Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Exotic spheres and curvature


Authors: M. Joachim and D. J. Wraith
Journal: Bull. Amer. Math. Soc. 45 (2008), 595-616
MSC (2000): Primary 53C20
DOI: https://doi.org/10.1090/S0273-0979-08-01213-5
Published electronically: July 1, 2008
MathSciNet review: 2434347
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Since their discovery by Milnor in 1956, exotic spheres have provided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres.


References [Enhancements On Off] (What's this?)

  • [Au] T. Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383-424. MR 0279731 (43:5452)
  • [Ad] J.F. Adams, On the groups $ J(X)$. IV, Topology 5 (1966), 21-71. MR 0198470 (33:6628)
  • [B] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (2002). MR 867684 (88f:53087)
  • [BGK] C.P. Boyer, K. Galicki, J. Kollár, Einstein metrics on spheres, Ann. of Math. (2) 162 no. 1 (2005), 557-580. MR 2178969 (2006j:53058)
  • [BGKT] C.P. Boyer, K. Galicki, J. Kollár, E. Thomas, Einstein metrics on exotic spheres in dimensions $ 7$, $ 11$ and $ 15$, Experiment. Math. 14 no. 1 (2005), 59-64. MR 2146519 (2006a:53042)
  • [BGN1] C.P. Boyer, K. Galicki, M. Nakamaye, On positive Sasakian geometry, Geom. Dedicata 101 (2003), 93-102. MR 2017897 (2005a:53072)
  • [BGN2] C.P. Boyer, K. Galicki, M. Nakamaye, Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology 42 (2003), 981-1002. MR 1978045 (2004c:53055)
  • [BH] A. Back, W.Y. Hsiang, Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1987), 207-227. MR 906813 (88m:53073)
  • [Bk] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14. MR 0206972 (34:6788)
  • [Bl] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1874240 (2002m:53120)
  • [Br] W. Browder, Surgery on simply-connected manifolds, Springer, Berlin, (1972). MR 0358813 (50:11272)
  • [Bu] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. MR 1835418 (2002e:53053)
  • [C] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry, 8 (1973), 623-628. MR 0341334 (49:6085)
  • [Ca] E. Calabi, On Kähler manifolds with vanishing canonical class, Algebraic Geometry and Topology. A symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton, N.J., 1957, pp. 78-89. MR 0085583 (19:62b)
  • [Ce] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois $ (\Gamma_4=0)$, Lecture Notes in Mathematics, 53, Springer-Verlag, Berlin-New York, 1968. MR 0229250 (37:4824)
  • [Ch] I. Chavel, Riemannian geometry. A modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge Univ. Press, 1993. MR 1271141 (95j:53001)
  • [D] A. Dessai, On the topology of scalar-flat manifolds, Bull. London Math. Soc. 33 (2001), 203-209. MR 1815425 (2002b:53063)
  • [doC] M. do Carmo, Riemannian geometry, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1138207 (92i:53001)
  • [DPR] C. Durán, T Püttmann, A. Rigas, An infinite family of Gromoll-Meyer spheres, arXiv:math.DG/0610349.
  • [Du] C. Durán, Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of $ S^6$, Geom. Dedicata 88 (2001), 199-210. MR 1877216 (2002i:57044)
  • [E1] J.-H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982) no. 3, 469-480. MR 662603 (83i:53061)
  • [E2] J.-H. Eschenburg, Freie isometrischen Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe Math. Inst. Univ. Münster 32 (1984). MR 758252 (86a:53045)
  • [E3] J.-H. Eschenburg, Local convexity and nonnegative curvature--Gromov's proof of the sphere theorem, Invent. Math. 84 (1986), 507-522. MR 837525 (87j:53080)
  • [E4] J.-H. Eschenburg, Cohomology of biquotients, Manuscripta Math. 75 (1992) no. 2, 151-166. MR 1160094 (93e:57070)
  • [E5] J.-H. Eschenburg, Almost positive curvature on the Gromoll-Meyer $ 7$-sphere, Proc. Amer. Math. Soc. 130 no. 4, (2002), 1165-1167. MR 1873792 (2002i:53045)
  • [Eh] P.E. Ehrlich, Metric deformations of curvature, I. Local convex deformations, Geom. Dedicata 5 (1976), 1-23. MR 0487886 (58:7482a)
  • [EK] J.-H. Eschenburg, M. Kerin, Almost positive curvature on the Gromoll-Meyer $ 7$-sphere, Proc. Amer. Math. Soc. posted on April 23, 2008, PII S0002-9939(08)09429-X (to appear in print).
  • [EKA] A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Composito Math. 73 (1990), no. 1, 57-106. MR 1042454 (91f:58089)
  • [Et] J. Etnyre, Introductory lectures on contact geometry, Proc. Sympos. Pure Math. 71 (2003), 81-107, Amer. Math. Soc., Providence, RI, 2003. MR 2024631 (2005b:53139)
  • [F] A. Futaki, Scalar-flat closed manifolds not admitting positive scalar curvature metrics, Invent. Math. 112 (1993), 23-29. MR 1207476 (94f:53072)
  • [Fr] M. Freedman, The topology of four dimensional manifolds, J. Differential Geom. 17 (1982) no. 3, 357-453. MR 679066 (84b:57006)
  • [FQ] M. Freedman and F. Quinn, Topology of $ 4$-manifolds, Princeton Mathematical Series 39, Princeton University Press, Princeton, N.J., 1990. MR 1201584 (94b:57021)
  • [G] H. Geiges, Contact geometry, Chapter 5 of the Handbook of Differential Geometry, Volume 2, Elsevier/North-Holland, Amsterdam, 2006. MR 2194671 (2007c:53123)
  • [GL] M. Gromov, H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423-434. MR 577131 (81h:53036)
  • [GM] D. Gromoll, W.T. Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401-406. MR 0375151 (51:11347)
  • [GP] K. Grove, P. Petersen, A pinching theorem for homotopy spheres, J. Amer. Math. Soc. 3 no.3, (1990), 671-677. MR 1049696 (91e:53040)
  • [GVWZ] K. Grove, L. Verdiani, B. Wilking, W. Ziller, Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 2, 159-170. MR 2244696 (2007h:53051)
  • [GW] K. Grove, F. Wilhelm, Metric constraints on exotic spheres via Alexandrov geometry, J. Reine Angew. Math. 487 (1997) 201-217. MR 1454266 (98d:53060)
  • [GZ1] K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. (2) 152 (2000), 331-367. MR 1792298 (2001i:53047)
  • [GZ2] K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002), 619-646. MR 1923478 (2004b:53052)
  • [H] F. Hirzebruch, Singularities and exotic spheres, Séminaire Bourbaki, 1966/67, Exp. 314, Textes des conférences, o.S., Paris: Institut Henri Poincaré 1967.
  • [HBJ] F. Hirzebruch, T. Berger, R. Jung, Manifolds and modular forms, Aspects of Mathematics, E20. Friedr. Vieweg & Sohn, Braunschweig, 1992. MR 1189136 (94d:57001)
  • [HH] W.-C. Hsiang, W.-Y. Hsiang, The degree of symmetry of homotopy spheres, Ann. of Math. (2) 89 (1969), 52-67. MR 0239621 (39:978)
  • [Hi] N. Hitchin, Harmonic Spinors, Adv. in Math. 14 (1974), 1-55. MR 0358873 (50:11332)
  • [HM] M. Hirsch, B. Mazur, Smoothings of piecewise linear manifolds, Annals of Mathematical Studies 80, Princeton Univ. Press, Princeton, NJ, 1974. MR 0415630 (54:3711)
  • [Hz] H. Hernández-Andrade, A class of compact manifolds with positive Ricci curvature, Proc. Sympos. Pure Math. Vol. 27, 73-87, Amer. Math. Soc., Providence, RI, 1975. MR 0380668 (52:1565)
  • [K] J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Reg. Conf. Ser. Math., 57, Amer. Math. Soc., Providence, RI, 1985. MR 787227 (86h:53001)
  • [KM] M. Kervaire, J. Milnor, Groups of homotopy spheres. I. Ann. of Math. (2) 77 (1963), 504-537. MR 0148075 (26:5584)
  • [KS] R. Kirby, L. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematical Studies, No. 88, Princeton Univ. Press, Princeton, NJ, 1977. MR 0645390 (58:31082)
  • [KW1] J.L. Kazdan, F.W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. 101 (1975), 317-331. MR 0375153 (51:11349)
  • [KW2] J.L. Kazdan, F.W. Warner, A direct approach to the determination of Gaussian and scalar curvature functions, Invent. Math. 28 (1975), 227-230. MR 0375154 (51:11350)
  • [KW3] J.L. Kazdan, F.W. Warner, Prescribing curvatures, Differential geometry, Proc. Sympos. Pure Math., Vol. XXVII Part 2, 309-319, Amer. Math. Soc., Providence, RI, 1975. MR 0394505 (52:15306)
  • [KZ] V. Kapovitch, W. Ziller, Biquotients with singly generated rational cohomology, Geom. Dedicata 104 (2004), 149-160. MR 2043959 (2005e:22014)
  • [La] T. Lance, Differentiable structures on manifolds, Surveys on Surgery Theory, Vol. 1, 73-104, Annals of Mathematical Studies, 145, Princeton Univ. Press, Princeton, NJ, 2000. MR 1747531 (2001d:57035)
  • [LM] H.B. Lawson, M.-L. Michelsohn, Spin geometry, Princeton Math. Series, 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
  • [Li] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7-9. MR 0156292 (27:6218)
  • [Lo] J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), 655-683. MR 1307899 (95i:53042)
  • [M1] J. Milnor, On manifolds homeomorphic to the $ 7$-sphere, Ann. of Math. (2) 64 (1956), 399-405. MR 0082103 (18:498d)
  • [M2] J. Milnor, Morse Theory, Annals of Mathematical Studies, 51, Princeton Univ. Press, Princeton, NJ, 1963. MR 0163331 (29:634)
  • [M3] J. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology, 55-62, Princeton Univ. Press, Princeton, NJ, 1965. MR 0180978 (31:5208)
  • [M4] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematical Studies, 61, Princeton Univ. Press, Princeton, NJ, 1968. MR 0239612 (39:969)
  • [M5] J. Milnor, Classification of $ (n-1)$-connected $ 2n$-dimensional manifolds and the discovery of exotic spheres, Surveys on Surgery Theory, Vol. 1, 25-30, Annals of Mathematical Studies 145, Princeton Univ. Press, Princeton, NJ, 2000. MR 1747528 (2001c:57002)
  • [MS] J. Milnor, J. Stasheff, Characteristic Classes, Annals of Mathematical Studies, 76, Princeton Univ. Press, Princeton, NJ, 1974. MR 0440554 (55:13428)
  • [My] S.B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404. MR 0004518 (3:18f)
  • [Na] J. Nash, Positive Ricci curvature on fiber bundles, J. Differential Geom. 14 (1979), 241-254. MR 587552 (81k:53039)
  • [ON] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 0200865 (34:751)
  • [P] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer-Verlag, (1998). MR 1480173 (98m:53001)
  • [P1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arxiv.org/math.DG/0211159
  • [P2] G. Perelman, Ricci flow with surgery on three-manifolds, http://arxiv.org/ math.DG/0303109
  • [P3] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, http://arxiv.org/math.DG/0307245
  • [Po] W.A. Poor, Some exotic spheres with positive Ricci curvature, Math. Ann. 216 (1975), 245-252. MR 0400110 (53:3945)
  • [PW] P. Petersen, F. Wilhelm, An exotic sphere with positive sectional curvature, arXiv: 0805.0812v1 [math.DG]
  • [R] A. Ranicki, Algebraic and Geometric Surgery, Oxford Mathematical Monographs, Oxford University Press, (2002). MR 2061749 (2005e:57075)
  • [Ri] A. Rigas, Some bundles of nonnegative curvature, Math. Ann. 232 (1978), 187-193. MR 0464254 (57:4188)
  • [S] K. Shiohama, Recent developments in sphere theorems, Differential geometry. Proc. Sympos. Pure Math., 551-576, Vol. 54, Part 3, Amer. Math. Soc., Providence, RI, 1993. MR 1216646 (94d:53071)
  • [Si] W. Singhof, On the topology of double coset manifolds, Math. Ann. 297 (1993) no. 1, 133-146. MR 1238411 (94k:57054)
  • [ScY] R. Schoen, S.T. Yau, On the structure of manifolds of positive scalar curvature, Manuscr. Math. 28 (1979), 159-183. MR 535700 (80k:53064)
  • [Sh] N. Shimada, Differentiable structures on the 15-sphere and Pontrjagin classes of certain manifolds, Nagoya Math. J. 12 (1957), 59-69. MR 0096223 (20:2715)
  • [Sm1] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. MR 0137124 (25:580)
  • [Sm2] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. MR 0153022 (27:2991)
  • [St] S. Stolz, Simply connected manifolds with positive scalar curvature, Ann. of Math. (2) 136 (1992), 511-540. MR 1189863 (93i:57033)
  • [SY] J.P. Sha, D.G. Yang, Positive Ricci curvature on the connected sums of $ S^n \times S^m$, J. Differential Geometry 33 (1991), 127-138.
  • [Su] Y. Suyama, A differentiable sphere theorem by curvature pinching. II, Tohoku Math. J. (2) 47 no. 1 (1995), 15-29. MR 1311439 (95k:53048)
  • [To] B. Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002), 397-452. MR 1979366 (2004b:53075)
  • [Vi] J. Vilms, Totally geodesic maps, J. Differential Geom. 4 (1970), 73-79. MR 0262984 (41:7589)
  • [We] M. Weiss, Pinching and concordance theory, J. Differential Geom. 38 (1993), 387-416. MR 1237489 (95a:53057)
  • [Wi1] F. Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal. 11 (2001), 163-188. MR 1829354 (2002c:53062)
  • [Wi2] F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001), 519-560. MR 1857856 (2002f:53056)
  • [Wr1] D. Wraith, Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997), 638-649. MR 1472892 (98i:53058)
  • [Wr2] D. Wraith, Surgery on Ricci positive manifolds, J. Reine Angew. Math. 501 (1998), 99-113. MR 1637825 (99j:53050)
  • [Y] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411. MR 480350 (81d:53045)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 53C20

Retrieve articles in all journals with MSC (2000): 53C20


Additional Information

M. Joachim
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
Email: joachim@math.uni-muenster.de

D. J. Wraith
Affiliation: Department of Mathematics, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
Email: David.Wraith@nuim.ie

DOI: https://doi.org/10.1090/S0273-0979-08-01213-5
Received by editor(s): May 27, 2008
Published electronically: July 1, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society