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THE EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW

DEMETRIOS CHRISTODOULOU

This article is in celebration of the 300th anniversary of the birth of one of the
greatest mathematicians and physicists in history, Leonhard Euler. The article
is directly concerned with Euler’s work in fluid mechanics, although his work in
the calculus of variations and in partial differential equations in general have been
instrumental in the developments to be outlined here.

Euler did have predecessors in the field of fluid mechanics, who had conceived
some of the basic concepts. His immediate predecessor in this regard was his friend
D. Bernoulli, whose 1738 work [Be] is likely to have had a great influence on him.
However it was Euler who first formulated the general equations describing the mo-
tion of a perfect fluid. The general compressible Euler equations first appeared in
published form in [Eu2], the second of three Euler articles on fluid mechanics which
appeared in the same 1757 volume of the Mémoires de I’Academie des Sciences de
Berlin. The third of these articles, [Eud], is a continuation of the second, while the
first, [Eul], establishes the general validity of the basic concepts and formulates
the equations in the static case. However, it seems that the article [Eud], which
formulates the equations of motion in the incompressible case and which was pub-
lished only in 1761, was actually the first to be composed, as at least a preliminary
version of it was presented to the Berlin Academy in 1752.

Thus Euler’s fluid equations were among the first partial differential equations to
be written down, preceded, it seems, only by D’Alembert’s 1749 formulation [DA]
of the one-dimensional wave equation describing the motion of a vibrating string
in the linear approximation.

Euler was not content to confine himself to the formulation of the basic laws of
fluid mechanics, but he proceeded to investigate and explain on the basis of these
laws some of the basic observed phenomena. Thus in [Eub|] he made the first, albeit
incomplete, study of convection, a phenomenon which depends on compressibility
as well as on temperature variation in a gravitational potential. In [Eu7] he stud-
ied incompressible flows in pipes in the linear approximation, while in [Eug§| he
studied compressible flows in the linear approximation, treating the generation and
propagation of sound waves.

The contrast to D’Alembert’s equation however could not be greater, for we are
still, after the lapse of two and a half centuries, far from having achieved an adequate
understanding of the observed phenomena which are supposed to lie within the
domain of validity of Euler’s fluid equations.

The phenomena displayed in the interior of a fluid fall into two broad classes: the
phenomena of sound, the linear theory of which is acoustics, and the phenomena
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of vortex motion. The sound phenomena depend on the compressibility of a fluid,
while the vortex phenomena occur even in a regime where fluid may be considered
to be incompressible. The formation and evolution of shocks belongs to the class of
sound phenomena but lies in the non-linear regime, beyond the range covered by
linear acoustics. The phenomena of vortex motion include the chaotic form called
turbulence, the understanding of which is one of the great challenges of science.

I shall presently review the history of the study of the phenomena of sound in
fluids since the original formulation by Euler of the laws governing these phenomena
in the works cited above. The review shall concentrate on the non-linear phenomena
of the formation and evolution of shocks. A comprehensive, up-to-date introduction
to the mathematical theory of vortex phenomena is provided by the book [M-B].

Now, at the time when the equations of fluid mechanics were first formulated,
thermodynamics was in its infancy; however it was already clear that the local state
of a fluid as seen by a comoving observer is determined by two thermodynamic vari-
ables, say the pressure and the temperature. Of these, only the pressure entered
the equations of motion, while the equations involve also the density of the fluid.
The density was already known to be a function of the pressure and the temper-
ature for a given type of fluid. However in the absence of an additional equation,
the system of equations at the time of Euler, which consisted of the momentum
equations together with the equation of continuity, was underdetermined except in
the incompressible limit. The additional equation was supplied by Laplace in 1816
[La] in the form of what was later to be called the adiabatic condition and allowed
him to make the first correct calculation of the speed of sound.

The first work on the formation of shocks was done by Riemann in 1858 [Ri.
Riemann considered the case of isentropic flow with plane symmetry, where the
equations of fluid mechanics reduce to a system of conservation laws for two un-
knowns and with two independent variables, a single space coordinate and time.
He introduced for such systems the so-called Riemann invariants, and with the help
of these showed that solutions which arise from smooth initial conditions develop
infinite gradients in finite time. Riemann also realized that the solutions can be
continued further as discontinuous solutions, but here there was a problem. Up to
this time the energy equation was considered to be simply a consequence of the laws
of motion, not a fundamental law in its own right. On the other hand, the adiabatic
condition was considered by Riemann to be part of the main framework. Now as
long as the solutions remain smooth it does not matter which of the two equations
we take to be the fundamental law, for each is a consequence of the other, modulo
the remaining laws. However this is no longer the case once discontinuities develop,
so one must make a choice as to which of the two equations to regard as fundamental
and therefore remains valid thereafter. Here Riemann made the wrong choice, for
only during the previous decade, in 1847, had the first law of thermodynamics been
formulated by Helmholtz [He], based in part on the experimental work of Joule on
the mechanical equivalence of heat, and the general validity of the energy principle
had thereby been shown. In 1865 the concept of entropy was introduced into theo-
retical physics by Clausius [CI2], and the adiabatic condition was understood to be
the requirement that the entropy of each fluid element remains constant during its
evolution. The second law of thermodynamics, involving the increase of entropy in
irreversible processes, had first been formulated in 1850 by Clausius [CII] without
explicit reference to the entropy concept. After these developments the right choice
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in Riemann’s dilemma became clear. The energy equation must at all times be
kept as a fundamental law, but the entropy of a fluid element must jump upward
when the element crosses a hypersurface of discontinuity. The formulation of the
correct jump conditions that must be satisfied by the thermodynamic variables and
the fluid velocity across a hypersurface of discontinuity was began by Rankine in
1870 [Ra] and completed by Hugoniot in 1889 [Hul.

With Einstein’s discovery of the special theory of relativity in 1905 [Ei] and its
final formulation by Minkowski in 1908 [Mi] through the introduction of the concept
of spacetime with its geometry, the domain of geometry being thereby extended to
include time, a unity was revealed in physical concepts which had been hidden up
to this point. In particular, the concepts of energy density, momentum density
or energy flux, and stress where unified into the concept of the energy-momentum-
stress tensor, and energy and momentum were likewise unified into a single concept,
the energy-momentum vector. Thus, when the Euler equations where extended to
become compatible with special relativity, it was obvious from the start that it made
no sense to consider the momentum equations without considering also the energy
equation, for these two where parts of a single tensorial law, the energy-momentum
conservation law. This law plus the particle conservation law (the equation of
continuity of the non-relativistic theory) constitute the laws of motion of a perfect
fluid in the relativistic theory. The adiabatic condition is then a consequence for
smooth solutions.

A new basic physical insight on the shock development problem was reached first,
it seems, by Landau in 1944 [Ln|. This was the discovery that the condition that
the entropy jump be positive as a hypersurface of discontinuity is traversed from the
past to the future should be equivalent to the condition that the flow is evolutionary,
that is, that conditions in the past determine the fluid state in the future. More
precisely, what was shown by Landau was that the condition of determinism is
equivalent, at the linearized level, to the condition that the tangent hyperplane at
a point on the hypersurface of discontinuity is on one hand contained in the exterior
of the sound cone at this point corresponding to the state before the discontinuity,
while on the other hand intersects the sound cone at the same point corresponding
to the state after the discontinuity. Moreover, this latter condition is equivalent to
the positivity of the entropy jump. This is interesting from a general philosophical
point of view, because it shows that irreversibility can arise, even though the laws
are all time-reversible, once the solution ceases to be regular. To a given state at a
given time there always corresponds a unique state at any given later time. If the
evolution is regular in the associated time interval, then the reverse is also true: to
a given state at a later time there corresponds a unique state at any given earlier
time, the laws being time reversible. This reverse statement is false however if there
is a shock during the time interval in question. Thus determinism in the presence
of hypersurfaces of discontinuity selects a direction of time and the requirement
of determinism coincides, modulo the other laws, with what is dictated by the
second law of thermodynamics, which is in its nature irreversible. This recalls the
interpretation of entropy, first discovered by Boltzmann in 1877 [Bo], as a measure
of disorder at the microscopic level. An increase of entropy was thus understood to
be associated to an increase in disorder or to loss of information, and determinism
can be expected only in the time direction in which information is lost, not gained.
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An important mathematical development with direct application to the equa-
tions of fluid mechanics in the physical case of three space dimensions was the
introduction by Friedrichs of the concept of a symmetric hyperbolic system in 1954
[E] and his development of the theory of such systems. It is through this theory
that the local existence and domain of dependence property of solutions of the
initial value problem associated to the equations of fluid mechanics were first es-
tablished. Another development in connection to this was the general investigation
by Friedrichs and Lax in 1971 [EF-I] (see also [Lx1]) of nonlinear first order systems
of conservation laws which for smooth solutions have as a consequence an addi-
tional conservation law. This is the case for the system of conservation laws of fluid
mechanics, which consists of the particle and energy-momentum conservation laws,
which for smooth solutions imply the conservation law associated to the entropy
current. It was then shown that if the additional conserved quantity is a convex
function of the original quantities, the original system can be put into symmetric
hyperbolic form. Moreover, for discontinuous solutions satisfying the jump condi-
tions implied by the integral form of the original conservation laws, an inequality
for the generalized entropy was derived. This inequality had been suggested by
Kruzhkov [Ki].

The problem of shock formation for the equations of fluid mechanics in one
space dimension and, more generally, for systems of conservation laws in one space
dimension was studied by Lax in 1964 [Lx2] and 1973 |Lx3|] and by John [J] in
1974. The approach of these works was analytic, the strategy being to deduce an
ordinary differential inequality for a quantity constructed from the first derivatives
of the solution which showed that this quantity must blow up in finite time under
a certain structural assumption on the system called genuine non-linearity and
suitable conditions on the initial data. The genuine non-linearity assumption is in
particular satisfied by the non-relativistic compressible Euler equations in one space
dimension provided that the pressure is a strictly convex function of the specific
volume. A more geometric approach in the case of systems with two unknowns
was developed by Majda in 1984 [Mal] based in part on ideas introduced by Keller
and Ting in 1966 [K-T]. In this approach one considers the evolution of the inverse
density of the characteristic curves of each family and shows that under appropriate
conditions this inverse density must somewhere vanish within finite time. In this
way, not only were the earlier blow-up results reproduced, but, more importantly,
insight was gained into the nature of the breakdown. Moreover Majda’s approach
also covered the case where the genuine non-linearity assumption does not hold,
but we have linear degeneracy instead. He showed that in this case global in time
smooth solutions exist for any smooth initial data.

The problem of the global in time existence of solutions of the equations of fluid
mechanics in one space dimension was treated by Glimm in 1965 [Gl] through an
approximation scheme involving at each step the local solution of an initial value
problem with piecewise constant initial data. The convergence of the approxima-
tion scheme then produced a solution in the class of functions of bounded variation.
Now, by the previously established results on shock formation, a class of functions
in which global existence holds must necessarily include functions with discontinu-
ities, and the class of functions of bounded variation is the simplest class having
this property. Thus, the treatment based on the total variation, the norm in this
function space, in itself an admirable investigation, would have been insuperable if
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the development of the one-dimensional theory were the goal of the scientific effort
in the field of fluid mechanics. However since that goal can only be the mathemat-
ical description of phenomena in real three dimensional space, one had eventually
to face the fact that methods based on the total variation do not generalize to more
than one space dimension. It is in fact clear from the study of the linearized theory,
acoustics, which involves the wave equation, that in more than one space dimension
only methods based on the energy concept are appropriate.

The first general result on the formation of shocks in three-dimensional fluids was
obtained by Sideris in 1985 [S]. Sideris considered the compressible Euler equations
in the case of a classical ideal gas with adiabatic index v > 1 and with initial data
which coincide with those of a constant state outside a ball. The assumptions of
his theorem on the initial data were that there is an annular region bounded by
the sphere outside which the constant state holds and a concentric sphere in its
interior, such that a certain integral in this annular region of p — pg, the departure
of the density p from its value pg in the constant state, is positive, while another
integral in the same region of pv", the radial momentum density, is non-negative.
These integrals involve kernels which are functions of the distance from the center.
It is also assumed that everywhere in the annular region the specific entropy s is
not less than its value sy in the constant state. The conclusion of the theorem
is that the maximal time interval of existence of a smooth solution is finite. The
chief drawback of this theorem is that it tells us nothing about the nature of the
breakdown. Also the method relies on the strict convexity of the pressure as a
function of the density displayed by the equation of state of an ideal gas and does
not extend to more general equations of state.

Another important work on shocks in three space dimensions was the 1983 work
of Majda [Ma2], [Ma3] on the local in time shock continuation problem. In this
problem we are given initial data in ®3 which is smooth in the closure of each
component of B3\ S, where S is a smooth complete surface in R3. The data is to
satisfy the condition that there exists a function o on S such that the jumps of the
data across S satisfy the Rankine-Hugoniot jump conditions as well as the entropy
condition with ¢ in the role of the shock speed. The higher order compatibility
conditions associated to an initial-boundary value problem are also required to be
satisfied. We are then required to find a time interval [0, 7], a smooth hypersurface
K in the spacetime slab [0, 7] x R3 and a solution of the compressible Euler equations
which is smooth in the closure of each component of [0,7] x %2\ K and satisfies
across K the Rankine-Hugoniot jump conditions as well as the entropy condition, or
equivalently the determinism condition. Majda’s solution of this problem requires
an additional condition on the initial data to ensure the stability of the linearized
problem. The additional condition follows from the other conditions in the case of
a classical ideal gas, but it does not follow for a general equation of state.

In the remainder of this article, I shall summarize my own recent work in this
field. All the material which is presented below is expounded in the monograph
[ChI]. The monograph considers the relativistic Euler equations in three space
dimensions for a perfect fluid with an arbitrary equation of state.

The mechanics of a perfect fluid is described in the framework of the Minkowski
space-time of special relativity by a future-directed unit time-like vectorfield w,
the fluid 4-velocity, and two positive functions n and s, the number of particles
per unit volume (in the local rest frame of the fluid) and the entropy per particle,
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respectively. In terms of a system of rectangular coordinates (z°, 2!, 22, 23), with
20 a time coordinate and (x!, 22, 2%) space coordinates, the metric components v
w,v=0,1,2 3, are given by

(1) go=—1011=92=933=1 gu=0:if pfuv.
The conditions on the 4-velocity components u*, u = 0,1,2, 3, are then:
(2) g’ = =1, u’ >0

where we follow the summation convention, according to which repeated upper and
lower indices are summed over their range. The mechanical properties of a perfect
fluid are specified once we give the equation of state, which expresses the relativistic
mass-energy density p as a function of n and s:

(3) p=pn,s).

According to the laws of thermodynamics, the pressure p and the temperature 6
are then given by:
Op _ 19

4 =n——p, 0= )
(4) p=ng. —p, s

The functions p,p, 0 are assumed positive. Moreover, it is assumed that p is an
increasing function of n at constant s and 6 is an increasing function of s at constant
n. In terms of the volume per particle,

5) v=",

and the relativistic energy per particle,

(6) e = pu,
these relations take the familiar form:

(7) e=e(v,s),
(8) de = —pdv + 0ds.

We note that the relativistic energy per particle contains the rest mass contribution
mc?, m being the particle rest mass and c¢ the universal constant represented by
the speed of light in vacuum. Under ordinary circumstances this is in fact the
dominant contribution to e. The corresponding contribution to p is nmc?, nm
being the rest mass density. In writing down the relativistic equations to follow,
we choose the relation of the units of temporal to spatial lengths so as to set ¢ = 1.
‘We note moreover that the particle rest mass may be taken to be unity, so that all
quantities per particle are quantities per unit rest mass and n coincides with the
rest mass density.
The function

(9) Jo= et

or equivalently

(10) Vo =e+pv
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is called enthalpy per particle. By virtue of eqs. Bl and E or [ B /o can be
considered to be a function of p and s, and its differential is given by:

(11) dv/o = vdp + 6ds.

We may in fact use p and s instead of v and s as the basic thermodynamic variables.
The sound speed 1 is defined by:

a fundamental thermodynamic assumption being that the right-hand side of 18
positive. Then n is defined to be positive. Another condition on 7 in the framework
of special relativity is that n < 1, namely that the sound speed is less than the
speed of light in vacuum.

The particle current is the vectorfield I whose components are given by:

(13) I" = nut.

The energy-momentum-stress tensor is the symmetric 2-contravariant tensorfield T°
whose components are:

(14) " = (p+ p)uu” +p(g~ ).
Here (g~ 1)"¥, u,v = 0,1,2,3, are the components of the reciprocal metric,
(1) ()0 =-1 ()" =g )P =) =1, (¢ =0 A

The equations of motion of a perfect fluid are the conservation laws:

(16) 9, I" =0,
(17) 0, TH =0,
where the symbol
0
" Qam

denotes partial derivative with respect to the rectangular coordinate z*.

One reason for working with the relativistic equations is that there is a sub-
stantial gain in geometric insight because of the spacetime geometry viewpoint of
special relativity. As an example we give the following equation:

(18) tyw = —0ds.

Here w is the vorticity 2-form:

(19) w = dp,

where 3 is the 1-form defined, relative to an arbitary system of coordinates, by:
(20) Bu=—Vouu, u,=guu’.

In (I8), 4, denotes contraction on the left by the vectorfield u. We note here that
the vorticity 2-form is not the exact analogue to the classical notion of vorticity.
What exactly corresponds to the classical notion is the vorticity vector:

1
(21) ot = E(efl)wﬁmawm.
Here ¢! is the reciprocal volume form of the Minkowski metric g or volume form
in the cotangent space at each point. Its components in a rectangular coordinate

system constitute the 4-dimensional fully antisymmetric symbol. The vectorfield
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w is the obstruction to integrability of the distribution of orthogonal hyperplanes
to the fluid velocity u, the local simultaneous spaces of the fluid.

Equation ([8) is equivalent, modulo the particle conservation law (I6), to the
energy-momentum conservation laws ([I7]) and is arguably the simplest explicit form
of these equations. The 1-form § plays a fundamental role in the monograph. In
the irrotational isentropic case it is given by 8 = d¢, where ¢ is a function, which
we call wave function. In this case we have

(22) o =—(9g7)" 0,00, ¢,
(23) = T2 = ()
u = — = 5
NG g v
and the whole content of the equations of motion is contained in the particle current
conservation law ([I6), which takes the form of a non-linear wave equation:

(24) 0,(Go"¢) =0,
where
(25) G =G(o)

(s being in this case a constant) is given by:

n 7’L2

Vo p+p

Our relativistic treatment has the virtue that, while being more general, it does
not require any special care in extracting information on the non-relativistic limit.
This is due to the fact that the non-relativistic limit is a regular limit, obtained by
letting the speed of light in conventional units tend to infinity while keeping the
sound speed fixed. To allow the results in the non-relativistic limit to be extracted
from our treatment in a straightforward manner, we have chosen to avoid summing
quantities having different physical dimensions when such sums would make sense
only when a unit of velocity has been chosen, even though we have followed the
natural choice within the framework of special relativity of setting the speed of light
in vacuum equal to unity in writing down the relativistic equations of motion.

The most important concept on which our treatment is based is that of the
acoustical spacetime manifold. This consists of the same underlying manifold as the
Minkowski spacetime, but with the acoustical metric h in the role of the Minkowski
metric g:

(27) hyw = guw + (1 — nQ)uHuV.
This is a Lorentzian metric, the null cones of which are the sound cones.

An initial data set for the equations of motion ([I6]), (') consists of the specifi-
cation of the triplet (p,s,u) on a hypersurface ¥ in Minkowski spacetime, possibly
with boundary, such that the metric induced on X by the acoustical metric (27),
defined along ¥ by the initial data, is positive definite. To any given initial data
set there corresponds a unique mazximal solution of the equations of motion. The
notion of maximal solution or maximal development of an initial data set is the
following. Given an initial data set the local existence theorem asserts the exis-
tence of a development of this set, namely of a domain D in Minkowski spacetime,
whose past boundary is the domain X of the initial data, and of a solution defined
in D and taking the given data at the past boundary, such that if we consider any
point p € D and any curve issuing at p with the property that its tangent vector at

(26) G=
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any point g belongs to T;, the closure of the past component of the open double
cone defined by hg, the acoustical metric at ¢, the curve terminates in the past at
a point of ¥. The local uniqueness theorem asserts that if (Dy, (p1,s1,u1)) and
(D2, (p2, s2,u2)) are two developments of the same initial data set, then (p1, s1,u1)
coincides with (pa, s2,u2) in Dy (| De. It follows that the union of all developments
of a given initial data set is itself a development, the unique mazimal development
of the initial data set.

In the monograph [Chl] we consider regular initial data on a spacelike hyper-
plane ¥y in Minkowski spacetime which outside a sphere coincide with the data
corresponding to a constant state. (Here the notions “spacelike hyperplane” and
“sphere” refer to the Minkowski metric g.) We consider the restriction of the initial
data to the exterior of a concentric sphere in Y, and we consider the maximal clas-
sical development of this data. Then, under a suitable restriction on the size of the
departure of the initial data from those of the constant state, we prove certain the-
orems which give a complete description of the maximal classical development. In
particular, the theorems give a detailed description of the geometry of the boundary
of the domain of the maximal classical development and a detailed analysis of the
behavior of the solution at this boundary. A complete picture of shock formation
in three-dimensional fluids is thereby obtained. Also, sharp sufficient conditions
on the initial data for the formation of a shock in the evolution are established,
and sharp lower and upper bounds for the temporal extent of the domain of the
maximal solution are derived.

The reason why we consider only the maximal development of the restriction of
the initial data to the exterior of a sphere is in order to avoid having to treat the long
time evolution of the portion of the fluid which is initially contained in the interior
of this sphere, for we have no method at present to control the long time behavior of
the pointwise magnitude of the vorticity of a fluid portion, the vorticity satisfying a
transport equation along the fluid flow lines. Our approach to the general problem is
the following. We show that given arbitary regular initial data which coincide with
the data of a constant state outside a sphere, if the size of the initial departure from
the constant state is suitably small, we can control the solution for a time interval of
order 1/ng, where 7 is the sound speed in the surrounding constant state. We then
show that at the end of this interval a thick annular region has formed, bounded by
concentric spheres, where the flow is irrotational and isentropic, the constant state
holding outside the outer sphere. We then study the maximal classical development
of the restriction of the data at this time to the exterior of the inner sphere. We
should emphasize here that if we were to restrict ourselves from the beginning to
the irrotational isentropic case, we would have no problem extending the treatment
to the interior region, thereby treating the maximal solution corresponding to the
data on the complete initial hyperplane ¥y. In fact, it is well known that sound
waves decay in time faster in the interior region, and our constructions can readily
be extended to cover this region. It is only our present inability to achieve long
time control of the magnitude of the vorticity along the flow lines of the fluid that
prevents us from treating the interior region in the general case.

The general concept of variation, or variation through solutions, is a basic con-
cept on which the treatment not only of the irrotational isentropic case but also of
the general equations of motion is based. This concept has been discussed in the
general context of Euler-Lagrange equations, that is, systems of partial differential
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equations arising from an action principle, in a previous monograph [Ch2]. To a
variation is associated a linearized Lagrangian, on the basis of which energy currents
are constructed following the ideas of Noether [N]. It is through energy currents and
their associated integral identities that the estimates essential to our approach are
derived. Here the first order variations correspond to the one-parameter subgroups
of the Poincaré group, the isometry group of Minkowski spacetime, extended by the
one-parameter scaling or dilation group, which leave the surrounding constant state
invariant. The higher order variations correspond to the one-parameter groups of
diffeomorphisms generated by a set of vectorfields, the commutation fields. The
construction of an energy current requires a multiplier vectorfield which at each
point belongs to the closure of the positive component of the inner characteristic
core in the tangent space at that point.

In the irrotational isentropic case the characteristic in the tangent space at a
point consists only of the sound cone at that point, and this requirement becomes
the requirement that the multiplier vectorfield be non-spacelike and future directed
with respect to the acoustical metric [Z7). We use two multiplier vectorfields in
our analysis of the isentropic irrotational problem. The first multiplier field is the
vectorfield Kjy:

(28) Ko= (' +a'R)L+L, L=a 'kL+2T.

Here, « is the inverse density of the hyperplanes ¥; corresponding to the con-
stant values of the time coordinate ¢, and x is the inverse spatial density of the
wave fronts, both with respect to the acoustical metric. The vectorfield L is the
tangent vectorfield of the bicharacteristic generators, parametrized by ¢, of a family
of outgoing characteristic hypersurfaces C,,, the level sets of an acoustical function
u. The wave fronts Sy, are the surfaces of intersection C,, () %;. The vectorfield T
defines a flow on each of the ¥;, taking each wave front onto another wave front,
the normal, relative to the induced acoustical metric &, flow of the foliation of 3,
by the surfaces St ..

The second multiplier field is the vectorfield K; defined by:

(29) Ki = (w/v)L.

Here v is the mean curvature of the wave fronts S; ,, relative to their characteristic
normal L. However v is defined not relative to the acoustical metric h,, but rather
relative to a conformally related metric h,:

(30) huw = Qhyy.

It turns out that there is a choice of conformal factor 2 such that in the isentropic
irrotational case a first order variation ¢ of the wave function ¢ satisfies the wave
equation relative to the metric iLW/. This choice defines €2, and the definition makes
Q the ratio of a function of ¢ to the value of this function in the surrounding constant
state; thus €2 is equal to unity in the constant state. It turns out moreover that
Q is bounded above and below by positive constants. The function w appearing in
([B0)) is required to satisfy certain conditions, and it is shown that the function w =
2no(1+t) does satisty these requirements. The multiplier field K7 corresponds to the
generator of inverted time tranlsations, which are proper conformal tranformations
of the Minkowski spacetime with its Minkowskian metric g,,. The latter was first
used by Morawetz [Mo] to study the decay of solutions of the initial-boundary value
problem for the classical wave equation outside an obstacle. The vectorfield K7 is
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an analogue of the multiplier field of Morawetz for the acoustical spacetime which,
as we explained above, is the same underlying manifold but equipped with the
acoustical metric h,,. To each variation v, of any order, there are energy currents
associated to 1 and to Ky and K respectively. These currents define the energies
ELI(E), E[)(t), and fluxes FE[](u), Fit[e](u). For given ¢ and u the energies
are integrals over the exterior of the surface Sy, in the hyperplane 3, while the
fluxes are integrals over the part of the outgoing characteristic hypersurface C,
between the hyperplanes ¥y and 3;. It is these energy and flux integrals, together
with a spacetime integral K [¢](t,u) associated to K, to be discussed below, which
are used to control the solution.

Evidently, the means by which the solution is controlled depend on the choice
of the acoustical function u, the level sets of which are the outgoing characteristic
hypersurfaces C,. The function u is determined by its restriction to the initial
hyperplane ¥3. The divergence of the energy currents, which determines the growth
of the energies and fluxes, itself depends on (50)7, in the case of the energy current
associated to Ko, and (K% in the case of the energy current associated to K;.
Here for any vectorfield X in spacetime, we denote by (¥)7 the Lie derivative of
the conformal acoustical metric i with respect to X. We call (X7 the deformation
tensor corresponding to X. In the case of higher order variations, the divergences
of the energy currents depend also on the ()7, for each of the commutation fields
Y to be discussed below.

All these deformation tensors ultimately depend on the acoustical function wu,
or, what is the same, on the geometry of the foliation of spacetime by the outgoing
characteristic hypersurfaces C,, the level sets of u. The most important geometric
property of this foliation from the point of view of the study of shock formation
is the density of the packing of its leaves C,. One measure of this density is the
inverse spatial density of the wave fronts, that is, the inverse density of the foliation
of each spatial hyperplane ¥; by the surfaces S;,. This is the function x which
appears in (28) and is given in arbitrary coordinates on ¥; by:

(31) k2= (7 ) 0udu

where Eij is the induced acoustical metric on ¥;. Another measure is the inverse
temporal density of the wave fronts, the function p given in arbitrary coordinates
in spacetime by:

1
(32) ;:4Mﬂwmww.
The two measures are related by:
(33) H= QK

where « is the inverse density, with respect to the acoustical metric, of the foliation
of spacetime by the hyperplanes ;. The function « also appears in (28] and is
given in arbitrary coordinates in spacetime by:

(34) a ?=—(h" "o, to,t.

It is expressed directly in terms of the 1-form (. It turns out, moreover, that
it is bounded above and below by positive constants. Consequently p and x are
equivalent measures of the density of the packing of the leaves of the foliation of
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spacetime by the C,. Shock formation is characterized by the blowup of this density
or equivalently by the vanishing of k or p.

The other entity besides k or p which describes the geometry of the foliation by
the C, is the second fundamental form of the C,,. Since the C,, are null hypersur-
faces with respect to the acoustical metric h, their tangent hyperplane at a point is
the set of all vectors at that point which are h-orthogonal to the generator L, and
L itself belongs to the tangent hyperplane, being h-orthogonal to itself. Thus the
second fundamental form x of C,, is intrinsic to Cy, and in terms of the metric }i
induced by the acoustical metric on the S;,, sections of C, it is given by:

(35) Lk =2x

where £x9 for a covariant S; ,, tensorfield ¥ denotes the restriction of £x 9 to 'Sy ,,.

The acoustical structure equations are:

The propagation equation for y along the generators of C,.

The Codazzi equation which expresses div x, the divergence of x intrinsic to St .,
in terms of dtry, the differential on S;, of try, and a component of the acoustical
curvature and of k, the second fundamental form of the X; relative to h.

The Gauss equation which expresses the Gauss curvature of (S; ., /t) in terms of
x and a component of the acoustical curvature and of k.

An equation which expresses £7x in terms of the Hessian of the restriction of u
to S, and another component of the acoustical curvature and of k.

These acoustical structure equations seem at first sight to contain terms which
blow up as x or u tend to zero. The analysis of the acoustical curvature then shows
that the terms which blow up as k or u tend to zero cancel.

The most important acoustical structure equation from the point of view of the
formation of shocks is the propagation equation for p along the generators of Cy:

(36) Lp=m+ pe
where the function m is given by:

dH

(37) m=1(8,)" (%) (To).

Here H is the function defined by:

(38) 1-n*=cH

where 7 is the sound speed. In ([B0]), the function e depends only on the derivatives
of the [3,, the rectangular components of 3, tangential to the C,. It is the function
m which determines shock formation, when negative, causing p to decrease to zero.

The derivative of H with respect to o at constant s is thus seen to play a central
role in shock theory. This quantity is expressed by:

a (&), {(#). = (5))

where a is the positive function:

774

a= .
2003

The sign of (dH/do)s in the state ahead of a shock determines the sign of the jump in

pressure in crossing the shock to the state behind. The jump in pressure is positive
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if this quantity is negative; the reverse otherwise. The value of (dH/do)s in the
surrounding constant state is denoted by ¢. This constant determines the character
of the shocks for small initial departures from the constant state. In particular
when ¢ = 0, no shocks form and the domain of the maximal classical solution is
complete. Consider the function (dH/do)s as a function of the thermodynamic
variables p and s. Suppose that we have an equation of state such that at some
value sg of s the function (dH/do), vanishes everywhere along the adiabat s = sq.
We show that in this case the irrotational isentropic fluid equations corresponding
to the value sy of the entropy are equivalent to the minimal surface equation, the
wave function ¢ defining a minimal graph in a Minkowski spacetime of one more
spatial dimension. (That is, equation (24)) reduces in the case in question to the
non-parametric minimal surface equation.) Thus the minimal surface equation
defines a dividing line between two different types of shock behavior. Now, the
relativistic enthalpy is dominated by the term mc?, the contribution of the particle
rest mass m to the energy per particle e, ¢ being again the speed of light in vacuum.
Thus in the non-relativistic limit the second term in parentheses in ([B9) vanishes
and the expression in parentheses reduces simply to (d?v/dp?),. Whereas the case
where (d?v/dp?)s > 0, the adiabats being convex curves in the p,v plane so that
(dH/do)s < 0, is the more commonly found in nature, the reverse case does occur in
the gaseous region near the critical point in the liquid to vapor phase transition and
in similar transitions at higher temperatures associated to molecular dissociation
and to ionization (see [Z-R]).

The path I have followed in attacking the problem of shock formation in three-
dimensional fluids illustrates the following approach in regard to quasilinear hyper-
bolic systems of partial differential equations: that the quantities which are used to
control the solution must be defined using the causal, or characteristic, structure of
spacetime determined by the solution itself, not an artificial background structure.
The original system of equations must then be considered in conjunction with the
system of equations which this structure obeys, and it is only through the study of
the interaction of the two systems that results are obtained. The work with Klain-
erman [C-K] on the stability of the Minkowski space in the framework of general
relativity was the first illustration of this approach. In the present case, however,
the structure, which is here the acoustical structure, degenerates as shocks begin
to form, and the precise way in which this degeneracy occurs must be guessed be-
forehand and established in the course of the argument of the mathematical proof.
The fact that the underlying structure degenerates implies that our estimates are
no longer even locally equivalent to standard energy estimates, which would of
necessity have to fail when shocks appear.

I first establish a theorem, the fundamental energy estimate, which applies to a
solution of the homogeneous wave equation in the acoustical spacetime, in particular
to any first order variation. The proof of this theorem relies on certain bootstrap
assumptions on the acoustical entities. The most crucial of these assumptions
concern the behavior of the function p. These assumptions are established later on
the basis of the final set of bootstrap assumptions, which consists only of pointwise
estimates for the variations up to certain order. To give an idea of the nature
of these assumptions, one of the assumptions required to obtain the fundamental
energy estimate up to time s is:

(40) p N (Tu), < By(t) : foralltelo,s]
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where B;(t) is a function such that:
S
(41) / (1+t)72[1 +log(l +)]*Bs(t)dt < C
0

with C a constant independent of s. Here T is the vectorfield defined above, and we
denote by fy and f_, respectively, the positive and negative parts of an arbitrary
function f. This assumption is then established by a certain proposition with By (%)

the following function:

(1+7)

42 Bs(t) = C/4 Céo(1
(42) (t) = OVdo—m== +Cbo(1 +7)

where 7 = log(1 +t), 0 = log(1 + s), and dy is a small positive constant appearing
in the final set of bootstrap assumptions.
The spacetime integral K[¢](t,u) mentioned above is essentially the integral of

5 /o) ()| P

in the spacetime exterior to C,, and bounded by ¥y and ¥;. Another assumption
states that there is a positive constant C' independent of s such that in the region
below X5 where p < 19/4 we have:

(43) Lpy < —C7 Y1481 +log(1 + )]t

In view of this assumption, the integral K[i](t,u) gives effective control of the
derivatives of the variations tangential to the wave fronts in the region where shocks
are to form. The same assumption, which is then established by a certain proposi-
tion, also plays an essential role in the study of the singular boundary.

The final stage of the proof of the fundamental energy estimate is the analysis of
system of integral inequalities in two variables t and u satisfied by the five quantities
E4VI(0), ERLEI(E), Fiwl(w), P[] (u), and KL)(t, ).

After this, the commutation fields Y, which generate the higher order variations,
are defined. They are five: the vectorfield T which is tranversal to the C,, the
field @ = (1 + t)L along the generators of the C,, and the three rotation fields
R; :i=1,2,3 which are tangential to the S;, sections. The latter are defined to

o o

be Il R;:i=1,2,3, where the R; i = 1,2,3 are the generators of spatial rotations
associated to the background Minkowskian structure, while II is the h-orthogonal
projection to the S;,. Expressions for the deformation tensors Mz, @z, and

(Fi)z :j=1,2,3 are then derived, which show that these depend on the acoustical
entities u and x. The last however depend in addition on the derivatives of the
restrictions to the surfaces Sy ,, of the spatial rectangular coordinates 2 : i = 1,2, 3,
as well as on the derivatives of the z? with respect to T and L, that is, on the
rectangular components 7% and L’ of the vectorfields 7" and L.

The higher order variations satisfy inhomogeneous wave equations in the acous-
tical spacetime, the source functions depending on the deformation tensors of the
commutation fields. These source functions give rise to error integrals, that is to
spacetime integrals of contributions to the divergence of the energy currents.

The expressions for the source functions and the associated error integrals show
that the error integrals corresponding to the energies of the n + 1st order variations
contain the nth order derivatives of the deformation tensors, which in turn contain
the nth order derivatives of x and n + 1st order derivatives of yu. Thus to achieve
closure, we must obtain estimates for the latter in terms of the energies of up to
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the m + 1st order variations. Now, the propagation equations for x and p give
appropriate expressions for £ x and Lu. However, if these propagation equations,
which may be thought of as ordinary differential equations along the generators
of the C, are integrated with respect to ¢ to obtain the acoustical entities x and
1 themselves and their spatial derivatives are then taken, a loss of one degree of
differentiability would result and closure would fail. We overcome this difficulty in
the case of x by considering the propagation equation for utry. We show that by
virtue of a wave equation for o, which follows from the wave equations satisfied by
the first variations corresponding to the spacetime translations, the principal part
on the right-hand side of this propagation equation can be put into the form —L f
of a derivative of a function —f with respect to L. This function is then brought
to the left-hand side, and we obtain a propagation equation for utry 4+ f. In this
equation y, the trace-free part of x enters, but the propagation equation in question
is considered in conjunction with the Codazzi equation, which constitutes an elliptic
system on each S; ,, for x, given try. We thus have an ordinary differential equation
along the generators of ', coupled to an elliptic system on the S;, sections. More
precisely, the propagation equation which is considered at the same level as the
Codazzi equation is a propagation equation for the Sy ,, 1-form pgdtrx + ¢ f, which is
a consequence of the equation just discussed. To obtain estimates for the angular
derivatives of x of order [ we similarly consider a propagation equation for the S; ,,
1-form:

(i) g — ud(R;,...Ri try) + d(Rnu-Rilf)-

In the case of y the aforementioned difficulty is overcome by considering the prop-
agation equation for pu/Au, where Ap is the Laplacian of the restriction of u to the
Stu. We show that by virtue of a wave equation for T'o, which is a differential
consequence of the wave equation for o, the principal part on the right-hand side
of this propagation equation can again be put into the form Lf’ of a derivative
of a function f’ with respect to L. This function is then likewise brought to the
left-hand side, and we obtain a propagation equation for ;A — f’. In this equation
lj2 1, the trace-free part of the Hessian of the restriction of i to the S, enters, but
the propagation equation in question is considered in conjunction with the elliptic
equation on each Sy, for y, which the specification of Au constitutes. Again we
have an ordinary differential equation along the generators of C), coupled to an
elliptic equation on the S; ,, sections. To obtain estimates of the spatial derivatives
of p of order [+ 2 of which m are derivatives with respect to T', we similarly consider
a propagation equation for the function:

(niimm)g! o = 1Ri, Ry (D)™ — Ry, Ry (T)™ f.

This allows us to obtain estimates for the top order spatial derivatives of u, of which
at least two are angular derivatives. A remarkable fact is that the missing top order
spatial derivatives do not enter the source functions, hence do not contribute to the
error integrals. In fact it is shown that the only top order spatial derivatives of the
acoustical entities entering the source functions are those in the 1-forms (i1ein) gy
and the functions (-i=m)g! .

The paradigm of an ordinary differential equation along the generators of a char-
acteristic hypersurface coupled to an elliptic system on the sections of the hypersur-
face as the means to control the regularity of the entities describing the geometry of
the characteristic hypersurface and the stacking of such hypersurfaces in a foliation
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was first encountered in the work [C-K] on the stability of the Minkowski space. It is
interesting to note that this paradigm does not appear in space dimension less than
three. In the case of the work on the stability of the Minkowski space however, in
contrast to the present case, the gain of regularity achieved in this treatment is not
essential for obtaining closure, because there is room of one degree of differentia-
bility. This is due to the fact that the Einstein equations of general relativity arise
from a Lagrangian which is quadratic in the derivatives of the unknown functions,
in contrast to the equations of fluid mechanics or, more generally, of continuum
mechanics, which in the Lagrangian picture are equations for a mapping of space-
time into the material manifold, each point of which represents a material particle,
the Lagrangian not depending quadratically on the differential of this mapping (see
[Ch2]). As a consequence, the metric determining the causal structure depends in
continuum mechanics on the derivatives of the unknowns rather than only on the
unknowns themselves.

In the present case, the appearance of the factor of p, which vanishes where
shocks originate in front of dR;,...R;, try and R <R, (T)™Ap in the definitions
of (a-i)g;and (1-@-m)g! above, makes the analysis far more delicate. This
is compounded with the difficulty of the slower decay in time, which the addition
of the terms —dR;,...R;, f and R;,_ ..R; (T)™f" forces. The analysis requires a
precise description of the behavior of p itself, given by certain propositions, and a
separate treatment of the condensation regions, where shocks are to form, from the
rarefaction regions, the terms referring not to the fluid density but rather to the
density of the stacking of the wave fronts. To overcome the difficulties the following
weight function is introduced:

U

(44) mmwmm{%“”ﬁy b (1) = min

' "o =
where ¥} is the exterior of Sy, in X;, and the quantities EJ[¢](¢), E1*[¥](¢),
Fe)(u), Fitl](u), and K[1](t, u) corresponding to the highest order variations are
weighted with a power, 2a, of this weight function. The following lemma then plays
a crucial role here as well as in the proof of the main theorem, where everything
comes together. Let

@) MO = (= (D)} T = [ S OME).

Then under certain bootstrap assumptions in the past of X, for any constant a > 2,
there is a positive constant C' independent of s, u and a such that for all ¢ € [0, s]
we have:

(46) Lou(t) < Ca™',%, ().

Now, estimates for the derivatives of the spatial rectangular coordinates 2° with
respect to the commutation fields must also be obtained, the derivatives of the z*
with respect to the vectorfields 7" and L being the spatial rectangular components
T% and L' of these vectorfields. Here T' = 1T is the vectorfield of unit magnitude
with respect to h corresponding to T'. Thus, although the argument depends mainly
on the causal structure of the acoustical spacetime, the underlying Minkowskian
structure, to which the rectangular coordinates belong, has a role to play as well,
and it is the estimates in question which analyze the mutual relationship of the
two structures. The derivation of these estimates occupies a considerable part of
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the work. The required estimates for the deformation tensors of the commutation
fields in terms of the acoustical entities are then obtained.

After this, the acoustical assumptions on which the previous results depend are
established, using the method of continuity, on the basis of the final set of bootstrap
assumptions, which consists only of pointwise estimates for the variations up to
certain order. Then, the estimates for up to the next to the top order angular
derivatives of x and spatial derivatives of u are derived. These, when substituted
in the estimates established earlier, give control of all quantities involved in terms
of estimates for the variations. A fundamental role is played by the propositions
which establish the coercivity hypotheses on which the previous results depend.
These propositions roughly speaking show that for any covariant S; ,, tensorfield 9,
the sum >, |£g,9|* bounds pointwise |I}J|? and that if X is any S;,-tangential
vectorfield and ¥ any covariant S, tensorfield, then we can bound pointwise £x9
in terms of the £p,¥ and the £, X = [R;, X].

We then analyze the structure of the terms containing the top order spatial
derivatives of the acoustical entities, showing that these can be expressed in terms
of the I-forms (1--#)z; and the functions (1-#=m)g/ | . These terms are shown
to contribute borderline error integrals, the treatment of which is the main source of
difficulty in the problem. These borderline integrals are all proportional to the con-
stant £ mentioned above, hence are absent in the case £ = 0. We should make clear
here that the only variations which are considered up to this point are the varia-
tions arising from the first order variations corresponding to the group of spacetime
translations. In particular the final bootstrap assumption involves only variations
of this type, and each of the five quantities &g, (1), fé’[n] (u), Sff[n] (t), f{f[n] (u),
and KT, (t,u), which together control the solution, is defined to be the sum of
the corresponding quantity E[¢](t), Fé[v](w), E4[¥)(t), Fit[¥](u), and K[](t, u),
over all variations 1 of this type, up to order n. To estimate the borderline in-
tegrals, however, we introduce an additional assumption which concerns the first
order variations corresponding to the scaling or dilation group and to the rotation
group and the second order variations arising from these by applying the commu-
tation field 7. This assumption is later established through energy estimates of
order 4 arising from these first order variations and derived on the basis of the final
bootstrap assumption, just before the recovery of the final bootstrap assumption
itself. It turns out that the borderline integrals all contain the factor T, where
Yo+ a = 0,1,2,3 are the first variations corresponding to spacetime translations
and the additional assumption is used to obtain an estimate for sups. (1 Ta)
in terms of supyu (1= '|Lp|), which involves on the right the factor [¢|~'. Upon
substituting this estimate in the borderline integrals, the factors involving ¢ cancel,
and the integrals are estimated using the inequality ([@@). The above is an outline
of the main steps in the estimation of the borderline integrals associated to the
vectorfield K. The estimation of the borderline integrals associated to the vector-
field K3 is however still more delicate. In this case we first perform an integration
by parts on the outgoing characteristic hypersurfaces C,, obtaining hypersurface
integrals over ¥} and X and another spacetime volume integral. In this integra-
tion by parts the terms, including those of lower order, must be carefully chosen to
obtain appropriate estimates, because here the long time behavior, as well as the
behavior as p tends to zero, is critical. Another integration by parts, this time on
the surfaces St ,, is then performed to reduce these integrals to a form which can
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be estimated. The estimates of the hypersurface integrals over X} are the most
delicate (the hypersurface integrals over 3§ only involve the initial data) and re-
quire separate treatment of the condensation and rarefaction regions, in which the
properties of the function u, established by the previous propositions, all come into
play.

In proceeding to derive the energy estimates of top order, n = [ 4 2, the power
2a of the weight 7, ,,(t) is chosen suitably large to allow us to transfer the terms
contributed by the borderline integrals to the left-hand side of the inequalities
resulting from the integral identities associated to the multiplier fields K, and
K. The argument then proceeds along the lines of that of the fundamental energy
estimate, but is more complex because here we are dealing with weighted quantities.
Once the top order energy estimates are established, we revisit the lower order
energy estimates using at each order the energy estimates of the next order in
estimating the error integrals contributed by the highest spatial derivatives of the
acoustical entities at that order. We then establish a descent scheme which yields,
after finitely many steps, estimates for the five quantities &F ] (1), f’é)[n] (u), Eff[n] (t),
f{f[n] (u), and Kp,)(t,u), for n =1+ 1 — [a], where [a] is the integral part of a, in
which weights no longer appear.

It is these unweighted estimates which are used to close the bootstrap argument
by recovering the final bootstrap assumption. This is accomplished by the method
of continuity through the use of the isoperimetric inequality on the wave fronts S ,,
and leads to the main theorem. This theorem shows that there is another differ-
ential structure, that defined by the acoustical coordinates t, u,d, the ¥ = const.
coordinate lines corresponding to the bicharacteristic generators of each C, such
that relative to this structure the maximal classical solution extends smoothly to the
boundary of its domain. This boundary contains however a singular part where the
function p vanishes; hence, in these coordinates, the acoustical metric h degener-
ates. With respect to the standard differential structure induced by the rectangular
coordinates ¢ in Minkowski spacetime, the solution is continuous but not differen-
tiable on the singular part of the boundary, the derivative T“T”@Mﬂu blowing up as
we approach the singular boundary. Thus, with respect to the standard differential
structure, the acoustical metric h is everywhere in the closure of the domain of the
maximal solution non-degenerate and continuous, but it is not differentiable on the
singular part of the boundary of this domain, while with respect to the differential
structure induced by the acoustical coordinates h is everywhere smooth, but it is
degenerate on the singular part of the boundary.

After the proof of the main theorem, we establish a general theorem which
gives sharp sufficient conditions on the initial data for the formation of a shock
in the evolution. The proof of this theorem is through the propositions describing
the properties of the function g and is based on the study of the evolution with
respect to ¢ of the mean value on the sections S, of each outgoing characteristic
hypersurface C,, of the quantity

(47) 7' = (1 —u—+not)i —vo(p — po)

where vy and pg are respectively the volume per particle and pressure in the sur-
rounding constant state. Here ¢ and i are the functions:

(48) i=LrE,, 1=L",
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and & the 1-form:

(49) &= Pu+05u,

corresponding to any first order variation (p, $, %) of a general solution (p, s,u) of
the equations of motion. We consider in particular the variation corresponding to
time translations. The proof of the theorem uses the estimate provided by the
spacetime integral K (¢,u) associated to this variation. Certain crucial integrations
by parts on the S;, sections as well as on C, itself are performed, in which the
structure of C), as a characteristic hypersurface comes into play. The theorem also
gives a sharp upper bound on the time interval required for the onset of shock
formation.

The last part of the work is concerned with the structure of the boundary of the
domain of the maximal classical solution and the behavior of the solution at this
boundary. The boundary of the domain of the maximal solution consists of a regular
part and a singular part. Each component of the regular part C is an incoming
characteristic hypersurface with a singular past boundary. The singular part of
the boundary of the domain of the maximal solution is the locus of points where
the inverse density of the wave fronts vanishes. It is the union d_H |J H, where
each component of 9_H is a smooth embedded surface in Minkowski spacetime,
the tangent plane to which at each point is contained in the exterior of the sound
cone at that point. On the other hand each component of H is a smooth embedded
hypersurface in Minkowski spacetime, the tangent hyperplane to which at each
point is contained in the exterior of the sound cone at that point, with the exception
of a single generator of the sound cone, which lies on the hyperplane itself. The
past boundary of a component of H is the corresponding component of _ H. The
latter is at the same time the past boundary of a component of C.

In the monograph [Chl] we first establish a proposition which describes the
singular part of the boundary of the domain of the maximal classical solution from
the point of view of the acoustical spacetime. This singular part has the intrinsic
geometry of a regular null hypersurface in a regular spacetime and, like the latter, is
ruled by invariant curves of vanishing arc length. On the other hand, the extrinsic
geometry of the singular boundary is that of a spacelike hypersurface which becomes
null at its past boundary. The main result of the last part of the work is the
trichotomy theorem. This theorem shows that at each point ¢ of the singular
boundary, the past sound cone in the cotangent space at g degenerates into two
hyperplanes intersecting in a 2-dimensional plane. We thus have a trichotomy of
the bicharacteristics, or null geodesics of the acoustical metric, ending at ¢, into
the set of outgoing null geodesics ending at ¢, which corresponds to one of the
hyperplanes; the set of incoming null geodesics ending at ¢, which corresponds to
the other hyperplane; and the set of the remaining null geodesics ending at ¢, which
corresponds to the 2-dimensional plane. The intersection of the past characteristic
conoid of g (past null geodesic cone of the acoustical metric h) with any X, in the
past of ¢ similarly splits into three parts, the parts corresponding to the outgoing
and to the incoming sets of null geodesics ending at ¢ being embedded discs with
a common boundary, an embedded circle, which corresponds to the set of the
remaining null geodesics ending at q. All outgoing null geodesics ending at q have
the same tangent vector at q. This vector is then an invariant characteristic vector
associated to the singular point g. This striking result is in fact the reason why the
considerable freedom in the choice of the acoustical function does not matter in the
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end, for, considering the transformation from one acoustical function to another, we
show that the foliations corresponding to different families of outgoing characteristic
hypersurfaces have equivalent geometric properties and degenerate in precisely the
same way on the same singular boundary.

The monograph [Chi] then proceeds to give a detailed description of the bound-
ary of the domain of the maximal classical solution from the point of view of
Minkowski spacetime. Now, the maximal classical solution is the physical solution
of the problem up to C|J0— H, but not up to H. In the last part of the monograph
[Ch1] the problem of the physical continuation of the solution is set up as the shock
development problem. This problem is associated to each component of d_ H, and
its solution requires the construction of a hypersurface of discontinuity K, lying in
the past of the corresponding component of H but having the same past boundary
as the latter, namely the given component of d_H. It then follows that the tan-
gent hyperplanes to K and H coincide along d_ H. The maximal classical solution
provides the right boundary conditions at C'|JJ_ H, as well as a barrier at H. The
actual treatment of the shock development problem and the subsequent shock in-
teractions shall be the subject of a follow up monograph. The monograph [Chl]
concludes with a derivation of a formula for the jump in vorticity across K, which
shows that while the flow is irrotational ahead of the shock, it acquires vorticity
immediately behind, the vorticity vector being tangential to the shock front and
associated to the gradient along the shock front of the entropy jump.
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