Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Conformal invariance and $ 2D$ statistical physics


Author: Gregory F. Lawler
Journal: Bull. Amer. Math. Soc. 46 (2009), 35-54
MSC (2000): Primary 82B27; Secondary 30C35, 60J65, 82B27
DOI: https://doi.org/10.1090/S0273-0979-08-01229-9
Published electronically: September 22, 2008
MathSciNet review: 2457071
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A number of two-dimensional models in statistical physics are conjectured to have scaling limits at criticality that are in some sense conformally invariant. In the last ten years, the rigorous understanding of such limits has increased significantly. I give an introduction to the models and one of the major new mathematical structures, the Schramm-Loewner Evolution ($ SLE$).


References [Enhancements On Off] (What's this?)

  • 1. M. Bauer, D. Bernard (2003), Conformal field theories of stochastic Loewner evolutions. Comm. Math. Phys. 239, 493-521. MR 2000927 (2004h:81216)
  • 2. V. Beffara (2007), The dimension of the SLE curves, to appear in Ann. Probab.
  • 3. A. Belavin, A. Polyakov, A. Zamolodchikov (1984), Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34, 763-774. MR 751712 (86e:82019)
  • 4. A. Belavin, A. Polyakov, A. Zamolodchikov (1984), Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333-380. MR 757857 (86m:81097)
  • 5. L. de Branges (1985), A proof of the Bieberbach conjecture, Acta Math. 154, 137-152. MR 772434 (86h:30026)
  • 6. F. Camia, C. Newman (2006). Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys. 268, 1-38. MR 2249794 (2007m:82032)
  • 7. J. Cardy (1984), Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (FS12), 514-532.
  • 8. J. Cardy (1992), Critical percolation in finite geometries, J. Phys. A 25, L201-L206. MR 1151081 (92m:82048)
  • 9. J. Cardy (1996), Scaling and Renormalization in Statistical Physics, Cambridge. MR 1446000 (98m:82003)
  • 10. J. Cardy (2005), $ SLE$ for theoretical physicists, Annals of Phys. 318, 81-118 MR 2148644
  • 11. P. Di Francesco, P, Mathieu, D, Sénéchal (1997), Conformal Field Theory, Springer. MR 1424041 (97g:81062)
  • 12. B. Doyon, V. Riva, J. Cardy (2006), Identification of the stress-energy tensor through conformal restriction in SLE and related processes. Comm. Math. Phys. 268, 687-716. MR 2259211 (2008b:81253)
  • 13. J. Dubédat (2007), Duality of Schramm-Loewner evolutions, preprint.
  • 14. S. Fomin (2001), Loop-erased walks and total positivity, Trans. Amer. Math. Soc. 353, 3563-3583. MR 1837248 (2002f:15030)
  • 15. M. Henkel (1999), Conformal Invariance and Critical Phenomena, Springer. MR 1694135 (2000f:82038)
  • 16. C. Itzykson, J.-M. Drouffe (1989) Statistical Field Theory, Vol. 2, Cambridge University Press. MR 1175177 (93k:81003b)
  • 17. T. Kennedy (2003), Monte Carlo tests of $ SLE$ predictions for $ 2D$ self-avoiding walks, Phys. Rev. Lett. 88.
  • 18. T. Kennedy (2004), Conformal invariance and stochastic Loewner evolution predictions for the 2D self-avoiding walk-Monte Carlo tests, J. Statist. Phys. 114, 51-78. MR 2032124 (2005j:82031)
  • 19. R. Kenyon (2000), The asymptotic determinant of the discrete Laplacian, Acta Math. 185, 239-286. MR 1819995 (2002g:82019)
  • 20. M. Kozdron, G. Lawler (2005), Estimates of random walk exit probabilities and application to loop-erased random walk, Electron. J. Probab. 10, 1442-1467. MR 2191635 (2007b:60090)
  • 21. G. Lawler (2005). Conformally Invariant Processes in the Plane, American Mathematical Society. MR 2129588 (2006i:60003)
  • 22. G. Lawler (2006), The Laplacian-$ b$ random walk and the Schramm-Loewner evolution, Illinois J. Math. 50, no. 1-4, 701-746. MR 2247843 (2007k:60261)
  • 23. G. Lawler, O. Schramm, W. Werner (2001), Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187, 237-273. MR 1879850 (2002m:60159a)
  • 24. G. Lawler, O. Schramm, W. Werner (2001), Values of Brownian intersection exponents II: Plane exponents, Acta Math. 187, 275-308. MR 1879851 (2002m:60159b)
  • 25. G. Lawler, O. Schramm, W. Werner (2002), Analyticity of intersection exponents for planar Brownian motion, Acta Math. 189, 179-201. MR 1961197 (2003m:60231)
  • 26. G. Lawler, O. Schramm, W. Werner (2004), Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32, 939-995. MR 2044671 (2005f:82043)
  • 27. G. Lawler, O. Schramm, W. Werner (2004), On the scaling limit of planar self-avoiding walk, in Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Vol II., M. Lapidus, M. van Frankenhuijsen, ed., Amer. Math. Soc., 339-364. MR 2112127 (2006d:82033)
  • 28. G. Lawler, O. Schramm, W. Werner (2003), Conformal restriction: the chordal case, J. Amer. Math. Soc. 16, 917-955. MR 1992830 (2004g:60130)
  • 29. G. Lawler, W. Werner (1999), Intersection exponents for planar Brownian motion, Ann. Probab. 27, 1601-1642. MR 1742883 (2000k:60165)
  • 30. G. Lawler, W. Werner (2000), Universality for conformally invariant intersection exponents, J. Europ. Math. Soc. 2, 291-328. MR 1796962 (2002g:60123)
  • 31. G. Lawler, W. Werner (2004), The Brownian loop soup, Probab. Theory Related Fields 128, 565-588. MR 2045953 (2005f:60176)
  • 32. P. Lëvy (1946), Processus Stochasticques et Mouvement Brownien, Gauthier-Villars. MR 0190953 (32:8363)
  • 33. K. Löwner (1923), Untersuchungen über schlichte konforme Abildugnen des Einheitskreises I, Math. Ann. 89, 103-121. MR 1512136
  • 34. B. Mandelbrot (1982), The Fractal Geometry of Nature, Freeman. MR 665254 (84h:00021)
  • 35. S. Rohde, O. Schramm (2005), Basic properties of SLE. Ann. of Math. 161, 883-924. MR 2153402 (2006f:60093)
  • 36. O. Schramm (2000), Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118, 221-288. MR 1776084 (2001m:60227)
  • 37. O. Schramm, S. Sheffield (2005), Harmonic explorer and its convergence to $ {\rm SLE}\sb 4$. Ann. Probab. 33, 2127-2148. MR 2184093 (2006i:60013)
  • 38. O. Schramm, S. Sheffield, Contour lines of the discrete Gaussian free field, preprint.
  • 39. S. Sheffield, Gaussian free fields for mathematicians, preprint.
  • 40. S. Smirnov (2001), Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 no. 3, 239-244. MR 1851632 (2002f:60193)
  • 41. S. Smirnov (2006) Towards conformal invariance of $ 2D$ lattice models, International Congress of Mathematicians, Madrid 2006, Eur. Math. Soc. 1421-1451. MR 2275653 (2008g:82026)
  • 42. W. Werner (2004), Random planar curves and Schramm-Loewner evolutions, Ecole d'Eté de Probabilités de Saint-Flour XXXII - 2002, Lecture Notes in Mathematics 1840, Springer-Verlag, 113-195. MR 2079672 (2005m:60020)
  • 43. D. Wilson (1996), Generating spanning trees more quickly than the cover time in Proceedings of the Twenty-Eighth Symposium on the Theory of Computing, ACM, 296-303. MR 1427525
  • 44. D. Zhan (2007), Reversibility of chordal SLE, to appear in Ann. Prob.
  • 45. D. Zhan (2007) Duality of chordal SLE, to appear in Invent. Math.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 82B27, 30C35, 60J65, 82B27

Retrieve articles in all journals with MSC (2000): 82B27, 30C35, 60J65, 82B27


Additional Information

Gregory F. Lawler
Affiliation: Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637-1546
Email: lawler@math.uchicago.edu

DOI: https://doi.org/10.1090/S0273-0979-08-01229-9
Received by editor(s): June 20, 2008
Published electronically: September 22, 2008
Additional Notes: This research was supported by National Science Foundation grant DMS-0734151
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society