Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Syzygies, degrees, and choices from a life in mathematics. Retiring Presidential Address


Author: David Eisenbud
Journal: Bull. Amer. Math. Soc. 44 (2007), 331-359
MSC (2000): Primary 14-02; Secondary 14N25, 14Q99, 01-02, 13D02
DOI: https://doi.org/10.1090/S0273-0979-07-01163-9
Published electronically: May 11, 2007
MathSciNet review: 2318155
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Bertini, E., Introduzione alla Geometria Proiettiva degli Iperspazi. Enrico Spoerri, Pisa (1907). Freely available from Cornell University Library, http://historical.library.cornell.edu/.
  • 2. Buchsbaum, D. A., Lectures on regular local rings. 1969 Category Theory, Homology Theory and Their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), pp. 13-32, Springer, Berlin. MR 0244243 (39:5560)
  • 3. Caviglia, G., Koszul Algebras, Castelnuovo-Mumford Regularity, and Generic Initial Ideals. PhD Thesis, University of Kansas, 2004.
  • 4. Chardin, M., and D'Cruz, C., Castelnuovo-Mumford regularity: examples of curves and surfaces. J. Algebra 270 (2003), no. 1, 347-360. MR 2016666 (2004m:13036)
  • 5. Conca, Aldo, Straightening law and powers of determinantal ideals of Hankel matrices. Adv. Math. 138 (1998), no. 2, 263-292. MR 1645574 (99i:13020)
  • 6. Demazure, M., and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. MR 0302656 (46:1800)
  • 7. Eagon, J. A., and Northcott, D. G., Ideals defined by matrices and a certain complex associated with them. Proc. Roy. Soc. Ser. A 269 (1962), 188-204. MR 0142592 (26:161)
  • 8. Eisenbud, D., Subrings of Artinian and Noetherian rings. Math. Ann. 185 (1970), 247-249. MR 0262275 (41:6885)
  • 9. Eisenbud, D., Transcanonical embeddings of hyperelliptic curves. J. Pure Appl. Algebra 19 (1980), 77-83. MR 593247 (82f:14027)
  • 10. Eisenbud, D., Linear sections of determinantal varieties. Amer. J. Math. 110 (1988), no. 3, 541-575. MR 944327 (89h:14041)
  • 11. Eisenbud, D., Commutative Algebra with a View toward Algebraic Geometry. Springer-Verlag, New York (1995). MR 1322960 (97a:13001)
  • 12. Eisenbud, D., and Goto, S., Linear free resolutions and minimal multiplicity. J. Algebra 88 (1984), no. 1, 89-133. MR 741934 (85f:13023)
  • 13. Eisenbud, D., Green, M., Hulek, K., and Popescu, S., Small Schemes and Varieties of Minimal Degree. http://front.math.ucdavis.edu/math.AG/0404517 (to appear in the American Journal of Mathematics).
  • 14. Eisenbud, D., Green, M., Hulek, K., and Popescu, S., Restricting linear syzygies: algebra and geometry. Compos. Math. 141 (2005), no. 6, 1460-1478. MR 2188445 (2006m:14072)
  • 15. Eisenbud, D., and Harris, J., On varieties of minimal degree (a centennial account). Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 3-13, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987. MR 927946 (89f:14042)
  • 16. Eisenbud, D., Huneke, C., and Ulrich, B., The regularity of Tor and graded Betti numbers. Amer. J. Math. 128 (2006), no. 3, 573-605. MR 2230917 (2007b:13027)
  • 17. Fröberg, R., Rings with monomial relations having linear resolutions. J. Pure Appl. Algebra 38 (1985), no. 2-3, 235-241. MR 814179 (87b:13020)
  • 18. Gallego, F. J., and Purnaprajna, B., Triple canonical covers of varieties of minimal degree. A tribute to C. S. Seshadri (Chennai, 2002), 241-270, Trends Math., Birkhäuser, Basel, 2003. MR 2017587 (2005f:14033)
  • 19. Green, M. L., Quadrics of rank four in the ideal of a canonical curve. Invent. Math. 75 (1984), no. 1, 85-104. MR 728141 (85f:14028)
  • 20. Gruson, L., Lazarsfeld, R., and Peskine, C., On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math. 72 (1983), no. 3, 491-506. MR 704401 (85g:14033)
  • 21. Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57:3116)
  • 22. Hauser, H., http://www1-c703.uibk.ac.at/mathematik/project/bildergalerie/gallery.html
  • 23. MacLane, S., Saunders MacLane--A Mathematical Autobiography. With a preface by David Eisenbud. A K Peters, Ltd., Wellesley, MA, 2005. MR 2141000 (2006b:01010)
  • 24. Macaulay, F. S., The Algebraic Theory of Modular Systems. Revised reprint of the 1916 original. With an introduction by Paul Roberts. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. MR 1281612 (95i:13001)
  • 25. Grayson, D., and Stillman, M., Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
  • 26. Mumford, D., Algebraic Geometry. I. Complex Projective Varieties. Reprint of the 1976 edition. Classics in Mathematics, Springer-Verlag, Berlin, 1995. MR 1344216 (96d:14001)
  • 27. del Pezzo, P., Sulle superficie di ordine n immerse nello spazio di n + 1 dimensioni, Rend. Circ. Mat. Palermo 1 (1886).
  • 28. Rathmann, J., The uniform position principle for curves in characteristic $ p$. Math. Ann. 276 (1987), no. 4, 565-579. MR 879536 (89g:14026)
  • 29. Room, T. G., The Geometry of Determinantal Loci. Cambridge Univ. Press, 1938.
  • 30. Sidman, J., On the Castelnuovo-Mumford regularity of products of ideal sheaves. Adv. Geom. 2 (2002), no. 3, 219-229. MR 1924756 (2003f:13021)
  • 31. Xambó, S., On projective varieties of minimal degree. Collect. Math. 32 (1981), no. 2, 149-163. MR 653892 (84e:14039)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14-02, 14N25, 14Q99, 01-02, 13D02

Retrieve articles in all journals with MSC (2000): 14-02, 14N25, 14Q99, 01-02, 13D02


Additional Information

David Eisenbud
Affiliation: Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720-5070; Department of Mathematics, University of California, Berkeley, California 94720

DOI: https://doi.org/10.1090/S0273-0979-07-01163-9
Received by editor(s): October 29, 2006
Received by editor(s) in revised form: January 19, 2007
Published electronically: May 11, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society