Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

From harmonic analysis to arithmetic combinatorics


Author: Izabella Laba
Journal: Bull. Amer. Math. Soc. 45 (2008), 77-115
MSC (2000): Primary 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10
DOI: https://doi.org/10.1090/S0273-0979-07-01189-5
Published electronically: October 17, 2007
MathSciNet review: 2358378
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. B. Aronov, M. Sharir, Cutting circles into pseudo-segments and improved bounds on the number of incidences, Discrete Comput. Geom. 28 (2002), 475-490. MR 1949895 (2004i:52011)
  • 2. A. Balog, E. Szemerédi, A statistical theorem of set addition, Combinatorica 14 (1994), 263-268. MR 1305895 (95m:11019)
  • 3. M.D. Bateman, N.H. Katz, Kakeya sets in Cantor directions, preprint, 2006.
  • 4. A.S. Besicovitch, Sur deux questions d'intégrabilité des fonctions, J. Soc. Phys.-Math. (Perm), 2 (1919), 105-123.
  • 5. A.S. Besicovitch, On Kakeya's problem and a similar one, Math. Zeitschrift 27 (1928), 312-320. MR 1544912
  • 6. A.S. Besicovitch, The Kakeya problem, Amer. Math. Monthly 70 (1963), 697-706. MR 0157266 (28:502)
  • 7. A.S. Besicovitch, On fundamental geometric properties of plane line-sets, J. London Math. Soc. 39 (1964), 441-448. MR 0171896 (30:2122)
  • 8. V. Bergelson, B. Host, B. Kra, Multiple recurrence and nilsequences (with an appendix by I. Ruzsa), Invent. Math. 160 (2005), 261-303. MR 2138068 (2007i:37009)
  • 9. V. Bergelson, A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996), 725-753. MR 1325795 (96j:11013)
  • 10. Y. Bilu, Structure of sets with small sumset, in Structure Theory of Set Addition, Astérisque 258 (1999), 77-108. MR 1701189 (2000h:11109)
  • 11. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. MR 874045 (88f:42036)
  • 12. J. Bourgain, On $ \Lambda(p)$-subsets of squares, Israel J. Math. 67 (1989), 291-311. MR 1029904 (91d:43018)
  • 13. J. Bourgain, Besicovitch type maximal operators, and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), 147-187. MR 1097257 (92g:42010)
  • 14. J. Bourgain, $ L^p$ estimates for oscillatory integrals in several variables, Geom. Funct. Anal. 1 (1991), 321-374. MR 1132294 (93e:42021)
  • 15. J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, Geom. Funct. Anal. 3 (1993), 107-156. MR 1209299 (95d:35160a)
  • 16. J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), 193-201. MR 1286826 (95h:28008)
  • 17. J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9 (1999), 256-282. MR 1692486 (2000b:42013)
  • 18. J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968-984. MR 1726234 (2001h:11132)
  • 19. J. Bourgain, On the Erdos-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), 334-365. MR 1982147 (2004d:11070)
  • 20. J. Bourgain, Mordell's exponential sum revisited, J. Amer. Math. Soc. 18 (2005), 477-499. MR 2137982 (2006b:11099)
  • 21. J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1 (2005), 1-32. MR 2172328 (2006g:11041)
  • 22. J. Bourgain, New encounters in combinatorial number theory: from the Kakeya problem to cryptography, Perspectives in analysis, 17-26, Math. Phys. Stud. 27, Springer, Berlin, 2005. MR 2206765 (2006m:11030)
  • 23. J. Bourgain, Roth's theorem on progressions revisited, preprint, 2007.
  • 24. J. Bourgain, M.-C. Chang, On the size of $ k$-fold sum and product sets of integers, J. Amer. Math. Soc. 17 (2004), 473-497. MR 2051619 (2005c:11024)
  • 25. J. Bourgain, A. Gamburd, P. Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris, Ser. I, 343 (2006), 155-159. MR 2246331 (2007b:11139)
  • 26. J. Bourgain, A.A. Glibichuk, S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380-398. MR 2225493 (2007e:11092)
  • 27. J. Bourgain, N.H. Katz, T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57. MR 2053599 (2005d:11028)
  • 28. H. Busemann, W. Feller, Differentiation der $ L$-integrale, Fund. Math. 22 (1934), 226-256.
  • 29. A. Carbery, M. Christ, J. Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), 981-1015. MR 1683156 (2000h:42010)
  • 30. M.-C. Chang, A polynomial bound in Freiman's theorem, Duke Math. J. 3 (2002), 399-419. MR 1909605 (2003d:11151)
  • 31. M.-C. Chang, Factorization in generalized arithmetic progressions and applications to the Erdos-Szemerédi sum-product problems, Geom. Funct. Anal. 13 (2003), 720-736. MR 2006555 (2004g:11007)
  • 32. M.-C. Chang, Erdos-Szemerédi problem on sum set and product set, Ann. Math. 157 (2003), 939-957. MR 1983786 (2004c:11026)
  • 33. M.-C. Chang, Some problems in combinatorial number theory, preprint, 2007, to appear in Integers: Electronic Journal of Combinatorial Number Theory.
  • 34. M. Christ, Estimates for the $ k$-plane transform, Indiana Univ. Math. J. 33 (1984), 891-910. MR 763948 (86k:44004)
  • 35. M. Christ, Convolution, curvature, and combinatorics. A case study, Internat. Math. Research Notices 19 (1998), 1033-1048. MR 1654767 (2000a:42026)
  • 36. M. Christ, A. Nagel, E.M. Stein, S. Wainger, Singular and maximal Radon transforms: Analysis and geometry, Ann. Math. 150 (1999), 489-577. MR 1726701 (2000j:42023)
  • 37. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99-160. MR 1032370 (91f:52021)
  • 38. A. Córdoba, The Kakeya maximal function and spherical summation multipliers, Amer. J. Math. 99 (1977), 1-22. MR 0447949 (56:6259)
  • 39. E. Croot, V. Lev, Open problems in additive combinatorics, to appear in Proceedings of a School in Additive Combinatorics, Montreal, March 30th-April 5th, 2006, eds: A. Granville, M. Nathanson and J. Solymosi.
  • 40. F. Cunningham, The Kakeya problem for simply connected and for star-shaped sets, Amer. Math. Monthly 78 (1971), 114-129. MR 0275287 (43:1044)
  • 41. R.O. Davies, Some remarks on the Kakeya problem, Proc. Cambridge Phil. Soc. 69 (1971), 417-421. MR 0272988 (42:7869)
  • 42. K.M. Davis, Y.C. Chang, Lectures on Bochner-Riesz Means, London Math. Soc. Lecture Notes 114, Cambridge Univ. Press, Cambridge, 1987. MR 921849 (88m:42031)
  • 43. S. Drury, $ L^p$ estimates for the x-ray transform, Ill. J. Math. 27 (1983), 125-129. MR 684547 (85b:44004)
  • 44. G.A. Edgar, C. Miller, Borel subrings of the reals, Proc. Amer. Math. Soc. 131 (2003), 1121-1129. MR 1948103 (2004d:28017)
  • 45. G. Elek, B. Szegedy, Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach, preprint.
  • 46. G. Elekes, On the number of sums and products, Acta Arith. 81 (1997), 365-367. MR 1472816 (98h:11026)
  • 47. G. Elekes, Sums versus product in algebra, number theory and Erdos geometry, unpublished preprint, 2001.
  • 48. G. Elekes, I.Z. Ruzsa, Few sums, many products, Studia Sci. Math. Hungar. 40 (2003), 301-308. MR 2036961 (2005d:11011)
  • 49. G. Elekes, Cs. Tóth, Incidences of not too degenerate hyperplanes, Proc. 21st ACM Sympos. Comput. Geom. (Pisa, 2005), ACM Press, 16-21.
  • 50. B. Erdogan, A bilinear Fourier extension theorem and applications to the distance set problem, Internat. Math. Res. Notices 23 (2005), 1411-1425. MR 2152236 (2006h:42020)
  • 51. B. Erdogan, On Falconer's distance set conjecture, Rev. Mat. Iberoamericana 22 (2006), 649-662. MR 2294792
  • 52. P. Erdos, On sets of distances of $ n$ points, Amer. Math. Monthly 53 (1946), 248-250. MR 0015796 (7:471c)
  • 53. P. Erdos, E. Szemerédi, On sums and products of integers, Studies in Pure Mathematics: To the Memory of Paul Turán, Birkhäuser, Basel, 1983, pp. 213-218. MR 820223 (86m:11011)
  • 54. P. Erdos, P. Turán, On some sequences of integers, J. London Math. Soc. 16 (1936), 261-264.
  • 55. P. Erdos, B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203-208. MR 0186782 (32:4238)
  • 56. K.J. Falconer, Rings of fractional dimension, Mathematika 31 (1984), 25-27. MR 762173 (85m:28004)
  • 57. K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), 206-212. MR 834490 (87j:28008)
  • 58. K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1986. MR 867284 (88d:28001)
  • 59. C. Fefferman, Inequalities for strongly singular operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • 60. C. Fefferman, The multiplier problem for the ball, Ann. Math. 94 (1971), 330-336. MR 0296602 (45:5661)
  • 61. N. Frantzikinakis, B. Host, B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., to appear.
  • 62. N. Frantzikinakis, B. Kra, Convergence of multiple ergodic averages for some commuting transformations, Ergodic Theory Dynamical Systems 25 (2005), 799-809. MR 2142946 (2007b:37009)
  • 63. G.A. Freiman, On the addition of finite sets (in Russian), Dokl, Akad. Nauk SSSR 158 (1964), 1038-1041. MR 0168529 (29:5791)
  • 64. G.A. Freiman, Foundations of a Structural Theory of Set Addition (translated from Russian), Translations of Mathematical Monographs, vol. 37, Amer. Math. Soc., 1973. MR 0360496 (50:12944)
  • 65. M. Fujiwara, S. Kakeya, On some problems of maxima and minima for the curve of constant breadth and the in-revolvable curve of the equilateral triangle, Tôhoku Mathematical Journal 11 (1917), 92-110.
  • 66. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256. MR 0498471 (58:16583)
  • 67. H. Furstenberg, Y, Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291. MR 531279 (82c:28032)
  • 68. H. Furstenberg, B. Weiss, A mean ergodic theorem for $ 1/N\sum_{n=1}^N f(T^nx)g(T^{n^2}x)$, in Convergence in Ergodic Theory and Probability, Ohio State Univ. Math. Res. Inst. Publ. 5, Walter de Gruyter & Co, Berlin, 1996, 193-227. MR 1412607 (98e:28019)
  • 69. M.Z. Garaev, An explicit sum-product estimate in $ \mathbb{F}_p$, preprint, 2007.
  • 70. G. Garrigós, A. Seeger, On plate decompositions of cone multipliers, Proceedings of the conference on Harmonic Analysis and Its Applications, Hokkaido University, Sapporo, 2005.
  • 71. D. Goldston, J. Pintz, C.Y. Yildirim, Primes in tuples I, Ann. Math., to appear.
  • 72. D. Goldston, C.Y. Yildirim, Higher correlations of divisor sums related to primes III: Small gaps between primes, preprint, 2004.
  • 73. W.T. Gowers, A new proof of Szemerédi's theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529-551. MR 1631259 (2000d:11019)
  • 74. W.T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588. MR 1844079 (2002k:11014)
  • 75. W.T. Gowers, Some unsolved problems in additive and combinatorial number theory, preprint, 2001 (available at http://www.dpmms.cam.ac.uk/~wtg10/papers.html).
  • 76. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, preprint, 2005.
  • 77. W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), 143-184. MR 2195580
  • 78. A. Granville, An introduction to additive combinatorics, to appear in Proceedings of a School in Additive Combinatorics, Montreal, March 30th-April 5th, 2006, eds: A. Granville, M. Nathanson and J. Solymosi.
  • 79. B. Green, Roth's Theorem in the primes, Ann. Math. 161 (2005), 1609-1636. MR 2180408 (2007a:11136)
  • 80. B. Green, Structure theory of set addition, unpublished, available at http://www.dpmms.cam.ac.uk/~bjg23/papers/icmsnotes.pdf.
  • 81. B. Green, Finite field models in additive combinatorics, in Surveys in Combinatorics, London Math. Soc. Lecture Notes 327 (2005), 1-29. MR 2187732 (2006j:11030)
  • 82. B. Green, Generalising the Hardy-Littlewood method for primes, Proceedings of the International Congress of Mathematicians, Vol. II, 373-399, Eur. Math. Soc., Zürich, 2006. MR 2275602
  • 83. B. Green, Long arithmetic progressions of primes, submitted to Proceedings of the Gauss-Dirichlet conference, Göttingen, 2005.
  • 84. B. Green, I.Z. Ruzsa, Freiman's theorem in an arbitrary abelian group, J. London Math. Soc. 75 (2007), 163-175. MR 2302736
  • 85. B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., to appear.
  • 86. B. Green, T. Tao, Restriction theory of the Selberg sieve, with applications, J. Théor. Nombres Bordeaux 18 (2006), 147-182. MR 2245880
  • 87. B. Green, T. Tao, An inverse theorem for the Gowers $ U^3(G)$ norm, Proc. Edin. Math. Soc., to appear.
  • 88. B. Green, T. Tao, Compressions, convex geometry, and the Freiman-Bilu theorem, Q. J. Math. 57 (2006), 495-504. MR 2277597 (2007g:11013)
  • 89. B. Green, T. Tao, Linear equations in primes, Ann. Math., to appear.
  • 90. B. Green, T. Tao, Quadratic uniformity of the Möbius function, preprint, 2006.
  • 91. B. Green, T. Tao, New bounds for Szemerédi's theorem, II. A new bound for $ r_4(N)$, preprint, 2006.
  • 92. G. Hardy, J. Littlewood, Some problems of ``partitio numerorum'', III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70. MR 1555183
  • 93. G. Hardy, J. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116. MR 1555303
  • 94. D.R. Heath-Brown, Three primes and an almost prime in arithmetic progression, J. London Math. Soc. 23 (1981), 396-414. MR 616545 (82j:10074)
  • 95. D.R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385-394. MR 889362 (88g:11005)
  • 96. C.S. Herz, Fourier transforms related to convex sets, Ann. Math. 75 (1962), 81-92. MR 0142978 (26:545)
  • 97. L. Hörmander, The Analysis of Linear Partial Differential Operators, volume 1, 2nd edition, Springer Verlag, 1990.MR 1065136 (91m:35001b)
  • 98. B. Host, B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. Math. 161 (2005), 397-488. MR 2150389 (2007b:37004)
  • 99. A. Iosevich, Curvature, combinatorics and the Fourier transform, Notices Amer. Math. Soc. 48 (2001), 577-583. MR 1834352 (2002e:42004)
  • 100. A. Iosevich, D. Hart. J. Solymosi, Sum-product estimates in finite fields, Internat. Math. Res. Notices, to appear.
  • 101. A. Iosevich, S. Hofmann, Circular averages and Falconer/Erdos distance conjecture in the plane for random metrics, Proc. Amer. Mat. Soc. 133 (2005), 133-143. MR 2085162 (2005k:42031)
  • 102. A. Iosevich, H. Jorati, I. \Laba, Geometric incidence theorems via Fourier analysis, preprint, 2007.
  • 103. A. Iosevich, N.H. Katz, T. Tao, The Fuglede spectral conjecture holds for convex bodies in the plane, Math. Res. Letters 10 (2003), 559-570. MR 2024715 (2004i:42020)
  • 104. A. Iosevich, I. \Laba, K-distance sets, Falconer conjecture, and discrete analogs, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005), #A08 (hardcopy in: Topics in Combinatorial Number Theory: Proceedings of the Integers Conference 2003 in Honor of Tom Brown, DIMATIA, ITI Series, vol. 261). MR 2192086 (2006i:42033)
  • 105. J.P. Kahane, Trois notes sur les ensembles parfaites lineaires, L'enseignement Mathematique Revue Internationale 15 (1969), 185-192. MR 0245734 (39:7040)
  • 106. S. Kakeya, Some problems on minima and maxima regarding ovals, Tôhoku Science Reports, 6 (1917), 71-88.
  • 107. N.H. Katz, A counterexample for maximal operators over a Cantor set of directions, Math. Res. Lett. 3 (1996), 527-536. MR 1406017 (98b:42032)
  • 108. N.H. Katz, Elementary proofs and the sums differences problem, Collect. Math. 2006, Vol. Extra, 275-280. MR 2264213 (2007g:42019)
  • 109. N.H. Katz, I. \Laba, T. Tao, An improved bound on the Minkowski dimension of Besicovitch sets in $ \mathbb{R}^3$, Ann. of Math. 152 (2000), 383-446. MR 1804528 (2002i:28006)
  • 110. N.H. Katz, C.-Y. Shen, A slight improvement to Garaev's sum-product estimate, preprint, 2007.
  • 111. N.H. Katz, C.-Y. Shen, Garaev's inequality in fields not of prime order, preprint, 2007.
  • 112. N.H. Katz, T. Tao, Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Letters 6 (1999), 625-630. MR 1739220 (2000m:28006)
  • 113. N.H. Katz, T. Tao, Some connections between Falconer's distance set conjecture and sets of Furstenberg's type, New York J. Math. 7 (2001), 149-187. MR 1856956 (2002i:28013)
  • 114. N.H. Katz, T. Tao, New bounds for Kakeya sets, J. Anal. Math. 87 (2002), 231-263. MR 1945284 (2003i:28006)
  • 115. N.H. Katz, T. Tao, Recent progress on the Kakeya conjecture, Publicacions Matematiques, Proceedings of the 6th El Escorial International Conference on Harmonic Analysis and Partial Differential Equations, U. Barcelona, 2002, 161-180. MR 1964819 (2003m:42036)
  • 116. N.H. Katz, G. Tardos, A new entropy inequality for the Erdos distance problem, in Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics, vol. 342, Amer. Math. Soc., 2004. MR 2065258 (2005f:52033)
  • 117. L. Kolasa, T. Wolff, On some variants of the Kakeya problem, Pacific J. Math. 190 (1999), 111-154. MR 1722768 (2001g:42032)
  • 118. M.N. Kolountzakis, Distance sets corresponding to convex bodies, Geom. Funct. Anal. 14 (2004), 734-744. MR 2084977 (2005g:52009)
  • 119. B. Kra, The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. Amer. Math. Soc. 43 (2006), 3-23. MR 2188173 (2006h:11113)
  • 120. I. \Laba, J. Solymosi, Incidence theorems for pseudoflats, Discrete Comput. Geom. 37 (2007), 163-174. MR 2295051
  • 121. I. \Laba, T. Tao, An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension, Geom. Funct. Anal. 11 (2001), 773-806. MR 1866801 (2003b:28006)
  • 122. I. \Laba, T. Wolff, A local smoothing estimate in higher dimensions, J. d'Analyse Math. 88 (2002), 149-171. MR 1956533 (2005b:35015)
  • 123. A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303-316. MR 2151605 (2006c:28016)
  • 124. J.M. Marstrand, Packing circles in the plane, Proc. London Math. Soc. 55 (1987), 37-58. MR 887283 (88i:28012)
  • 125. J. Matousek, Lectures on discrete geometry, Springer-Verlag, 2002. MR 1899299 (2003f:52011)
  • 126. P. Mattila, Spherical averages of Fourier transforms of measures with finite energy: dimensions of intersections and distance sets, Mathematika 34 (1987), 207-228. MR 933500 (90a:42009)
  • 127. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. MR 1333890 (96h:28006)
  • 128. W.P. Minicozzi, C.D. Sogge, Negative results for Nikodym maximal functions and related oscillatory integrals in curved space, Math. Res. Lett. 4 (1997), 221-237. MR 1453056 (98k:42025)
  • 129. G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10 (2000), 1579-1587. MR 1810754 (2001m:42026)
  • 130. G. Mockenhaupt, A. Seeger, C.D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Ann. of Math. 136 (1992), 207-218. MR 1173929 (93i:42009)
  • 131. G. Mockenhaupt, T. Tao, Kakeya and restriction phenomena for finite fields, Duke Math. J. 121 (2004), 35-74. MR 2031165 (2004m:11200)
  • 132. A. Moyua, A. Vargas, L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in $ \mathbb{R}^3$, Duke Math. J. 96 (1999), 547-574. MR 1671214 (2000b:42017)
  • 133. A. Nagel, E.M. Stein, S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062. MR 0466470 (57:6349)
  • 134. B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular $ k$-uniform hypergraphs, Random Structures Algorithms 28 (2006), 113-179. MR 2198495 (2007d:05084)
  • 135. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag, 1996. MR 1477155 (98f:11011)
  • 136. O. Nikodym, Sur les ensembles accessibles, Fund. Math. 10 (1927), 116-168.
  • 137. D. Oberlin, E.M. Stein, Mapping properties of the Radon transform, Indiana U. Math. J. 31 (1982), 641-650. MR 667786 (84a:44002)
  • 138. R. Oberlin, Two bounds on the x-ray transform, preprint, 2006.
  • 139. J. Pach, P.K. Agarval, Combinatorial geometry, John Wiley & Sons, New York, NY, 1995. MR 1354145 (96j:52001)
  • 140. J. Pach, M. Sharir, On the number of incidences between points and curves, Combinatorics, Probability and Computing 7 (1998), 121-127. MR 1611057 (99b:52037)
  • 141. J. Pach, M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics, vol. 342, Amer. Math. Soc., 2004. MR 2065247 (2004m:05004)
  • 142. J. Pál, Ein Minimumproblem für Ovale, Math. Ann. 83 (1921), 311-319. MR 1512015
  • 143. D.H. Phong, E.M. Stein, Hilbert integrals, singular integrals, and Radon transforms I. Acta Math. 157 (1986), 99-157. MR 857680 (88i:42028a)
  • 144. D.H. Phong, E.M. Stein, Hilbert integrals, singular integrals, and Radon transforms. II. Invent. Math. 86 (1986), 75-113. MR 0853446 (88i:42028b)
  • 145. M. Pramanik, A. Seeger, $ L^p$ regularity of averages over curves and bounds for associated maximal operators, Amer. J. Math. 129 (2007), 61-103. MR 2288738
  • 146. V. Rödl, M. Schacht, Regular partitions of hypergraphs, to appear.
  • 147. V. Rödl, J. Skokan, Regularity lemma for $ k$-uniform hypergraphs, Random Structures and Algorithms 25 (2004), 1-42. MR 2069663 (2005d:05144)
  • 148. V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures and Algorithms 28 (2006), 180-194. MR 2198496 (2006j:05099)
  • 149. K. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109. MR 0051853 (14:536g)
  • 150. I.Z. Ruzsa, An application of graph theory to additive number theory, Scientia, Ser. A 3 (1989), 97-109. MR 2314377
  • 151. I.Z. Ruzsa, Arithmetic progressions and the number of sums, Period. Math. Hung. 25 (1992), 105-111. MR 1200845 (94a:11019)
  • 152. I.Z. Ruzsa, Generalized arithmetic progressions and sumsets, Acta Math. Hungar. 65 (1994), 379-388. MR 1281447 (95k:11011)
  • 153. I.Z. Ruzsa, Additive combinatorics and geometry of numbers, Proceedings of the International Congress of Mathematicians, Vol. III, 911-930, Eur. Math. Soc., Zürich, 2006. MR 2275712
  • 154. W. Schlag, On continuum incidence problems related to harmonic analysis, J. Funct. Anal. 201 (2003), 480-521. MR 1986697 (2004k:43009)
  • 155. W. Schlag, A geometric proof of the circular maximal theorem, Duke. J. Math. 93 (1998), 505-533. MR 1626711 (99d:42039)
  • 156. I.D. Shkredov, On a generalization of Szemerédi's theorem, Proc. London Math. Soc. 93 (2006), 723-760. MR 2266965 (2007i:11018)
  • 157. C.D. Sogge, Fourier Integrals in Classical Analysis, Cambridge University Press, Cambridge, 1993. MR 1205579 (94c:35178)
  • 158. C.D. Sogge, Smoothing estimates for the wave equation and applications, in Proceedings of the ICM, Zurich 1994, vol. 1, 896-906, Birkhäuser, Basel, 1995. MR 1403989 (97d:35123)
  • 159. J. Solymosi, A note on a question of Erdos and Graham, Combin. Probab. Comput. 13 (2004), 263-267. MR 2047239 (2004m:11012)
  • 160. J. Solymosi, On the number of sums and products, Bull. London Math. Soc. 37 (2005), 491-494. MR 2143727 (2006c:11021)
  • 161. J. Solymosi, Sums and products of complex numbers, J. Théor. Nombres Bordeaux 17 (2005), 921-924. MR 2212132 (2006m:11011)
  • 162. J. Solymosi, Cs. Tóth, Distinct distances in the plane, Discrete Comput. Geom. 25 (2001), 629-634. MR 1838423 (2002c:52020)
  • 163. J. Solymosi, Cs. Tóth, Distinct distances in homogeneous sets in Euclidean space, Discrete Comput. Geom. 35 (2006), 537-549. MR 2225673 (2007c:52020)
  • 164. J. Solymosi, V. Vu, Distinct distances in high dimensional homogeneous sets in Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics, vol. 342, Amer. Math. Soc., 2004 MR 2065269 (2005m:52026)
  • 165. K. Soundarajan, Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim, Bull. Amer. Math. Soc. 44 (2007), 1-18. MR 2265008
  • 166. J. Spencer, E. Szemerédi, W. Trotter, Unit distances in the Euclidean plane, in Graph Theory and Combinatorics, B. Bollobás, ed., Academic Press, London, 1984, 293-303. MR 777185 (86m:52015)
  • 167. E.M. Stein, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175. MR 0420116 (54:8133a)
  • 168. E.M. Stein, Oscillatory integrals in Fourier analysis, in Beijing Lectures in Harmonic Analysis (E.M. Stein, ed.), Ann. Math. Stud. #112, Princeton Univ. Press, 1986, pp. 307-355. MR 864375 (88g:42022)
  • 169. E.M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993. MR 1232192 (95c:42002)
  • 170. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. MR 0512086 (58:23577)
  • 171. L. Székely, Crossing numbers and hard Erdos problems in discrete geometry, Combinatorics, Probability, and Computing 6 (1997), 353-358. MR 1464571 (98h:52030)
  • 172. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89-104. MR 0245555 (39:6861)
  • 173. E. Szemerédi, On sets of integers containing no $ k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199-245. MR 0369312 (51:5547)
  • 174. E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155-158. MR 1100788 (92c:11100)
  • 175. E. Szemerédi, W.T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381-392. MR 729791 (85j:52014)
  • 176. T. Tao, A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal. 13 (2003), 1359-1384. MR 2033842 (2004m:47111)
  • 177. T. Tao, Recent progress on the restriction conjecture, to appear in Park City conference proceedings.
  • 178. T. Tao, Arithmetic progressions and the primes, Collect. Math. (2006), Vol. Extra, 37-88. MR 2264205
  • 179. T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006), 1257-1280. MR 2259060
  • 180. T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, Proceedings of the International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2006.
  • 181. T. Tao, Nonlinear dispersive equations: local and global analysis, CBMS Regional Conference Series in Mathematics, Amer. Math. Soc., 2006. MR 2233925
  • 182. T. Tao, What is good mathematics?, Bull. Amer. Math. Soc. 44 (2007), 623-634.
  • 183. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, preprint, 2007.
  • 184. T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967-1000. MR 1625056 (99f:42026)
  • 185. T. Tao, A. Vargas, A bilinear approach to cone multipliers I. Restriction estimates, Geom. Funct. Anal. 10 (2000), 185-215. MR 1748920 (2002e:42012)
  • 186. T. Tao, A. Vargas, A bilinear approach to cone multipliers II. Applications, Geom. Funct. Anal. 10 (2000), 216-258. MR 1748921 (2002e:42013)
  • 187. T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2006. MR 2289012
  • 188. T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions, Acta Math., to appear.
  • 189. P.A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478. MR 0358216 (50:10681)
  • 190. P.A. Tomas, Restriction theorems for the Fourier transform, in Harmonic Analysis in Euclidean Spaces, G. Weiss and S. Wainger, eds., Proc. Symp. Pure Math. #35, Amer. Math. Soc., 1979, vol. I, pp. 111-114. MR 545245 (81d:42029)
  • 191. J.G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50. MR 1513216
  • 192. N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18. MR 1546100
  • 193. T. Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), 651-674. MR 1363209 (96m:42034)
  • 194. T. Wolff, A Kakeya type problem for circles, Amer. J. Math. 119 (1997), 985-1026. MR 1473067 (98m:42027)
  • 195. T. Wolff, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998), 561-601. MR 1681585 (2000j:44006)
  • 196. T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547-567. MR 1692851 (2000k:42016)
  • 197. T. Wolff, Recent work connected with the Kakeya problem, in Prospects in Mathematics, H. Rossi, ed., Amer. Math. Soc., Providence, R.I. (1999), 129-162. MR 1660476 (2000d:42010)
  • 198. T. Wolff, Local smoothing type estimates in $ L^p$ for large $ p$, Geom. Funct. Anal. 10 (2000), 1237-1288. MR 1800068 (2001k:42030)
  • 199. T. Wolff, A sharp bilinear cone restriction estimate, Ann. Math. 153 (2001), 661-698. MR 1836285 (2002j:42019)
  • 200. T. Wolff, Lectures on Harmonic Analysis, I. \Laba and C. Shubin, eds., Amer. Math. Soc., Providence, R.I. (2003). MR 2003254 (2004e:42002)
  • 201. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53-97. MR 2257397

Similar Articles

Retrieve articles in Bulletin (New Series) of the American Mathematical Society with MSC (2000): 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10

Retrieve articles in all journals with MSC (2000): 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10


Additional Information

Izabella Laba
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada
Email: ilaba@math.ubc.ca

DOI: https://doi.org/10.1090/S0273-0979-07-01189-5
Received by editor(s): May 28, 2007
Published electronically: October 17, 2007
Additional Notes: This article is based on lectures presented at the Winter 2004 meeting of the Canadian Mathematical Society, Montreal, December 2004; the MSRI workshop “Women in Mathematics: The Legacy of Ladyzhenskaya and Oleinik”, Berkeley, May 2006; the Fall 2006 Western Section meeting of the American Mathematical Society, Salt Lake City, October 2006; the AMS Current Events Bulletin Session, Joint Mathematics Meetings, New Orleans, January 2007; and the Pennsylvania State University, State College, April 2007.
The author is supported in part by an NSERC Discovery Grant.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society