Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Author: T. Y. Lam
Title: Introduction to quadratic forms over fields
Additional book information: Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005, xxi+550 pp., ISBN 978-0-8218-1095-8

References [Enhancements On Off] (What's this?)

  • 1. E. Bayer-Fluckiger and H. W. Lenstra Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, 359–373. MR 1055648, 10.2307/2374746
  • 2. E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension ≤2, Invent. Math. 122 (1995), no. 2, 195–229. MR 1358975, 10.1007/BF01231443
  • 3. J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644, 10.1215/S0012-7094-04-12124-4
  • 4. Philippe Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique ≤2, Compositio Math. 125 (2001), no. 3, 283–325 (French, with English summary). MR 1818983, 10.1023/A:1002473132282
  • 5. Oleg T. Izhboldin, Fields of 𝑢-invariant 9, Ann. of Math. (2) 154 (2001), no. 3, 529–587. MR 1884616, 10.2307/3062141
  • 6. Bruno Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque 245 (1997), Exp. No. 834, 5, 379–418 (French, with French summary). Séminaire Bourbaki, Vol. 1996/97. MR 1627119
  • 7. Bruno Kahn, Formes quadratiques et cycles algébriques (d’après Rost, Voevodsky, Vishik, Karpenko et al.), Astérisque 307 (2006), Exp. No. 941, vii, 113–163 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. MR 2296417
  • 8. Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299
  • 9. M. Knus, A. Merkurjev, M. Rost, J-P. Tignol, The Book of Involutions, AMS Colloquium Publications, Vol 44 (1998).
  • 10. T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc., Reading, Mass., 1973. Mathematics Lecture Note Series. MR 0396410
  • 11. A. S. Merkur′ev, Kaplansky’s conjecture in the theory of quadratic forms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Koltsa i Moduli. 3, 75–89, 163–164 (Russian); English transl., J. Soviet Math. 57 (1991), no. 6, 3489–3497. MR 1047239, 10.1007/BF01100118
  • 12. John Milnor, Algebraic 𝐾-theory and quadratic forms, Invent. Math. 9 (1969/1970), 318–344. MR 0260844
  • 13. Fabien Morel, Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova 114 (2005), 63–101 (2006). MR 2207862
  • 14. D. Orlov, A. Vishik, V. Voedovsky, An exact sequence for Milnor's $ K$-theory with applications to quadratic forms, preprint (2001), arxiv.org/abs/math/0101023
  • 15. Albrecht Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652
  • 16. A. Pfister, On the Milnor conjectures: history, influence, applications, Jahresber. Deutsch. Math.-Verein. 102 (2000), no. 1, 15–41. MR 1769021
  • 17. Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063
  • 18. Jean-Pierre Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 53–68 (French). MR 0186719
  • 19. Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
  • 20. Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
  • 21. Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 0180554
  • 22. A. Vishik, Fields of u-invariant $ 2^r+1$, preprint (2006).
  • 23. Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198, 10.1007/s10240-003-0009-z
  • 24. Vladimir Voevodsky, Motivic cohomology with 𝑍/2-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104. MR 2031199, 10.1007/s10240-003-0010-6
  • 25. André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961). MR 0136682
  • 26. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44 (= Collected Papers, 1).

Review Information:

Reviewer: Eva Bayer-Fluckiger
Affiliation: Ecole Polytechnique Fédérale, Lausanne
Email: eva.baver@epfl.ch
Journal: Bull. Amer. Math. Soc. 45 (2008), 479-484
DOI: http://dx.doi.org/10.1090/S0273-0979-08-01200-7
Published electronically: April 21, 2008
Review copyright: © Copyright 2008 American Mathematical Society