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The attempts to understand and generalize the law of quadratic reciprocity,
which was also part of Hilbert’s 9th problem, immensely influenced the develop-
ment of number theory. The study of higher reciprocity laws was the central theme
of 19th-century number theory and, with the efforts of Gauss, Eisenstein, Kum-
mer, Dedekind and others, led to the theory of algebraic number fields. Abelian
extensions of algebraic number fields had been studied extensively by Kronecker,
Weber and Hilbert in the second half of the 19th century. In the hands of Hilbert,
Furtwängler, Takagi, Artin and Hasse the subject turned into what we now call
“class field theory”, also related to Hilbert’s 12th problem, which asks for a gener-
alization of Kronecker’s Jugentraum.

So what is a reciprocity law? The answer to this question can take a different
form whether seen from the perspective of Gauss, Dirichlet, Hilbert, or Artin, and,
as Franz Lemmermeyer notes in the preface of his book, the connection between
these answers is “not of the kind that springs to one’s eye at first glance.”

We begin with a short and obviously incomplete historical summary related to
the book under review.

For an integer n and a prime number p with (p, n) = 1, the Legendre symbol is
defined by (

n

p

)
=

{
1 if x2 ≡ n mod p has a solution;
−1 otherwise.

Note that x2 ≡ n mod p has a solution if and only if n ∈ (F∗
p)2 where Fp = Z/Zp.

Hence we have a homomorphism F∗
p �−→ {±1} given by n �−→

(
n
p

)
whose kernel is

(F∗
p)

2. In particular the symbol
(

n
p

)
is multiplicative in n. The question, how does(

n
p

)
vary with p for fixed n, is answered by quadratic reciprocity.

Writing the prime decomposition of n = ±2t0qt1
1 · · · qtr

r reduces the problem to
the cases n = −1, n = 2, n = q for an odd prime q, and the answer in these cases is
given by the

Quadratic Reciprocity Law. Let p, q ∈ N be different odd primes. Then

(1)
(

q

p

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.
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Moreover, (
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

It is an easy consequence of quadratic reciprocity that
(

n
p

)
depends on the

residue class of p mod 4n.
This fact was already noted by Euler, who, following Fermat, in his investiga-

tions of representing primes by quadratic forms seems to be the first to discuss the
problem whether a given prime p is a square modulo another prime q. Euler also
observed the multiplicative properties of

(
n
p

)
as a function of p, and, in modern

language, his formulation of quadratic reciprocity says that there exists a group
homomorphism

(Z/4nZ)∗ �−→ {±1}
which for any prime p not dividing 4n is given by

p mod 4n �−→
(

n

p

)
.

The quadratic reciprocity law in a more familiar form was first announced by
Legendre [11] in 1788 and in a similar form to the one given in (1) was published
in 1798 in [12], where the “Legendre symbol” was also introduced. Legendre was
able to give only partial proofs of the law, but, in his attempts to prove the qua-
dratic reciprocity, he proved another theorem which played an essential role in the
discovery of the Local-Global principle by Hasse.

The first complete proof of the quadratic reciprocity law was given by Gauss in
1801 in Disquisitiones Arithmeticae [7]. After the two different proofs he had given
in [7], Gauss proceeded to give a total of eight proofs in search of the extension
of the law to higher power residues. He noticed that properly stating cubic or
biquadratic laws requires the fields of cube or fourth roots of unity. In his work on
biquadratic residues his introduction of the Gaussian integers Z[i] is regarded by
many as the inauguration of algebraic numbers.

Even though Jacobi [8] published several theorems on cubic residues in 1827
and announced a reciprocity law for them in 1837 [9], the first complete proofs of
cubic and quartic laws were given by Eisenstein [3], [4] in 1844 using the method
of Gauss sums and the arithmetic of cyclotomic fields. To generalize his results
to other higher residues, Eisenstein could not circumvent the major difficulty, the
absence of unique factorization. In 1845 Kummer introduced his “ideal numbers”
to restore unique factorization in cyclotomic fields, and in 1850 he published his
reciprocity law without proof [10]. Shortly afterwards, making use of Kummer’s
ideal numbers, Eisenstein [5] proved a special case of what we now call Eisenstein’s
reciprocity law.

For an odd prime l, K a number field that contains a primitive l-th root of unity,
ζl, and p a prime ideal not dividing l, let the l-th power residue

(
α
p

)
l
be the unique

l-th root of unity such that
(

α
p

)
l
≡ α(Np−1)/l mod p. Then we have

Eisenstein’s Reciprocity Law. Suppose that α ∈ Z[ζl] is congruent to a rational
integer modulo (1 − ζl)2. Then for all integers a ∈ Z prime to l we have

(2)
(α

a

)
l
=

( a

α

)
l
.
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Nine years after Eisenstein’s proof of this special case, Kummer proved the gen-
eral reciprocity law for a regular prime p (i.e. p does not divide the class number) in
the ring Z[ζp] of the p-th cyclotomic field Q[ζp]. The extension of ideal theory to all
algebraic number fields was done by Dedekind, who also attached a zeta function
to them generalizing that of Riemann. He recognized the importance of his zeta
functions and obtained their Euler product as a consequence of his ideal theory.

One should also mention that, in the meantime, Eisenstein gave remarkable
proofs of quadratic, cubic and biquadratic laws using the circular and elliptic (lem-
niscatic) functions.

As pointed out by A. Weil in his introduction of Kummer’s collected papers,
using the ideas in Kummer’s work, one can state the reciprocity law in another and
in some sense more natural way. This was not pursued by Kummer but was taken
up by Hilbert, who reinterpreted and generalized the quadratic law to arbitrary
algebraic number fields in terms of the “Hilbert symbol”.

Let Qp be the field of p-adic numbers, the completion of Q with respect to the
p-adic norm, |·|p, where |a|p = p−vp(a) and vp(a) is the exponent to which p appears
in the prime factorization of a. For a, b ∈ Qp, the Hilbert symbol is defined as(

a, b

p

)
=

{
+1 if ax2 + by2 − z2 has a solution (x, y, z) ∈ Q3

p,

−1 otherwise.

The Hilbert symbol can also be defined for the “infinite prime” as
(

a,b
∞

)
= +1

if and only if ax2 + by2 − z2 has a solution (x, y, z) ∈ R3. Now Hilbert’s quadratic
reciprocity law for Q reads as

Hilbert’s Quadratic Reciprocity Law. For a, b ∈ Q∗ we have

(3)
∏
p

(
a, b

p

)
= 1

where the product runs over all primes including the infinite one.

Hilbert showed that for p an odd prime and a not divisible by p, his symbol
satisfies

(4)
(

a, b

p

)
=

(
a

p

)vp(b)

.

Upon taking a, b to be two distinct odd primes p, q, the quadratic reciprocity as in
(1) follows from that of Hilbert’s (3) after using (4) and the easily verifiable identity(

p,q
2

)
= (−1)

p−1
2

q−1
2 .

In his famous ICM address in 1900, Hilbert asked for a proof of the most general
reciprocity law for lth power residues as part of his 9th problem. Four years after
Hilbert’s address and fifty years after Kummer’s proof in the regular case, Kummer’s
reciprocity law in Q[ζp] for irregular primes was proven by Furtwängler [6] in 1904.
During the period 1920–1922 Takagi [13] showed that Kummer’s results follow
from his remarkable development of class field theory. It was Artin [1] who in 1923
conjectured a “general reciprocity law” which contained all past reciprocity laws of
Gauss, Kummer, Eisenstein, Takagi and others as special cases. Artin succeeded
in proving his conjecture in 1927 [2], using a key idea provided by Tchebotarev’s
paper [14] on the density of primes.
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It can be seen that Euler’s formulation of quadratic reciprocity mentioned above
is essentially a special case of

Artin’s Reciprocity Law. Let k be an algebraic number field, K/k a finite abelian
extension, Ck the idèle class group of k, NK/k : CK → Ck the norm homomorphism,
and p a finite prime of k. Then the map sending p to the Frobenius automorphism
σK/k(p) induces an isomorphism

Ck/NK/kCK
∼= Gal(K/k).

When k contains the m-th roots of unity and K = k(α1/m), it follows from the
definitions that σK/k(p) is essentially the power residue symbol

(
α
p

)
m

, and Artin’s

theorem implies that, for fixed α, the value
(

α
p

)
m

depends only on the class [p] of
p. Making this dependence explicit in the case m = 2 yields quadratic reciprocity.

Artin was led to his reciprocity law in his investigations of a new kind of L-
functions, now called Artin L-functions, and indeed his reciprocity law can also
be stated in terms of factorization of the Dedekind zeta function of K in terms
of L-functions attached to the field k. This form of the law in the quadratic case
is already apparent in the work of Dirichlet and in what we might call Dirichlet’s
quadratic reciprocity law.

Let ζK(s) =
∑

a∈OK

1
(Na)−s be the Dedekind zeta function of a number field

K, ζQ(s) = ζ(s) the Riemann zeta function and L(s, χ) =
∑∞

n=1 χ(n)n−s the
Dirichlet L-function attached to a quadratic character χ mod q; i.e. χ : Z → C is
a homomorphism which is periodic with period q such that χ(n) ∈ {±1} if (n, q) = 1
and χ(n) = 0 if (n, q) �= 1. Then we have

Dirichlet’s Quadratic Reciprocity Law. Let χ be a non-trivial primitive qua-
dratic character mod q, K = Q(

√
χ(−1)q). Then the zeta function of the field K

satisfies

(5) ζK(s) = ζ(s)L(s, χ).

To see why (5) is equivalent to (1) we first note that if K/Q is a quadratic
extension of discriminant D, basic algebraic number theory shows that the Legendre
symbol

(
D
p

)
determines how a prime ideal (p) of Z decomposes in K– i.e. whether

it remains prime (inert), becomes a product of two distinct prime ideals (split) or
becomes a square of a prime ideal (ramifies). More precisely

(6) p is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ramified if and only if p|q,

split if and only if
(

D
p

)
= 1,

inert if and only if
(

D
p

)
= −1.

On the other hand, using the Euler product expansion for the ζK together with
its factorization in (5) gives

(7) p is

⎧⎪⎨
⎪⎩

ramified if and only ifχ(p) = 0 if and only if p|q,
split if and only ifχ(p)) = 1,

inert if and only ifχ(p) = −1.
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Finally, if q is an odd prime, there is a unique quadratic character modulo q, given
by χ(n) =

(
n
q

)
. Now it is easy to see that a comparison of the two characterizations

of the splitting of primes in (6) and (7) gives the quadratic reciprocity as in (1).
Artin’s reciprocity law answers Hilbert’s 9th problem in the case of Abelian

extensions. The formulations given above can be thought of as describing the
splitting of primes in the field K in terms of data attached to the base field k.
Similar questions can be raised for general extensions. The answer in that case is
still open and belongs to the theory of Artin L-functions and Langland’s conjectures.

Clearly a book covering the latest developments from Artin till today could be
the subject of a third volume after the promised and to be welcomed second volume
discussing “the contributions of Kummer, Hilbert, Furtwängler, Takagi, Artin and
Hasse.” With that remark we now turn to Lemmermeyer’s book at hand, which is
an excellent account of the history and development of reciprocity laws from Euler
to Eisenstein, written with the hindsight of more recent developments.

The book starts with a very informative chapter on the genesis of quadratic
reciprocity, moves quickly in the next two chapters to quadratic and cyclotomic
fields, and gives a modern account of different proofs of the quadratic reciprocity
law together with some applications to primality tests. Power residues, higher and
rational reciprocity laws, and their various proofs are the subject of the next seven
chapters which form the bulk of the book. In Chapter 10 the author skillfully
uses Gauss’ last entry to indicate the connection between biquadratic reciprocity,
elliptic curves, zeta functions and Weil conjectures. Prime ideal factorization of
Gauss sums is the central theme of the last chapter, where their applications to
proofs of Eisenstein reciprocity law and properties of ideal class groups, together
with some recent refinements and generalizations, are given. Except for the two
chapters (favorites of this reviewer!), Chapter 8 about Eisenstein’s analytic proofs
and Chapter 10 on Gauss’ last entry, the treatment remains almost completely
algebraic. In fact the rarity of analytic methods and ideas might be the only serious
criticism that I have for this otherwise comprehensive treatment of reciprocity laws.

The mathematical prerequisites call for acquaintance with fundamentals of al-
gebraic number fields, Galois theory and complex function theory. As also pointed
out by the author, the book is not meant to be a textbook, although each chapter
can form a basis for a seminar course or independent study. There are illuminating
historical notes and additional references, together with several complementing and
interesting exercises at the end of each chapter.

With its comprehensive treatment of the subject, extensive references, historical
notes, three appendices on dramatis personae, chronology of proofs, and open prob-
lems, Lemmermeyer’s book fulfills “its intention to serve as a source of information
on the history of reciprocity laws” with flying colors.
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ETH Zürich

E-mail address: ozlem@math.ethz.ch

http://www.ams.org/mathscinet-getitem?mr=1511227
http://www.ams.org/mathscinet-getitem?mr=837656
http://www.ams.org/mathscinet-getitem?mr=837656
http://www.ams.org/mathscinet-getitem?mr=1129240
http://www.ams.org/mathscinet-getitem?mr=1129240
http://www.ams.org/mathscinet-getitem?mr=1512273

	References

