Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Why are solitons stable?


Author: Terence Tao
Journal: Bull. Amer. Math. Soc. 46 (2009), 1-33
MSC (2000): Primary 35Q51
DOI: https://doi.org/10.1090/S0273-0979-08-01228-7
Published electronically: September 5, 2008
MathSciNet review: 2457070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of linear dispersive equations predicts that waves should spread out and disperse over time. However, it is a remarkable phenomenon, observed both in theory and practice, that once nonlinear effects are taken into account, solitary wave or soliton solutions can be created, which can be stable enough to persist indefinitely. The construction of such solutions can be relatively straightforward, but the fact that they are stable requires some significant amounts of analysis to establish, in part due to symmetries in the equation (such as translation invariance) which create degeneracy in the stability analysis. The theory is particularly difficult in the critical case in which the nonlinearity is at exactly the right power to potentially allow for a self-similar blowup. In this article we survey some of the highlights of this theory, from the more classical orbital stability analysis of Weinstein and Grillakis-Shatah-Strauss, to the more recent asymptotic stability and blowup analysis of Martel-Merle and Merle-Raphael, as well as current developments in using this theory to rigorously demonstrate controlled blowup for several key equations.


References [Enhancements On Off] (What's this?)

  • 1. M. Ablowitz, D. Kaup, A. Newell, H. Segur, The inverse scattering transform--Fourier analysis for nonlinear problems. Studies in Appl. Math. 53 (1974), no. 4, 249-315. MR 0450815 (56:9108)
  • 2. T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London Ser. A 328 (1972), 153-183. MR 0338584 (49:3348)
  • 3. H. Berestycki, P.-L. Lions, Existence of a ground state in nonlinear equations of the Klein-Gordon type, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), pp. 35-51, Wiley, Chichester, 1980. MR 578738 (81i:35137)
  • 4. H. Berestycki, P.-L. Lions, L.A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $ R^N$, Indiana Univ. Math. J. 30 (1981), no. 1, 141-157. MR 600039 (83e:35009)
  • 5. J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A 344 (1975), no. 1638, 363-374. MR 0386438 (52:7292)
  • 6. J. Bona, V. A. Dougalis, O. A. Karakashian, W. R. McKinney, Conservative, high order numerical schemes, Philos. Trans. Roy. Soc. London Ser. A 351 (1995), 107-164. MR 1336983 (96d:65141)
  • 7. J. Bona, P.E. Souganidis, W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A. 411 (1987), 395-412. MR 897729 (88m:35128)
  • 8. V.S. Buslaev, G.S. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations, Nonlinear evolution equations 75-98, Amer. Math. Soc. Transl. Ser. 2 164, Amer. Math. Soc. Providence, RI, 1995 MR 1334139 (96e:35157)
  • 9. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, AMS, 2003. MR 2002047 (2004j:35266)
  • 10. T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561. MR 677997 (84i:81015)
  • 11. C.V. Coffman, Uniqueness of the ground state solution for $ \Delta u - u + u^3 = 0$ and a variational characterization of other solutions, Arch. Rat. Mech. Anal. 46 (1972), 81-95. MR 0333489 (48:11814)
  • 12. R. Côte, Large data wave operator for the generalized Korteweg-de Vries equations, Differential and Integral Equations, 19 (2006), no. 2, 163-188. MR 2194502 (2006i:35309)
  • 13. R. Côte, Construction of solutions to the subcritical gKdV equations with a given asymptotic behaviour, preprint. MR 2264249 (2007h:35279)
  • 14. R. Côte, Construction of solutions to the $ L^2$-critical KdV equation with a given asymptotic behaviour, preprint.
  • 15. S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, Dispersive nonlinear problems in mathematical physics, 21-57, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. MR 2231327 (2007h:35311)
  • 16. P. Deift; E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121-251. MR 512420 (80e:34011)
  • 17. K. El Dika, Stabilité asymptotique des ondes solitaires de l'équation de Benjamin-Bona-Mahony, C. R. Acad. Sci. Paris, Ser. I, 337 (2003), 649-652. MR 2030105 (2004j:35242)
  • 18. K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, preprint. MR 2152333 (2006d:35220)
  • 19. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell ed., American Mathematical Society, Providence, R.I. 1974, pp. 143-156. MR 0336014 (49:790)
  • 20. C.S. Gardner, C.S. Greene, M.D. Kruskal, R.M. Miura, Method for Solving the Korteweg-de Vries Equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
  • 21. B. Gidas, N.W. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R\sp{n}$, Mathematical analysis and applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981. MR 634248 (84a:35083)
  • 22. R.T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger operators, J. Math. Phys. 8 (1977), 1794-1797. MR 0460850 (57:842)
  • 23. M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. I., J. Funct. Anal. 74 (1987), 160-197. MR 901236 (88g:35169)
  • 24. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192-1194
  • 25. N.J. Hitchin, G.B. Segal, R.S. Ward, Integrable systems. Twistors, loop groups, and Riemann surfaces. Lectures from the Instructional Conference held at the University of Oxford, Oxford, September 1997. Oxford Graduate Texts in Mathematics, 4. The Clarendon Press, Oxford University Press, New York, 1999. MR 1723384 (2000g:37003)
  • 26. J. Holmer, J. Marzuola, M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 (2007), 187-216. MR 2318852
  • 27. J. Holmer, M. Zworski, Soliton interaction with slowly varying potentials, preprint.
  • 28. C. Kenig and F. Merle, Global well-posedness, scattering, and blowup for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645-675. MR 2257393 (2007g:35232)
  • 29. C. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math. 46 (1993), 527-560. MR 1211741 (94h:35229)
  • 30. R. Killip, T. Tao, and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, preprint math.AP/0707.3188.
  • 31. R. Killip, M. Visan, X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, preprint.
  • 32. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539 (1895), 422-443.
  • 33. J. Krieger, W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc. 19 (2006), 815-920. MR 2219305 (2007b:35301)
  • 34. J. Krieger, W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-d, preprint.
  • 35. J. Krieger, W. Schlag, On the focusing critical semi-linear wave equation, preprint.
  • 36. J. Krieger, W. Schlag, D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), 543-615. MR 2372807
  • 37. J. Krieger, W. Schlag, D. Tataru, Slow blow-up solutions for the $ H^1(\mathbf{R}^3)$ critical focusing semi-linear wave equation in $ \mathbf{R}^3$, preprint.
  • 38. S. Kuksin, Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000. MR 1857574 (2002k:35054)
  • 39. M.K. Kwong, Uniqueness of positive solutions of $ \Delta u - u + u^p = 0$ in $ \mathbf{R}^n$, Arch. Rat. Mech. Anal. 105 (1989), 243-266. MR 969899 (90d:35015)
  • 40. C. Laurent, Y. Martel, Smoothness and exponential decay for $ L^2$-compact solutions of the generalized Korteweg-de Vries equations, Comm. Partial Diff. Eq. 29 (2004), 157-171. MR 2038148 (2005e:35202)
  • 41. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. MR 0235310 (38:3620)
  • 42. Y. Martel, Asymptotic $ N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), 1103-1140. MR 2170139 (2007a:35128)
  • 43. Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759-781. MR 2262941 (2007i:35204)
  • 44. Y. Martel, F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. 79 (2000), 339-425. MR 1753061 (2001i:37102)
  • 45. Y. Martel, F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Rat. Mech. Anal. 157 (2001), no. 3, 219-254. MR 1826966 (2002b:35182)
  • 46. Y. Martel, F. Merle, Blow up in finite time and dynamics of blow up solutions for the $ L^2$-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), no. 3, 617-664. MR 1896235 (2003c:35142)
  • 47. Y. Martel, F. Merle, Nonexistence of blow-up solution with minimal $ L^2$-mass for the critical gKdV equation Duke Math. J.115 (2002), no. 2, 385-408. MR 1944576 (2003j:35281)
  • 48. Y. Martel, F. Merle, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. Math. 155 (2002), 235-280. MR 1888800 (2003e:35270)
  • 49. Y. Martel, F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), no. 1, 55-80. MR 2109467 (2006i:35319)
  • 50. Y. Martel, F. Merle, Refined asymptotics around solitons for gKdV equations, Discrete Contin. Dyn. Syst. 20 (2008), no. 2, 177-218. MR 2358258
  • 51. Y. Martel, F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, preprint. MR 2385662
  • 52. Y. Martel, F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint.
  • 53. Y. Martel, F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, preprint.
  • 54. Y. Martel, F. Merle, Review on blow up and asymptotic dynamics for critical and subcritical gKdV equations. Noncompact problems at the intersection of geometry, analysis, and topology, 157-177, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004. MR 2082397 (2005i:35236)
  • 55. Y. Martel, F. Merle, Qualitative results on the generalized critical KdV equation, Lectures on partial differential equations, 175-179, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003. MR 2055847 (2005f:35272)
  • 56. Y. Martel, F. Merle, T.-P. Tsai, Stability and asymptotic stability in the energy space for the sum of $ N$ solitons for the subcritical gKdV equations, Commun. Math. Phys. 231 (2002), 347-373. MR 1946336 (2003j:35280)
  • 57. Y. Martel, F. Merle, T.-P. Tsai, Stability in $ H^1$ for the sum of $ K$ solitary waves to some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), 405-466. MR 2228459 (2007f:35271)
  • 58. F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrodinger equation with critical power, Duke Math. J. 69 (1993), 427-453. MR 1203233 (94b:35262)
  • 59. F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), 555-578. MR 1824989 (2002f:35193)
  • 60. F. Merle, P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, 591-642. MR 1995801 (2005j:35207)
  • 61. F. Merle, P. Raphael, On universality of blow-up profile for $ L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565-672. MR 2061329 (2006a:35283)
  • 62. F. Merle, P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157-222. MR 2150386 (2006k:35277)
  • 63. F. Merle, H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (2000), no. 1, 103-137. MR 1735081 (2001d:35084)
  • 64. R. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204. MR 0252825 (40:6042a)
  • 65. R. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Review 18 (1976), 412-459. MR 0404890 (53:8689)
  • 66. T. Mizumachi, Asymptotic stability of solitary wave solutions to the regularized long-wave equation, J. Differential Equations 200 (2004), no. 2, 312-341. MR 2052617 (2005h:35299)
  • 67. V. J. Novoksenov, Asymptotic behaviour as $ t \to \infty$ of the solution to the Cauchy problem for a nonlinear Schrödinger equation (Russian), Dokl. Akad. Nauk SSSR 251 (1980), 799-802. MR 568535 (81f:81015)
  • 68. R. Pego, M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), no. 2, 305-349. MR 1289328 (95h:35209)
  • 69. G.S. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Diff. Eq. 29 (2004), 1051-1095. MR 2097576 (2005g:35277)
  • 70. I. Rodnianski, W. Schlag, A. D. Soffer, Asymptotic stability of $ N$-soliton states of NLS, Comm. Pure Appl. Math. 58 (2005), no. 2, 149-216. MR 2094850 (2005i:81181)
  • 71. I. Rodnianski, J. Sterbenz, On the Formation of Singularities in the Critical $ O(3)$ Sigma-Model, preprint.
  • 72. W. Schlag, Spectral Theory and Nonlinear PDE: a Survey, preprint.
  • 73. H. Segur, M. Ablowitz, Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation I. J. Math. Phys. 17 (1976), 710-713. MR 0450822 (56:9115a)
  • 74. H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 52 (1980), 569-615. MR 578142 (81e:82010)
  • 75. E. M. Stein, Harmonic Analysis, Princeton University Press, 1993. MR 1232192 (95c:42002)
  • 76. A. Soffer, Soliton dynamics and scattering, Proc. Internat. Congress of Math., Madrid 2006, Vol. III, 459-472. MR 2275691 (2008a:35268)
  • 77. T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dynamics of PDE 1 (2004), 1-48. MR 2091393 (2005j:35210)
  • 78. T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dynamics of PDE 4 (2007), 1-53. MR 2304091 (2007k:35479)
  • 79. T. Tao, Nonlinear dispersive equations: local and global analysis, CBMS Regional Series in Mathematics, 2006. MR 2233925
  • 80. T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623-651. MR 2286393
  • 81. T. Tao, M. Visan, and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. MR 2355070
  • 82. N. Tzvetkov, On the long time behavior of KdV type equations [after Martel-Merle], Séminaire Bourbaki. Vol. 2003/2004.Astérisque No. 299 (2005), Exp. No. 933, viii, 219-248. MR 2167208 (2006g:35246)
  • 83. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983), 567-576. MR 691044 (84d:35140)
  • 84. M. Weinstein, Modulational stability of ground states of nonlinear Schrodinger equations, SIAM J. Math. Anal. 16 (1985), 472-491. MR 783974 (86i:35130)
  • 85. M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, CPAM 39 (1986), 51-68. MR 820338 (87f:35023)
  • 86. N. J. Zabusky, M. D. Kruskal, Interaction of `Solitons' in a Collisionless Plasma and the Recurrence of Initial States., Phys. Rev. Lett. 15 (1965), 240.
  • 87. V.E. Zakharov, S.V. Manakov, Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method, Soviet Physics JETP 44 (1976), 106-112. MR 0673411 (58:32546)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35Q51

Retrieve articles in all journals with MSC (2000): 35Q51


Additional Information

Terence Tao
Affiliation: UCLA Department of Mathematics, Los Angeles, California 90095-1596
Email: tao@@math.ucla.edu

DOI: https://doi.org/10.1090/S0273-0979-08-01228-7
Received by editor(s): June 20, 2008
Published electronically: September 5, 2008
Additional Notes: The author is supported by NSF grant CCF-0649473 and a grant from the MacArthur Foundation, and also thanks David Hansen, Frank Merle, Robert Miura, Jeff Kimmel, and Jean-Claude Saut for helpful comments and corrections.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society