Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Xiaonan Ma and George Marinescu
Title: Holomorphic Morse inequalities and Bergman kernels
Additional book information: Progress in Mathematics, 254, Birkhäuser Verlag, Basel, 2007, xiv+422 pp., ISBN 978-3-7643-8096-0, US$79.95

References [Enhancements On Off] (What's this?)

  • [B1] R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), no. 2, 325-344; arXiv:math/0211235. MR 2088931 (2005g:32024)
  • [B2] R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. (to appear); arXiv:0710.4375.
  • [BBSj] R. Berman, B. Berndtsson and J. Sjöstrand, Asymptotics of Bergman kernels, Amer. J. Math. (to appear); arXiv: math/0506367v2.
  • [B] J. M. Bismut, Demailly's asymptotic Morse inequalities: a heat equation proof. J. Funct. Anal. 72 (1987), no. 2, 263-278. MR 886814 (88j:58131)
  • [BSZ] P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of zeros on symplectic manifolds. Random matrix models and their applications, 31-69, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001. MR 1842782 (2003d:58040)
  • [BSZ2] P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142 (2000), no. 2, 351-395. MR 1794066 (2002f:32037)
  • [BU] D. Borthwick and A. Uribe, Nearly Kählerian embeddings of symplectic manifolds. Asian J. Math. 4 (2000), no. 3, 599-620. MR 1796696 (2001m:53166)
  • [BSj] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö. Journées: Équations aux Dérivées Partielles de Rennes (1975), pp. 123-164. Asterisque, No. 34-35, Soc. Math. France, Paris, 1976. MR 0590106 (58:28684)
  • [BG] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators. Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 620794 (85j:58141)
  • [C] D. Catlin, The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), 1-23, Trends Math., Birkhäuser Boston, Boston, MA, 1999. MR 1699887 (2000e:32001)
  • [Dem] J. P. Demailly, Holomorphic Morse inequalities. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 93-114, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991. MR 1128538 (93b:32048)
  • [Dem2] J. P. Demailly, Complex analytic and algebraic geometry. Available at demailly/books.html.
  • [D1] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry. J. Differential Geom. 44 (1996), no. 4, 666-705. MR 1438190 (98h:53045)
  • [D2] S. K. Donaldson, Scalar curvature and projective embeddings. I. J. Differential Geom. 59 (2001), no. 3, 479-522. MR 1916953 (2003j:32030)
  • [F] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26 (1974), 1-65. MR 0350069 (50:2562)
  • [GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. MR 507725 (80b:14001)
  • [GU] V. Guillemin and A. Uribe, The Laplace operator on the $ n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $ n$. Asymptotic Anal. 1 (1988), no. 2, 105-113. MR 950009 (90a:58180)
  • [JS] S. Ji and B. Shiffman, Properties of compact complex manifolds carrying closed positive currents. J. Geom. Anal. 3 (1993), no. 1, 37-61. MR 1197016 (93m:32014)
  • [L] N. Lindholm, Sampling in weighted $ L\sp p$ spaces of entire functions in $ {\mathbb{C}}\sp n$ and estimates of the Bergman kernel. J. Funct. Anal. 182 (2001), no. 2, 390-426. MR 1828799 (2002g:32007)
  • [Lu] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122 (2000), no. 2, 235-273. MR 1749048 (2002d:32034)
  • [MSj] A. Menikoff and J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235 (1978), no. 1, 55-85. MR 0481627 (58:1735)
  • [MW] W. Müller and K. Wendland, Critical metrics with respect to Ray-Singer analytic torsion and Quillen metric. Analysis, numerics and applications of differential and integral equations (Stuttgart, 1996), 245-250, Pitman Res. Notes Math. Ser., 379, Longman, Harlow, 1998. MR 1606714
  • [PS] D.H. Phong and J. Sturm, Lectures on stability and constant scalar curvature (preprint, 2007). MR 2377252
  • [PS2] D.H. Phong and J. Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials. Invent. Math. 166 (2006), no. 1, 125-149. MR 2242635 (2007h:32036)
  • [SS] B. Shiffman and A.J. Sommese, Vanishing theorems on complex manifolds. Progress in Mathematics, 56. Birkhäuser Boston, Inc., Boston, MA, 1985. MR 782484 (86h:32048)
  • [SZ] B. Shiffman and S. Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544 (2002), 181-222. MR 1887895 (2002m:58043)
  • [T] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99-130. MR 1064867 (91j:32031)
  • [W] X. Wang, Canonical metrics on stable vector bundles. Comm. Anal. Geom. 13 (2005), no. 2, 253-285. MR 2154820 (2006b:32031)
  • [Z] S. Zelditch, Szegö kernels and a theorem of Tian. Internat. Math. Res. Notices 1998, no. 6, 317-331. MR 1616718 (99g:32055)
  • [Z2] S. Zelditch. Bernstein polynomials, Bergman kernels, and toric Kähler varieties, J. Symplectic Geom. (to appear); arXiv: 0705.2879.

Review Information:

Reviewer: Steve Zelditch
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, 21218
Journal: Bull. Amer. Math. Soc. 46 (2009), 349-361
MSC (2000): Primary 53C55, 32Q15, 32L10, 32A25, 32A60
Published electronically: October 14, 2008
Additional Notes: Research partially supported by NSF grant DMS-0603850.
Review copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society