Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Some methods for studying stability in isoperimetric type problems

Author: F. Maggi
Journal: Bull. Amer. Math. Soc. 45 (2008), 367-408
MSC (2000): Primary 49Q20
Published electronically: April 8, 2008
MathSciNet review: 2402947
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We review the method of quantitative symmetrization inequalities introduced in Fusco, Maggi and Pratelli, ``The sharp quantitative isoperimetric inequality'', Ann. of Math.

References [Enhancements On Off] (What's this?)

  • [AFN] A. Alvino, V. Ferone, C. Nitsch, The quantitative isoperimetric inequality for convex domains in the plane, preprint.
  • [AFP] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000, xviii+434 pp. MR 1857292 (2003a:49002)
  • [Be] F. Bernstein, Über die isoperimetriche Eigenschaft des Kreises auf der Kugeloberflache und in der Ebene, Math. Ann., 60 (1905), 117-136. MR 1511289
  • [BE] G. Bianchi, H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), no. 1, 18-24. MR 1124290 (92i:46033)
  • [Bl] G.A. Bliss, An integral inequality, J. London Math. Soc. 5 (1930), 40-46.
  • [Bo] T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252-268. MR 1512192
  • [BL] H. Brezis, E. H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), no. 1, 73-86. MR 790771 (86i:46033)
  • [Ci1] A. Cianchi, A quantitative Sobolev inequality in BV, J. Funct. Anal. 237 (2006), no. 2, 466-481. MR 2230346 (2007b:46053)
  • [Ci2] A. Cianchi, Sharp Sobolev-Morrey inequalities and the distance from extremals, to appear in Trans. Amer. Math. Soc.
  • [CCF] M. Chlebík, A. Cianchi, N. Fusco, The perimeter inequality under Steiner symmetrization: cases of equality. Ann. of Math. (2) 162 (2005), no. 1, 525-555. MR 2178968 (2006m:49032)
  • [CEFT] A. Cianchi, L. Esposito, N. Fusco, C. Trombetti, A quantitative Pólya-Szegö principle, to appear in J. Reine Angew. Math.
  • [CFMP1] A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, The sharp Sobolev inequality in quantitative form, submitted paper.
  • [CFMP2] A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, On the isoperimetric deficit in the Gauss space, submitted paper.
  • [CNV] D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182 (2004), no. 2, 307-332. MR 2032031 (2005b:26023)
  • [DG1] E. De Giorgi, Su una teoria generale della misura $ (r-1)$-dimensionale in uno spazio ad $ r$ dimensioni. (Italian) Ann. Mat. Pura Appl. (4) 36 (1954), 191-213. MR 0062214 (15:945d)
  • [DG2] E. De Giorgi, Nuovi teoremi relativi alle misure $ (r-1)$-dimensionali in uno spazio ad $ r$ dimensioni. (Italian) Ricerche Mat. 4 (1955), 95-113. MR 0074499 (17:596a)
  • [DG3] E. De Giorgi, Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. (Italian) Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33-44. MR 0098331 (20:4792)
  • [EFT] L. Esposito, N. Fusco, C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 4, 619-651. MR 2207737 (2006k:52013)
  • [EG] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992, viii+268 pp. MR 1158660 (93f:28001)
  • [FiMP] A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to isoperimetric type inequalities in quantitative form, in preparation.
  • [FR] W. H. Fleming, R. Rishel, An integral formula for total gradient variation. Arch. Math. 11 (1960), 218-222. MR 0114892 (22:5710)
  • [FM] I. Fonseca, S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1-2, 125-136. MR 1130601 (93c:49026)
  • [Fu] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $ \mathbb{R}^n$, Trans. Amer. Math. Soc. 314 (1989), 619-638. MR 942426 (89m:52016)
  • [Fs] N. Fusco, The classical isoperimetric theorem, Rend. Acad. Sci. Fis. Mat. Napoli (4) 71 (2004), 63-107. MR 2147710 (2006a:49069)
  • [FMP1] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality, to appear in Ann. of Math.
  • [FMP2] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244 (2007), no. 1, 315-341. MR 2294486
  • [FMP3] N. Fusco, F. Maggi, A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities, submitted paper.
  • [Ha] R. R. Hall, A quantitative isoperimetric inequality in $ n$-dimensional space, J. Reine Angew. Math. 428 (1992), 161-176. MR 1166511 (93d:51041)
  • [HHW] R. R. Hall, W. K. Hayman, A. W. Weitsman, On asymmetry and capacity, J. d'Analyse Math. 56 (1991), 87-123. MR 1243100 (95h:31004)
  • [Ka] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985. MR 810619 (87a:35001)
  • [MS] V. D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin, 1986, viii+156 pp. MR 856576 (87m:46038)
  • [Os1] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), 1-29. MR 519520 (80h:52013)
  • [Os2] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238. MR 0500557 (58:18161)
  • [PS] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics. Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, NJ, 1951. MR 0043486 (13:270d)
  • [Ta] G. Talenti, The standard isoperimetric theorem. Handbook of convex geometry, Vol. A, B, 73-123, North-Holland, Amsterdam, 1993. MR 1242977 (94h:49065)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 49Q20

Retrieve articles in all journals with MSC (2000): 49Q20

Additional Information

F. Maggi
Affiliation: Dipartimento di Matematica, Università di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy

Received by editor(s): August 29, 2007
Published electronically: April 8, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society