and the references there for recent results on embeddability of metric spaces.

16.5. Metric parametrization of sets. It was mentioned in subsection R3] that it
is a difficult problem to decide whether a given metric space is locally bi-Lipschitz
equivalent to an open subset of some finite dimensional Euclidean space. This
bi-Lipschitz parametrization problem has attracted much attention in recent years
with contributions by many people. To illustrate the difficulty of the problem,
let us mention that there are, for each integer n at least five, finite n-dimensional
polyhedra that are topological manifolds but not locally bi-Lipschitz equivalent
to a ball in R™ (with respect to a natural intrinsic metric in the polyhedron).
This was first observed by Siebenmann and Sullivan [166] as a consequence of the
Edwards double suspension theorem [60]. Remarkable positive parametrization
results were achieved by Toro [I78], [I79] in the mid 1990s, and by now there are
several nontrivial results known, both positive and negative. The general problem
is nevertheless far from being understood.

The nonsmooth calculus as discussed in this article has played a particularly im-
portant role in recent works [90], [89] on the bi-Lipschitz parametrization problem.
Keith and the author (work in progress) have recently obtained further sufficient
conditions for such parametrizations to exist; inspired by Sullivan’s work [I76],
we have moreover applied these methods to establish new sufficient conditions for
smoothability of topological manifolds.

Finally, instead of bi-Lipschitz parametrizations, one can ask for weaker parame-
trizations e.g. by quasiconformal or quasisymmetric homeomorphisms. Bonk and
Kleiner [28] have proved a two dimensional quasisymmetric uniformization result
by using (among many things) ideas connected with the Loewner condition and
Poincaré inequalities.

For a more detailed discussion of parametrization problems and applications, see
[154], [158], [161], [82], and the references there.
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