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REMARKS ON CHERN-SIMONS THEORY

DANIEL S. FREED

Dedicated to MSRI on its 25th anniversary

Abstract. The classical Chern-Simons invariant is the basis for a 3-dimen-
sional topological quantum field theory. We describe some of the mathematical
structure which has been built around this and other topological field theories.
We include, in the introduction and the last section, some general discussion
about the current interaction between geometry and quantum theories of fields
and gravity.

A beautiful line of development in Riemannian geometry is the relationship be-
tween curvature and topology. In one of his first major works, written in 1946,
Chern [Ch] proves a generalized Gauss-Bonnet theorem by producing what we now
call a transgressing form on the unit sphere bundle of the manifold. Twenty-five
years later, together with Simons, he took up transgression [CSi] in the context
of the theory of connections on arbitrary principal bundles. The Chern-Simons in-
variants of a connection are secondary geometric invariants; in between these works
Chern and Weil developed the theory of primary topological invariants of connec-
tions. Both invariants are local in the sense that they are computed by integrals
of differential forms. The relationship between them is that the differential of the
Chern-Simons form is the Chern-Weil form. The integral of the Chern-Weil form
over a closed manifold is independent of the connection, so is a topological invari-
ant. In the late 1980s Edward Witten [W1] proposed a new topological invariant
of 3-manifolds from these same ingredients. He achieves topological invariance via
a technique unavailable to geometers: Witten integrates the exponentiated Chern-
Simons invariant over the infinite-dimensional space of all connections. Because the
connection is integrated out, the result depends only on the underlying manifold.
This, then, is the quantum Chern-Simons invariant.

There are rich stories to tell about both the classical and quantum Chern-Simons
invariants in geometry, topology, and physics. The classical Chern-Simons invariant
is an obstruction to conformal immersions of 3-manifolds into Euclidean space,
is closely related to the Atiyah-Patodi-Singer invariant, and was refined in the
Cheeger-Simons theory of differential characters. It appeared in physics before
Witten’s work, for example in the theory of anomalies. The quantum Chern-Simons
invariant is closely related to the Jones invariants [Jo1] of links, which have had
many applications in knot theory. But here we do not attempt a review of all work
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on Chern-Simons invariants. Our interest is the structure behind the quantum
invariants as they relate to structure in physics. Indeed, Witten’s achievement was
to fit the Jones invariants into a larger structure, that of a 3-dimensional quantum
field theory.

The beginning of the twentieth century saw two revolutionary developments in
physics: relativity and quantum mechanics. The mathematical basis for general
relativity—differential geometry—was already well developed when Einstein came
along, and in turn his gravitational equations, which focus attention on Ricci cur-
vature, spurred many developments in Riemannian geometry. Quantum mechanics,
on the other hand, quickly inspired the development of operator theory and parts of
representation theory. These foundations for quantum mechanics later influenced
many other parts of mathematics, including diverse areas such as partial differential
equations and number theory [Ma]. Quantum field theory in its first incarnation,
quantum electrodynamics, combines quantum mechanics and Maxwell’s classical
theory of the electromagnetic field. It has provided some of the most precise com-
putational agreement between theory and experiment, and quantum field theory
is the setting for the standard model of particle physics. Although there has been
much mathematical work on quantum field theory, its foundations are not at all
settled. The interaction with mathematics has greatly broadened over the past
25 years: now quantum field theory—and also string theory—enjoys a deep in-
teraction with many branches of mathematics, suggesting novel results, surprising
connections, and new lines of research. One important impetus for this develop-
ment was the advent of new examples of quantum field theories closely connected
with geometry and topology. Quantum Chern-Simons theory is one of the first
examples, and it is a purely topological theory at both the classical and quantum
levels. We use it here as a focal point to discuss topological quantum field theories
(TQFT) in general. From it we have gained insight into the formal structure of all
quantum field theories, not just topological ones, and it is that general structure
which we accentuate. Also, Chern-Simons theory provides a window into the entire
interchange between mathematics and these parts of physics. We return to this line
of thought in the second half of §6.

Witten’s main tool is the path integral, an integral on a function space. (In
Feynman’s approach to quantum mechanics [Fe] it is truly an integral over a space
of paths; in general field theories it is still usually referred to as the “path integral”,
though “functional integral” is better.) Regrettably, the measures needed for such
integrals have only been constructed in special theories, and these do not cover
the example of Chern-Simons theory. In §2 we extract some important formal
properties of path integrals in general. We focus on locality, which is manifested
in gluing laws. This formal structure is nicely expressed in familiar mathematical
terms, as a linearization of correspondence diagrams. Here the correspondence
diagrams are built from the semiclassical fields; the linearization is the quantum
theory. Following Segal [Se2] and Atiyah [A2], we abstract axioms for a TQFT,
which we give in §3. The axioms do not encode the passage from fields to the
quantum theory, but only the properties of the quantum theory itself. In the end
these axioms are quite analogous to those of homology theory, but with important
differences: (i) a TQFT is defined on manifolds of a particular dimension, whereas
homology theory is defined on arbitrary topological spaces; and (ii) a TQFT is
multiplicative (say on disjoint unions) whereas homology theory is additive. The
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axioms are most neatly stated in categorical language, which, given the analogy
with homology theory, is not a surprise.

While the definition of a TQFT is simple, examples are not so easy to come
by. We distinguish between generators-and-relations constructions and a priori
constructions. The former are most prevalent in the mathematics literature, and
we present some theorems which classify TQFTs in these terms. (See Theorem 3.8
and Theorem 4.1, for example.) Most rigorous constructions of the 3-dimensional
Chern-Simons theory are of this generators-and-relations type. The path integral is
an a priori construction—the axioms of a TQFT follow directly and geometrically—
but in most cases it is not rigorous; a notable exception is gauge theory with finite
gauge group where the path integral reduces to a finite sum. The 2-dimensional
reduction of Chern-Simons theory for any gauge group has an a priori construction.
In fact, that reduced theory exists over the integers, whereas the 3-dimensional
Chern-Simons theory is defined over the complex numbers. It may be that TQFTs
which are dimensional reductions always exhibit integrality—and even a connection
to K-theory—as we speculate in §5.

Another theme here is the extension of a TQFT to higher codimension. Usually
in a quantum field theory there are two dimensions in play: the dimension n of
spacetime and the dimension n − 1 of space. For sure locality in space appears in
the physics literature—think of the Hilbert space of a lattice model constructed as
a tensor product of local Hilbert spaces, or of local algebras of observables in some
axiomatic treatments of quantum field theory—though that aspect is not always
emphasized. One of the very fruitful ideas in topological theories is to consider
gluing laws along corners. In the best case one goes all the way down to points.
So, for example, the usual 3-dimensional Chern-Simons theory may be called a
“2-3 theory” as it involves 2- and 3-dimensional manifolds. The extension down
to points is called a “0-1-2-3 theory”. Theories which extend down to points truly
earn the adjective ‘local’; other theories are only partially local. In this connection
Segal [Se2] has observed that the existence of handlebody decompositions for mani-
folds means that in a theory with at least three “tiers”, all of the data is determined
in principle from balls and products of spheres. In another direction one can often
build into a topological quantum field theory invariants for families of manifolds
as well as invariants of a single manifold. String topology as well as the theory
which encodes Gromov-Witten invariants both include invariants of families. One
new development in this area are generators-and-relations structure theorems for
TQFTs which are fully local—go down to points—and include families: see The-
orem 3.12, Theorem 3.13, and Conjecture 3.14. In these statements the values of
a TQFT are not necessarily Hilbert spaces and complex numbers. For these are
really generators-and-relations results about bordism categories of manifolds, so the
codomain can be very general. This flexibility in the codomain is necessary if one
is to avoid semisimplicity when considering theories over rings which are not fields
(see Remark 3.6).

In an n-dimensional theory the invariant of an n-manifold is a number and the
invariant of an (n− 1)-manifold is a set (the quantum Hilbert space). It is natural,
then, that the invariant of an (n−2)-manifold be a category ; the linear structure of
quantum theory demands that it be a linear category. Further descent in dimension,
obligatory for full locality, requires a concomitant ascent in category number. This
is a familiar ladder one climbs—or descends, depending on your orientation—in
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topology. The simplest invariant of a space S is the set π0S of path components.
The next invariant is a category : the fundamental groupoid π≤1S. At the next level
we encounter a 2-category π≤2S and so on. To incorporate families of manifolds,
one enriches to topological categories or some equivalent.

Chern-Simons theory as initially conceived from the path integral is a 2-3 theory.
Reshetikhin and Turaev [RT], [Tu] give a rigorous mathematical construction when
the gauge group is simple and simply connected; it utilizes a suitable category of
representations of a related quantum group. Hence they construct a 1-2-3 theory;
this category is attached to S1. It has been a long-standing question to extend
to a 0-1-2-3 theory: What does Chern-Simons attach to a point? In §4 we give
the answer for a finite gauge group (it was already contained in [F2]). There is an
extension of these ideas which works when the gauge group is a torus group, and
hopefully in more general cases as well.

In Chern-Simons theory the vector space attached to the torus S1 × S1 refines
to a free abelian group which carries a ring structure, the so-called Verlinde ring.
In a series of papers [FHT1], this ring was identified with a certain K-theory ring
built directly from the gauge group; see Theorem 5.4. This opens the possibility
of an a priori construction of quantum Chern-Simons theory using pure topology,
specifically K-theory. There is an a priori construction of the 2-dimensional re-
duction, as recounted at the end of §5, and it is pure K-theory. It remains to be
seen if this can be extended to an a priori 3-dimensional construction, or at least
if the input to the generators-and-relations Conjecture 3.14 can be given in terms
of K-theory (as it is for finite groups and tori).

We begin in §1 with a brief account of the differential geometry into which
the classical Chern-Simons invariant fits; the actual invariant is constructed in
the appendix. The mathematics which goes into the rigorous constructions of the
quantum theory—quantum groups and the like—are quite different: only the path
integral approach brings in the differential geometry directly. We emphasize this
in §6 where we observe that an elementary consequence of the path integral (6.5),
which involves classical invariants of flat connections, is not captured by the ax-
iomatics and in fact remains unproven. This state of affairs returns us to a more
general discussion about the interaction of mathematics with quantum field theory
and string theory. The casual reader may wish to rejoin us at that point. In be-
tween we extract the formal structure of path integrals (§2), present axiomatics for
TQFT together with generators-and-relations theorems (§3), discuss constructions
of Chern-Simons as a 1-2-3 and 0-1-2-3 theory (§4), and present the relationship to
K-theory (§5).

I had the good fortune to be a graduate student at Berkeley when MSRI opened
its doors in 1982. From the beginning Chern nurtured an open and welcoming
atmosphere. I quickly discovered that whereas faculty members at Evans Hall—as
at any mathematics department—were occupied with teaching and administration
as well as research, the visitors to MSRI were engaging with mathematics and (even
young) mathematicians all day long. I learned early the world of difference between
a mathematics department and a Mathematical Sciences Research Institute. No
wonder so many institutes around the world emulate MSRI! Over its first 25 years,
MSRI has grown tremendously in scope and outreach, all the while cultivating a
creative environment for mathematics and mathematicians to flourish. I am very
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grateful for the time I have been able to spend at MSRI, and it is an honor to
dedicate this paper to the continued good health of MSRI.

The circle of ideas surrounding Chern-Simons theory has been the topic of dis-
cussions with my collaborators Michael Hopkins and Constantin Teleman for at
least eight years, and their influence can be felt throughout this paper as can the
influence of earlier collaborators and my students. For the more recent topics, Ja-
cob Lurie and David Ben-Zvi have joined the conversation. It is a pleasure to thank
them all.

1. The classical Chern-Simons invariant

We begin with the nineteenth century progenitors of the Chern-Weil and Chern-
Simons work. Let Σ be a surface embedded in 3-dimensional Euclidean space. The
curvature of Σ is measured by a single function K : Σ → R. For example, the curva-
ture of a sphere of radius R is the constant function with value 1/R2. The curvature
was first investigated by Gauss in 1825. His famous theorema egregium [G, p. 105]
proves that this Gauss curvature is intrinsic: it only depends on the induced metric
on the surface, not on the embedding of the surface into space. The Riemannian
metric determines a measure dµΣ on Σ. The Gauss-Bonnet theorem, apparently
first given its global formulation by Walter van Dyck [Hi, p. 141], states that if Σ is
closed—compact with no boundary—then

(1.1)
∫

Σ

K dµΣ = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ. This formula is the apogee of a first
course in differential geometry. It and its many generalizations link local geometry
and global topology.

Now suppose Σ has a boundary ∂Σ and is compact. Then there is an extra
term which appears in (1.1), the total geodesic curvature of the boundary. Suppose
C ⊂ Σ is a closed curve equipped with an orientation of its normal bundle. The
geodesic curvature κC : C → R is a generalization of the curvature of a plane curve;
it vanishes if C is a geodesic. The metric induces a measure dµC on C and

(1.2)
∫

C

κC dµC

is the total geodesic curvature of C. The generalized Gauss-Bonnet formula is
∫

Σ

K dµΣ +
∫

∂Σ

κ∂Σ dµ∂Σ = 2πχ(Σ).

The classical Chern-Simons invariant [CSi] is a generalization of the total ge-
odesic curvature (1.2). The version we need is defined on a compact oriented
3-manifold X. Like the total geodesic curvature it is an extrinsic invariant, but
now the extrinsic geometry is defined by a principal bundle with connection on X,
not by an embedding into a Riemannian manifold. The differential geometry is
quite pretty, and for the convenience of the reader we give a lightening review of
connections and the general Chern-Simons construction in the appendix. For the
exposition in the next section we use a simplified version of this classical invariant
as our emphasis is on its quantization and ultimately the very different mathematics
used to compute in the quantum theory.
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2. Path integrals

Let G = SU(n) be the Lie group of unitary n × n matrices of determinant one
for some n ≥ 2. Its Lie algebra g consists of n×n skew-Hermitian matrices of trace
zero. Fix a closed oriented 3-manifold X. A connection A on the trivial G-bundle
over X is a skew-Hermitian matrix of 1-forms with trace zero, i.e., A ∈ Ω1(X; g). In
this case the classical Chern-Simons invariant of A is given by the explicit formula

(2.1) S(A) =
1

8π2

∫
X

trace
(
A ∧ dA +

2
3

A ∧ A ∧ A
)
,

where the wedge products are combined with matrix multiplication. The integrand
in (2.1) is a 3-form, and the integral depends on the orientation of X. As men-
tioned earlier, this is a 3-dimensional analog of the 1-dimensional total geodesic
curvature (1.2); there are generalizations to higher dimensions and all Lie groups,
as explained in the appendix. Chern and Simons were particularly interested in
the Levi-Civita connection on the tangent bundle of a Riemannian manifold X,
in which case the Chern-Simons invariant is an obstruction to certain conformal
immersions. They embarked on that study to derive combinatorial formulas for the
first Pontrjagin number of a compact oriented 4-manifold, or perhaps with an eye
toward the Poincaré conjecture. Regardless, the classical Chern-Simons invariant
has found numerous applications in differential geometry, global analysis, topology,
and theoretical physics.

Edward Witten [W1] used the classical Chern-Simons invariant to derive not
an invariant of Riemannian 3-manifolds, but rather a topological invariant of 3-
manifolds. The classical approach to remove the dependence of (2.1) on the con-
nection A is to treat S(A) as defining a variational problem and to find its critical
points. That is indeed interesting: the Euler-Lagrange equation asserts that the
connection A is flat. There is not in general a unique flat connection, so there is
no particular critical value to choose as a topological invariant, though many in-
teresting topological invariants may be formed from the space of flat connections.
(They make an appearance in §6.) Witten’s approach is quantum mechanical à la
Feynman: he integrates out the variable A to obtain a topological invariant. For
each integer k, termed the level of the theory, set

(2.2) Fk(X)“=”
∫
FX

eikS(A) dA.

The integral takes place over a space of equivalence classes of connections. This
is the quotient FX of the infinite-dimensional linear space Ω1(X; g) by a nonlinear
action of the infinite-dimensional Lie group of maps X → G. The action is given
by the equation

g · A = g−1Ag + g−1dg, g : X → G, A ∈ Ω1(X; g).

The result of the integral is a complex number Fk(X).
We place quotation marks around the equality in (2.2) to indicate that the path

integral is only a heuristic: the presumptive measure dA in the notation would have
to be constructed before making sense of (2.2). Shortly I will indicate approaches
to rigorously defining topological invariants Fk(X). Let me immediately point out
a difficulty with the naive formula (2.2). If there really were a measure dA which
made that formula work, then we would conclude that Fk(X) is a topological invari-
ant of X which depends only on the orientation of X. After all, the integrand—built
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from the classical Chern-Simons invariant (2.1)—only depends on the orientation.
However, it turns out that Fk(X) depends on an additional topological structure
on X. It can variously be described as a 2-framing [A1], a rigging [Se2], or a p1-
structure [BHMV]. The dependence of the right-hand side of (2.2) on this structure
signals the difficulties in defining the integral. Physicists approach the path integral
through the process of regularization, which here can be accomplished by introduc-
ing a Riemannian metric on X. The regularization does not preserve all of the
topological symmetry (orientation-preserving diffeomorphisms) of the classical ac-
tion. One often says that the quantum theory has an anomaly. Interestingly, to
obtain a topological invariant, albeit of a manifold with a p1-structure, Witten in-
troduces a “counterterm”: the Chern-Simons invariant of the auxiliary Riemannian
metric, precisely the invariant studied by Chern and Simons. While anomalies are
well understood geometrically in many other contexts, this Chern-Simons anomaly
remains somewhat of a mystery.

The implication of the previous may well be that one should construct a mea-
sure dA on FX which depends on a p1-structure on X. As far as I know, this has
not been done.

There is an important extension of the invariant (2.2) to 3-manifolds which
contain an oriented link. (Again there is an anomaly: the normal bundle to the link
must also be framed in the quantum theory.) Suppose that χ : G → C is a character
of G. This means we represent G linearly on a finite-dimensional vector space, and
χ(g) is the trace of the matrix which represents the action of g ∈ G. Given a
connection A on X and an oriented loop C ⊂ X, we define the holonomy of A
around C by solving a first-order ordinary differential equation. The holonomy is
only defined up to conjugacy, but since the character is invariant under conjugation
we get a well-defined complex number χC(A). Given a link L = �Ci which is the
finite disjoint union of oriented curves, the formal path integral definition is

(2.3) Fk(X, L)“=”
∫
FX

eikS(A)
∏

χCi
(A) dA.

(One may choose a different character χ for each component of the link.) Witten
shows how to compute the Jones polynomial invariant [Jo1] of a link in S3 from
the invariants Fk(X, L) for G = SU(2). Indeed, that was one of his motivations
for this work. The invariants in (2.3) are a generalization of the Jones invariants to
links in arbitrary 3-manifolds. They include as well the HOMFLYPT polynomial
invariants [FYHLMO], [PT].

In another direction the Chern-Simons theory is defined for any compact Lie
group G; the level k in (2.2) is replaced by a class1 λ ∈ H4(BG; Z), where BG is
the classifying space of the Lie group G. See the appendix for the classical theory in
this generality. Note that H4(BSU(n); Z) ∼= Z and there is a canonical generator.

How can we make mathematical sense out of (2.2)? One approach might be to
attack directly the problem of constructing a measure dA. While this has worked
well in other quantum field theories, the theory at hand is in the end topological
and we might hope for a more topological approach. So instead we codify the
structure inherent in (2.2) and seek to construct examples of that structure. In
the remainder of this section we elucidate the bare formal properties of the path

1There is a nondegeneracy restriction. Namely, H4(BG; R) is naturally isomorphic to the
vector space of G-invariant symmetric bilinear forms on Lie(G), and we require that the image
of λ in this vector space be a nondegenerate form.
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integral. This leads to a set of axioms for a topological quantum field theory, which
we discuss in §3. In §4 we return to Chern-Simons theories and to their construction
for various classes of Lie groups G.

To begin, it is important to extend to compact 3-manifolds X with boundary.
In that case we replace (2.2) by

(2.4) Fk(X)(α)“=”
∫
FX (α)

eikS(A) dA,

where α is a connection on the boundary ∂X and FX(α) is the space of gauge
equivalence classes of connections on X whose boundary value is α. Thus Fk(X) is
a function on the space F∂X of gauge equivalence classes on ∂X.

We abstract the formal properties of (2.4) for a general path integral, not neces-
sarily that in Chern-Simons theory. A quantum field theory lives in a fixed dimen-
sion n, which is the dimension of the “spacetimes” in the theory. For Chern-Simons
theory n = 3 and the theory is topological, but in general we should imagine our
manifolds as having conformal structures or metrics, which we take to be Riemann-
ian. Physicists call this “Euclidean field theory”. Certainly time is not present
in this positive definite signature—it is part of special relativity encoded in the
Lorentz signature—so the use of “spacetime” in this Riemannian context should be
understood by analogy with the Lorentzian case. Now for each spacetime X, which
is an n-manifold with more structure, there is a space FX of fields and a classical
action2

S : FX −→ C.

The boundaries of spacetimes are closed (n− 1)-manifolds Y , and on these we also
imagine a space FY of fields (but no classical action). We want Y to possess an
infinitesimal normal bundle which is oriented : Y comes equipped with an arrow
of time. In the Riemannian case there is also a germ of a metric in the normal
direction, but in a topological theory the normal orientation is enough. We consider
a compact spacetime X together with a decomposition of its boundary as a disjoint
union ∂X ∼= Y0 � Y1. The arrow of time on Y0 points into X and the arrow of
time on Y1 points out of X. Thus Y0 is called the incoming part of the boundary
and Y1 the outgoing part. In topology we say X is a bordism from Y0 to Y1 and
write X : Y0 → Y1. These bordisms compose by gluing, which corresponds to the
evolution of time. (See Figure 1.)

To a spacetime X : Y0 → Y1 the “semiclassical” field theory attaches a corre-
spondence diagram

(2.5) FX

s

����
��

��
�� t

����
��

��
��

FY0 FY1

The source map s and target map t are simply restrictions of a field to the appro-
priate piece of the boundary. What is most important about the fields is locality.

2As we see from (2.2) it is only the exponentiated classical action which enters into the path
integral; indeed, in Chern-Simons theory only that exponential is well defined. Also, in Euclidean
field theory a minus sign usually appears in place of i =

√
−1 in (2.8) below, but we deliberately

use notation which follows the example of Chern-Simons.
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X X ′ X ′ ◦ X

Y0 Y1 Y2 Y0Y1 Y2

Figure 1. Gluing of bordisms

Suppose X : Y0 → Y1 and X ′ : Y1 → Y2 are composable bordisms. Then in the
diagram

(2.6) FX′◦X

r

�����������
r′

�����������

FX

s

�����������
t

����������� FX′

s′

�����������
t′

�����������

FY0 FY1 FY2

the space of fields FX′◦X on the composition is the fiber product of the maps t, s′.
Loosely speaking, a field on the glued bordism is a pair of fields on the separate
bordisms which agree along the common boundary. One should keep in mind
that fields are really infinite-dimensional stacks. In other words, fields may have
automorphisms, and these play an important role in this context. For example,
in gauge theories such as Chern-Simons theory the gauge transformations act as
morphisms of fields. Certainly automorphisms must be accounted for in the maps
and fiber product in (2.5) and (2.6). The classical action is also assumed local in
the sense that

(2.7) SX′◦X(Φ) = SX

(
r(Φ)

)
+ SX′

(
r′(Φ)

)
.

It is worth noting that whereas the locality of the classical action is additive, that
of the quantum theory is multiplicative. Crudely, quantization is a sort of expo-
nentiation, as one can see from the integrand in (2.4).

Now we come to quantization in the geometric version given by the path integral.
Assume there exist measures µX , µY on the spaces FX ,FY . Then define the Hilbert
space HY = L2(FY , µY ) and the linear map attached to a bordism X : Y0 → Y1 as
the push-pull-with-kernel eiSX :

(2.8) FX = t∗ ◦ eiSX ◦ s∗ : HY0 −→ HY1 .

The pushforward t∗ is integration. Thus if f ∈ L2(FY0 , µY0
) and g ∈ L2(FY1 , µY1

),
then

〈ḡ, FX(f)〉HY1
=

∫
Φ∈FX

g
(
t(Φ)

)
f
(
s(Φ)

)
eiSX(Φ) dµX(Φ).
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If the boundary of X is empty, then using the fact that F∅ is a point, we see that
(2.8) defines a complex number which is the path integral (2.2).

In short, the quantization (2.8) linearizes the correspondence diagram (2.5).
This push-pull-with-kernel linearization of correspondence diagrams is ubiquitous in
mathematics. The Fourier transform is the archetypal example. Let S : R×R → R

be the duality pairing S(x, ξ) = xξ and s, t : R×R → R the two projections. Then
the linearization of

R × R

s

������������
t

������������

R R

via (2.8) is the Fourier transform; the pushforward t∗ is integration with respect to
suitably normalized Lebesgue measure.

The most important property of the path integral is multiplicativity under gluing.
It asserts that for a composition X ′ ◦ X of bordisms as in (2.6) we have

FX′◦X = FX′ ◦ FX : HY0 −→ HY2 .

This is a formal consequence of the fiber product in (2.6) and the additivity (2.7)
if we assume an appropriate gluing law for the measures. As mentioned earlier,
Chern-Simons can be defined for any compact Lie group G. If G is a finite group,
then the pushforward t∗ in (2.8) is a finite sum and the heuristics in this section can
be carried out rigorously [FQ]. Also, for a finite group there are no p1-structures
required and the quantum Chern-Simons theory is defined for oriented manifolds.

Finally, we remark that once quantum Chern-Simons theory is defined for 3-
manifolds with boundary, then invariants of links are included. Let V be the
Hilbert space attached to the standard torus S1 × S1. In Chern-Simons theory it
is finite-dimensional, so we can fix a basis e1, e2, . . . , eN . Suppose X is an oriented
3-manifold which contains an oriented link L = �Ci and that the normal bundle to
each knot Ci is framed. Let X ′ be the compact 3-manifold with boundary obtained
from X by removing a tubular neighborhood of L. The orientation and normal
framing identifies each boundary component of X ′ with the standard torus. This
identification is defined up to isotopy, and the topological invariance of Chern-
Simons theory implies that this is enough to define an isomorphism of the Hilbert
space of ∂X ′ with ⊗iV . View ∂X ′ as incoming. Then FX′ : ⊗i V → C. Suppose
each component Ci of L is labeled by a basis vector ei. Define

Fk(X, L) = Fk(X ′)(⊗iei).

The constructions of Chern-Simons theory as a 1-2-3 theory produce a canonical
basis of V and assign a basis element to the characters χ which appear in (2.3).

3. Axiomatization and 2-dimensional theories

Atiyah [A2] introduced a set of axioms for a topological quantum field theory
(TQFT) which is patterned after Segal’s axiomatic treatment [Se2] of conformal
field theory. Quinn [Q] gave a more elaborate treatment with many elementary
examples. In recent years the concept of a TQFT has broadened and the definition
has evolved. The most functorial modern definition of a topological quantum field
theory (TQFT) makes evident both the analogy with homology theory and the
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formal properties of the path integral outlined in §2. Recall that homology is a
functor

H : (Top,�) −→ (Ab,⊕)
from the category of topological spaces and continuous maps to the category of
abelian groups and homomorphisms. Both Top and Ab are symmetric monoidal
categories : the tensor product on Top is disjoint union � and on Ab is direct
sum ⊕. The functor H is a symmetric monoidal functor: homology is additive under
disjoint union. The codomain tensor category may be replaced by, for example, the
category V ect

F
of vector spaces over a field F where the monoidal structure is direct

sum of vector spaces. We remark that a full list of axioms for homology includes
the Mayer-Vietoris property.

In a TQFT the category of topological spaces is replaced by a bordism category
of manifolds of fixed dimension. As discussed in §2, to compose bordisms we need
an “arrow of time”, which we term a collaring. Thus a collar of a closed manifold Y
is an embedding Y ↪→ Ŷ into a manifold Ŷ which is diffeomorphic to (−ε, ε) × Y

together with an orientation of the normal bundle of Y ⊂ Ŷ . If Y is a collared
manifold, then the opposite collared manifold −Y is the same embedding Y ⊂ Ŷ
with the reversed orientation on the normal bundle. The boundary of a manifold X
has a collar [Hi, §4.6]; the arrow of time points out of X. Let BordO

n denote the
category whose objects are compact collared (n − 1)-manifolds Y . A morphism
Y0 → Y1 is a compact n-manifold X with a decomposition of its boundary ∂X =
(∂X)in � (∂X)out and collar-preserving diffeomorphisms −Y0 → (∂X)in and Y1 →
(∂X)out. Bordisms X, X ′ define the same morphism if there exists a diffeomorphism
X → X ′ which commutes with the other data. Composition is gluing of bordisms.
Precise definitions are given in [GMWT], for example. The disjoint union � of
manifolds endows BordO

n with a monoidal structure.

Definition 3.1. An n-dimensional topological quantum field theory F is a sym-
metric monoidal functor

F : (BordO
n ,�) −→ (Ab,⊗).

Note that the tensor structure on abelian groups is tensor product : TQFT is
multiplicative, whereas homology is additive. As with homology we can contem-
plate other codomains, for example replacing (Ab,⊗) with (V ectF,⊗) or (R-mod,⊗)
for some commutative ring R. See Remark 3.6 below for a slightly more sophisti-
cated replacement. One can go all the way and simply declare that the codomain
is an arbitrary symmetric monoidal category, as in Theorem 3.12 below. The do-
main (BordO

n ,�) may be replaced by another bordism category: oriented bordism
(BordSO,�), spin bordism (BordSpin,�), framed bordism (Bordfr,�), etc.

The empty set is a manifold of any dimension; the empty manifold of dimen-
sion n − 1 is a unit in (BordO

n ,�). It follows that F (∅) = Z for any TQFT F . A
closed oriented manifold X of dimension n is a morphism X : ∅ → ∅ from which
F (X) ∈ Z. An n-dimensional TQFT therefore assigns to closed manifolds algebraic
objects as follows:

(3.2)

closed manifold
of dim

F (·)

n element of Z

n − 1 Z-module
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We consider now oriented TQFTs: the domain category is BordSO
n . An object Y

is a closed oriented (n − 1)-manifold with a collar Y ↪→ Ŷ , and this induces an
orientation on the n-manifold Ŷ . The opposite manifold −Y has the opposite
orientation and the opposite collar. The structure of a 1-dimensional oriented
TQFT is quite simple. Let F (pt±) = A± be the abelian groups assigned to a point
with orientation. There is a unique closed oriented interval, up to diffeomorphism,
but it defines four distinct morphisms in BordSO

1 :

(3.3)

B = F ( ) : A+ ⊗ A− −→ Z,

B∨ = F ( ) : Z −→ A− ⊗ A+,

F ( ) : A+ −→ A+,

F ( ) : A− −→ A−.

We read the pictures from left to right: the left boundary is incoming and the
right boundary outgoing. It is easy to prove that the last two morphisms are
idempotents. Assume they are identity maps; if necessary replace A± with the
images of the idempotents. Then an easy gluing argument proves that

(3.4)
A+

id×B∨
−−−−−→ A+ ⊗ A− ⊗ A+

B×id−−−→ A+,

A−
B∨×id−−−−→ A− ⊗ A+ ⊗ A−

id×B−−−−→ A−

are identity maps. It follows that (i) A± are free and finitely generated; (ii) B de-
termines an isomorphism A− ∼= Hom(A+, Z); and (iii) F (S1) = rank A+. These
arguments persist in an n-dimensional theory: take the Cartesian product with a
fixed (n − 1)-manifold Y .

Proposition 3.5. Let F be a TQFT defined on BordSO
n . Then for any closed

oriented (n − 1)-manifold Y, the abelian group F (Y ) is free and finitely generated,
there is a duality between F (Y ) and F (−Y ), and F (S1 × Y ) = rankF (Y ).

Remark 3.6. Proposition 3.5 already indicates the restrictive nature of Defini-
tion 3.1: the abelian groups F (Y ) are free. To construct a theory which includes
torsion, we can replace the target tensor category (Ab,⊗) with the tensor category
(dg-Ab,⊗) of differential graded abelian groups; we take the differential to have
degree 1. The symmetry in (dg-Ab,⊗) uses the Koszul sign rule. Then there is a
1-dimensional theory with

(3.7)
A+ : · · · −→ 0 −→ Z

n−−→ Z −→ 0 −→ 0 −→ · · · ,

A− : · · · −→ 0 −→ 0 −→ Z
n−−→ Z −→ 0 −→ · · · ,

where the nonzero homogeneous groups in A+ are in degrees −1, 0 and in A− in
degrees 0, +1. Let e−1, e0 and f0, f1 be the obvious basis elements in (3.7). Set
B(e0, f0) = B(e−1, f1) = 1 and B∨(1) = f1 ⊗ e−1 + f0 ⊗ e0. It is instructive to
check (3.4) and compute F (S1) = 0. The complex A+ is a resolution of Z/nZ: in
this sense F (pt+) is torsion.

There is a richer, but still simple, structure for n = 2. Recall that a Frobenius
ring is a unital ring A equipped with a homomorphism θ : A → Z which satisfies
θ(xy) = θ(yx) for all x, y ∈ A, and the pairing x, y �→ θ(xy) is nondegenerate.
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Theorem 3.8. A 2-dimensional TQFT F determines a finitely generated com-
mutative Frobenius ring A = F (S1). Conversely, a finitely generated commutative
Frobenius ring A determines a 2-dimensional TQFT F with F (S1) = A.

The statement of Theorem 3.8 can be found in many references, e.g., Dijk-
graaf’s thesis [D]. A precise proof is given in [Ab]; see also [MS, §A.1]. A stronger
statement—an equivalence of categories of 2-dimensional TQFTs and finitely gen-
erated commutative Frobenius rings—is proved in [K]. We exhibit this theorem as
the paradigmatic generators-and-relations construction of a TQFT. The generators
are the unit, trace, multiplication, and comultiplication, which give

F ( ), F ( ), F ( ), F ( ),

respectively. The commutativity and associativity relations assure that when any
bordism X is decomposed as a composition of these basic bordisms and F (X) is
defined as a composition of the generating data, then F (X) is independent of the
decomposition.

The notion of a TQFT, and the generators-and-relations Theorem 3.8, can be
extended in various directions. We can, for example, ask for invariants of fami-
lies of manifolds in addition to single manifolds. To see what this entails, sup-
pose F : (BordSO

n ,�) → (V ectC,⊗) is an n-dimensional TQFT. Let Y → S be
a fiber bundle with fiber a closed oriented (n − 1)-manifold. Then the vector
spaces F (Ys) attached to fibers Ys fit together into a flat vector bundle which
we denote F (Y/S) → S. Local trivializations and the flat structure are derived
from parallel transport: if γ : [0, 1] → S is a smooth path from s0 to s1, then
γ−1Y : Ys0 → Ys1 is a bordism and F (γ−1Y) : F (Ys0) → F (Ys1) is defined to be par-
allel transport. Topological invariance shows that it is invariant under homotopies
of γ. If X → S is a family of bordisms from Y0 → S to Y1 → S, then applying F
we obtain

F (X/S) ∈ H0
(
S; Hom

(
F (Y0/S), F (Y1, S)

))
:

the topological invariance implies that F (X/S) is a flat section. It is natural, then,
to extend F to a Z-graded functor F̃ which assigns a cohomology class

F̃ (X/S) ∈ H•(S; Hom
(
F (Y0/S), F (Y1, S)

))

to a family X → S. In addition to the functoriality under composition of mor-
phisms, we require naturality under base change. This notion appears for n = 2
in [KM] where the invariants are extended to nodal (better: Deligne-Mumford sta-
ble) Riemann surfaces as well. Gromov-Witten invariants are an example of such a
functor. There is a large literature on this subject: see [T] for a recent result about
the structure of 2-dimensional theories in families.

In another direction we can ask that an n-dimensional TQFT extend to manifolds
of lower dimension or higher codimension. This idea dates from the early 1990s,
when such theories were sometimes termed “extended TQFTs” [L], [F1]. They also
go by the appellation “multi-tier theories” [Se1]. For n = 2, a 3-tier theory is as
far as we can go: it assigns invariants to points. We prefer to call this a “0-1-2
theory”. Whatever the moniker, a 3-tier n-dimensional theory attaches a category
to a manifold of codimension 2 (dimension n − 2). If we work over a ring R, then
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the table (3.2) is extended to the following:

(3.9)

closed manifold
of dim

F (·)

n element of R

n − 1 R-module

n − 2 R-linear category

(The morphism sets in an R-linear category are R-modules and composition is an
R-linear map.) The entire structure is 2-categorical: the domain is a 2-category
whose objects are closed (n−2)-manifolds, 1-morphisms are (n−1)-manifolds, and
2-morphisms are n-manifolds. Families of manifolds may also be incorporated using
a topological version of a 2-category. One possibility is an infinity 2-category, which
is a simplicial set with extra structure. An infinity 1-category, also called a weak
Kan complex or quasicategory [BV], [Joy], [Lu], may be used to encode an ordinary
TQFT for families of manifolds. Other models, such as Segal’s Γ-spaces, may be
more convenient. The codomain can be an arbitrary symmetric monoidal infinity
1- or infinity 2-category.

Remark 3.10. The discussion of ordinary 0-1 TQFTs surrounding (3.3) may be
restated in these terms: a TQFT F : (BordSO,�) → C with codomain a symmetric
monoidal category C is determined up to isomorphism by a dualizable object A ∈ C.
Then F (pt+) = A and the rest of the theory is determined by specifying the duality
data. For C = (Ab,⊗) the dualizable objects are finitely generated free abelian
groups.

Remark 3.11. One can also enrich homology theory to include categories analo-
gously to chart (3.9). But there is a very important difference with quantum field
theory. The categories which occur in this way in homology theory are groupoids—
all morphisms are invertible. In quantum field theories the more general notion of
duality replaces invertibility.

The structure of 0-1-2 theories, sometimes only partially defined, has recently
been elucidated by Costello [C], Moore-Segal [MS], and others. Building on this
work, Hopkins and Lurie prove a generators-and-relations theorem for 0-1-2 theo-
ries, in essence giving generators and relations for the infinity 2-category of 0-, 1-,
and 2-manifolds. (They also give an analogous result for 0-1 theories.) The simplest
result to state is for framed manifolds and was conjectured by Baez-Dolan [BD]:
the infinity 2-category of 0-, 1-, and 2-manifolds with framing3 is freely generated
by a single generator, a framed point. The precise statement is in terms of functors
to an arbitrary codomain.

Theorem 3.12 (Hopkins-Lurie). Let C be a symmetric monoidal infinity 2-category.
Then the space of 0-1-2 theories of framed manifolds with values in C is homotopy
equivalent to the space Cfd of fully dualizable objects in C.

The notion of a fully dualizable object in a symmetric monoidal n-category gen-
eralizes that of a dualizable object in a symmetric monoidal 1-category. The state-
ment for a 0-1-2 theory is simpler than for a 1-2 theory (Theorem 3.8): there is now

3Precisely, the framing is a trivialization of the tangent bundle made 2-dimensional by adding
a trivial bundle. For example, the framing of a point is a choice of basis of R2.
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a single generator and no relation. There is an explicit map which attaches to a field
theory F the fully dualizable object F (pt+), and this is proved to be a homotopy
equivalence. One powerful feature of the theorem is its “infinity aspect”: it applies
to families and so contains information about the diffeomorphism groups. The most
important immediate application of this theorem is to string topology [CS]; it im-
plies that string topology produces homotopy invariants of manifolds. (Invariants
from string topology which go beyond the homotopy type are thought to exist if
one extends to nodal surfaces [Su].)

There is a generalization of Theorem 3.12 to other bordism categories. The
orthogonal group O2 acts on the infinity 2-category of framed 0-, 1-, and 2-manifolds
by rotating and reflecting the framing. Therefore, by Theorem 3.12, O2 also acts
on Cfd.

Theorem 3.13. Let G → O2 be a homomorphism. Then the space of 0-1-2 theories
of G-manifolds with values in C is homotopy equivalent to the space of homotopy
G-fixed points in Cfd.

A 0-1-2 theory goes all the way down to points, so it is as local as possible.
This explains why the structure of 0-1-2 theories is ultimately simpler than that
of 1-2 theories. The principle that theories down to points are simpler inspires
the program of Stolz-Teichner [ST], which aspires to construct a quantum field
theory model of the generalized cohomology theory known as tmf [Ho], which is
closely related to elliptic cohomology theories. These 3-tier theories also occur in
two-dimensional conformal field theory: a category of “D-branes” is attached to a
point in those theories.

Lurie has a detailed plan of proof for the conjectural generalization of Theo-
rem 3.12 to higher dimensions.

Added in Proof. A forthcoming manuscript by Jacob Lurie gives precise defi-
nitions, examples, and an outline of the proof of Conjecture 3.14, now called the
“cobordism hypothesis”.

Conjecture 3.14 (Baez-Dolan-Lurie). Let C be a symmetric monoidal infinity n-
category. Then the space of 0-1-· · · -n theories of framed manifolds with values in C

is homotopy equivalent to the space Cfd of fully dualizable objects in C.

The obvious generalization of Theorem 3.13 is also conjectured to hold. The
most local generators-and-relations constructions of 3-dimensional Chern-Simons
theory will rely on Conjecture 3.14.

4. 3-dimensional TQFT

We do not know a structure theorem for 2-3 theories à la Theorem 3.8. Following
the principle that a 3-tier theory is more local than a 2-tier theory, and hence
simpler, there is a structure theorem for 1-2-3 theories. It is proved for theories
defined4 over C: the truncated 2-3 theory maps into (V ectC,⊗). An early version
of this result is contained in an influential manuscript of Kevin Walker [Wa], which
builds on earlier work of Moore and Seiberg [MSi]; there was also work of Kazhdan-
Reshetikhin along these lines, and probably work of others as well. A definitive
version is in the book of Turaev [Tu], expanding on Reshetikhin-Turaev [RT].

4Work-in-progress by Davidovich, Hagge, and Wang aims to prove that any 1-2-3 theory over C

may be defined over a number field.
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Theorem 4.1. A 1-2-3 theory F determines a modular tensor category C = F (S1).
Conversely, a modular tensor category C determines a 1-2-3 theory F with F (S1) =
C.

Loosely, a modular tensor category is the categorification of a commutative
Frobenius algebra. More precisely, it is a braided monoidal category with duals
and a ribbon structure. The category is required to be semisimple and there is a
nondegeneracy condition as well. See [Tu] or [BK] for details. Theorem 4.1 is again
a generators-and-relations construction: the monoidal structure tells F ( ),
the braiding tells F applied to the diffeomorphism of which exchanges the
two incoming boundary components by a half-turn, the duality tells F applied
to reflection on the circle, and the ribbon structure is related to the generator of
π1(Diff+ S1) ∼= π1(SO2) ∼= Z. The statement of Theorem 4.1 is incomplete: we
have not told on which bordism category these theories are defined. In fact, the
1-, 2-, and 3-manifolds in the domain of F carry not only an orientation but also a
p1-structure. Together the orientation and p1-structure are almost a framing, but
we do not trivialize w2.5

The prime example and main object of interest for us is Chern-Simons theory,
which was introduced heuristically in §2. Recall that the data which defines the
classical Chern-Simons invariant is a compact Lie group G and a class λ ∈ H4(BG)
termed the level. For G a finite group the path integral construction of a 2-3 theory
is rigorous [DW], [FQ] as the integral in this case is a finite sum. The path inte-
gral was extended to higher codimensions in [F2] to construct a 1-2-3 theory for
G finite. In fact, the discussion in that work extends all the way down to points,
i.e., to a 0-1-2-3 theory, as we review presently. These are a priori constructions
of the Chern-Simons TQFT for finite gauge groups. For continuous gauge groups
the only known constructions are with generators and relations using Theorem 4.1.
The modular tensor category C = C(G, λ) should be the category of positive energy
representations of the loop group at level λ with the fusion product, but I do not
believe any detailed construction along these lines has been carried out. The main
theorem in [FHT1] indicates that it should also be a categorification of the twisted
equivariant K-theory of G (with G action by conjugation and the twist derived
from λ), but this too has not been carried out. Rather, rigorous constructions—
going back to Reshetikhin and Turaev [RT]—for G simply connected and simple
take as starting point the quantum group associated to the complexified Lie algebra
of G at a root of unity determined by λ. In particular, this gives a rigorous con-
struction of the SU(n)-quantum invariants Fk(X) introduced heuristically via the
path integral in (2.4). There is a separate line of development based on operator
algebras; see the paper of Jones [Jo2] in this volume for an account. The theories for
G a torus are quite interesting and have been classified by Belov-Moore [BM]. The
corresponding modular tensor categories are special—every simple object is invert-
ible. The relation between these modular tensor categories and toral Chern-Simons
theory is explored in [Sti]. The classical toral theories are specified by a finitely
generated lattice with an even integer-valued bilinear form, whereas the quantum
theories only remember a quadratic form on a finite abelian group extracted from
the classical data. Thus the map from classical theories to quantum theories is
many-to-one.

5There are generalizations of Chern-Simons theory defined on framed manifolds [J], and it will
be interesting to have a structure theorem analogous to Theorem 4.1 for such 1-2-3 theories.
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Remark 4.2. A modular tensor category is semisimple. As we saw in Remark 3.6
we need to alter the codomain to escape semisimplicity, even in a 2-tier theory.
The 3-dimensional Rozansky-Witten theory [RW], [Ro], which takes as starting
data a complex symplectic manifold, is not semisimple so does not fall under The-
orem 4.1. Ongoing work of Kapustin-Rozansky-Saulina investigates the extension
of Rozansky-Witten theory to a 0-1-2-3 theory.

A longstanding open question follows: Extend Chern-Simons theory down to
points. In other words: Construct a 0-1-2-3 theory whose 1-2-3 truncation is Chern-
Simons theory for given (G, λ). A glance at the charts (3.2) and (3.9) indicate the
deep categorical waters ahead: a 4-tier n-dimensional TQFT makes the following
assignments:

closed manifold
of dim

F (·) category number

n element of R −1

n − 1 R-module 0

n − 2 R-linear category 1

n − 3 R-linear 2-category 2

We attach a category number to each object in the chart: an n category has category
number n, a set has category number 0, and an element in a set has category
number −1.6 It is a feature of many parts of geometry over the past 25 years that
the category number of objects and theorems has increased. Whereas theorems
about equivalence classes—sets—used to be sufficient, new questions demand that
automorphisms be accounted for: whence categories. This trend has affected—some
would say infected—parts of quantum field theory as well. In our current context it
appears that a 0-1-2-3 TQFT attaches a dualizable object in a symmetric monoidal
3-category to an oriented point.

Fortunately, it may be possible to extend Chern-Simons down to points using
only ordinary 1-categories. As motivation, one categorical level down we observe
that a ring R determines a 1-category, the category of R-modules. Similarly, a
monoidal 1-category R determines a 2-category of its modules. We can hope that
in a given 0-1-2-3 theory F , such as Chern-Simons theory, the 2-category F (pt+) is
the category of R-modules for a monoidal 1-category R. We further speculate that
if so, then F (S1) is the Drinfeld center Z(R) of R.7 The Drinfeld center of any
monoidal category is braided, and in favorable circumstances [Mu] it is a modular
tensor category. As evidence in favor of these hypotheses in the case of Chern-
Simons theory, we exhibit R in case the gauge group G is finite and show that the
modular tensor category F(G,λ)(S1) is its Drinfeld center.

To begin we recall the precise definition of the center.

6I once joked that every mathematician also has a category number, defined as the largest
integer n such that (s)he can think hard about n-categories for a half-hour without contracting a
migraine. When I first said that my own category number was one, and in the intervening years
it has remained steadfastly constant, whereas that of many around me has climbed precipitously,
if not suspiciously.

7One can prove with reasonable hypotheses that F (S1) is the Hochschild homology of R; the
center is the Hochschild cohomology, and in favorable cases these may be identified.
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Definition 4.3. Let R be a monoidal category. Its Drinfeld center Z(R) is the
category whose objects are pairs (X, ε) consisting of an object X in R and a natural
transformation ε(−) : X ⊗ − → − ⊗ X. The transformation ε is compatible with
the monoidal structure in that for all objects Y, Z in R we require

ε(Y ⊗ Z) =
(
idY ⊗ε(Z)

)
◦

(
ε(Y ) ⊗ idZ

)
.

This notion of center was introduced by Joyal-Street [JS]. A recent paper by
Ben-Zvi, Francis, and Nadler [BFN] extends this notion of a center to a much
broader context and contains discussions pertinent to this paper.

We explicate (ii). Suppose G is a finite group and λ ∈ H4(BG) a level. There is
an a priori “path integral” construction of the associated quantum Chern-Simons
theory F(G,λ) in [F2] which starts with the classical Chern-Simons invariant for a
finite group. The fields in this theory are principal G-bundles which, since G is
finite, are covering spaces with Galois group G. Over the circle the groupoid of
principal G-bundles is equivalent to the groupoid G//G of G acting on itself by
conjugation. The level λ, through classical Chern-Simons theory, produces a central
extension of this groupoid: for every pair of elements x, y ∈ G a hermitian line Lx,y,
for every triple of elements x, y, z ∈ G an isomorphism

(4.4) Lyxy−1,z ⊗ Lx,y −→ Lx,zy

and a consistency condition on the isomorphisms (4.4) for quartets of elements.
Then F(G,λ)(S1) is the category of L-twisted G-equivariant vector bundles over G.
We remark that this is a concrete model for twisted K-theory, where the twisting
is defined by L. (The relation of Chern-Simons theory to twisted K-theory is
discussed in §5.) The monoidal structure is convolution, or pushforward under
multiplication. We now exhibit this monoidal category as the center of a monoidal
tensor category R(G,λ).

First, view H4(BG) as H2(BG; CP
∞) and so λ as representing a central exten-

sion of G by the abelian group-like (Picard) category of hermitian lines. A cocycle8

which represents λ is then a hermitian line Kx,y for every pair of elements x, y ∈ G,
cocycle isomorphisms

Kx,y ⊗ Kxy,z −→ Kx,yz ⊗ Ky,z

for triples of elements x, y, z ∈ G, and a consistency condition on these isomor-
phisms for quartets of elements in G. This is a categorified version of the usual
cocycle for a central extension of a discrete group by the circle group. We normal-
ize K1,x = Kx,1 = C for all x ∈ G. Let R(G,λ) be the category of complex vector
bundles on G, or equivalently the category of G-graded complex vector spaces. If
W = {Wx}x∈G and W ′ = {W ′

y}y∈G are objects of R(G,λ), set

(W ⊗ W ′)z =
⊕
xy=z

Kx,y ⊗ Wx ⊗ W ′
y.

This monoidal structure on R(G,λ) is a twisted convolution, and so R(G,λ) is a
twisted group algebra of G with coefficients in the category of complex vector
spaces. The dual W ∗ of an object W is defined as

(W ∗)x = K∗
x,x−1 ⊗ (Wx−1)∗.

8The construction, and so the theory, depends on the choice of cocycle up to noncanonical
isomorphism. In the notation “λ” should be understood to include the choice of cocycle.
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Then it is straightforward to check from Definition 4.3 that an object in the cen-
ter Z(R(G,λ)) of R(G,λ) is a vector bundle W → G together with isomorphisms

(4.5) Lx,y ⊗ Wx −→ Wyxy−1 ,

where

(4.6) Lx,y := K∗
yxy−1,y ⊗ Ky,x .

Then (4.4) follows from (4.6), and (4.5) satisfies a consistency condition compatible
with (4.4). This gives rise to a functor

(4.7) Z(R(G,λ)) −→ F(G,λ)(S1) ,

and it is not hard to check that (4.7) is an equivalence of braided monoidal cate-
gories, in fact of modular tensor categories.

Remark 4.8. This construction appears in [F2]—see especially (9.16) therein—
though not in this language. The arguments in that reference make clear that
F(G,λ) extends to a 0-1-2-3 theory with F(G,λ)(pt+) = R(G,λ) -mod.

Remark 4.9. The modular tensor category F(G,λ)(S1) is the category of represen-
tations of a Hopf algebra which is the Drinfeld double of a group algebra C[G, λ].
The equivalence (4.7) is a categorified version: F(G,λ)(S1) is the Drinfeld center of
the twisted group algebra R(G,λ) of G with coefficients in V ectC.

Remark 4.10. A variant of this construction works when G is a torus group [FHLT].
Also, a different approach to Chern-Simons for a point using conformal nets is being
developed by Bartels-Douglas-Henriques.

5. Dimensional reduction and integrality

A quantum field theory in n dimensions gives rise to theories in a lower dimen-
sion through a process known as dimensional reduction. In classical field theory
as practiced by physicists, fields in an n-dimensional theory are functions on n-
dimensional Minkowski spacetime Mn. The entire theory is invariant under the
Poincaré group Pn, which acts on Mn by affine transformations. Dimensional re-
duction in this context [DF, §2.11] is carried out by restricting the theory to fields
which are invariant under a k-dimensional vector space T of translations. Such
fields drop to the quotient affine space Mn/T , which may be identified as Mn−k.
The dimensionally reduced theory is invariant under the Poincaré group Pn−k. But
there is an additional symmetry: the rotation group SO(k) of the space T . In other
words, the dimensional reduction of a theory has extra symmetry. In this section
we explain a conjectural analog for topological quantum field theories.

Dimensional reduction may be carried out in quantum field theory as well. In the
axiomatic framework this is easy, and for convenience we restrict to the dimensional
reduction of a 3-dimensional TQFT F to a 2-dimensional TQFT F ′. The definition
is quite simple: for any manifold M set

F ′(M) = F (S1 × M).

It is easy to check that this defines a 2-dimensional theory F ′. Suppose F is a
theory defined over the complex numbers; that is true for Chern-Simons theory,
which is our main example.

Observation. For a closed 2-manifold Y the complex number F ′(Y ) is an integer.
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This follows easily as F ′(Y ) = F (S1 × Y ) = dimF (Y ) is the dimension of a
complex vector space, hence is a nonnegative integer.9 We record this in a chart:

(5.1)

closed manifold
of dim

F (·) F ′(·)

3 element of C

2 C-vector space element of Z

1 C-linear category Z-module

The last entry in the lower right-hand corner is speculative, as we do not know
that the complex vector space F (S1 × S1) can be refined to an abelian group.
Nonetheless, we make the following

Conjecture 5.2. The dimensional reduction F ′ is defined over Z.

In other words, there is a functor from a bordism category to (Ab,⊗) whose
composition with the functor −⊗

Z
C : (Ab,⊗) → (V ect

C
,⊗) is F ′.

To formulate Conjecture 5.2 precisely requires that we specify the precise nature
of the linear category attached to a 1-manifold by the 1-2-3 theory F . We will not
attempt that here, but report that with appropriate “smallness” hypotheses one
can show that F (S1×S1) is the Hochschild homology of the linear category F (S1).
Therefore, we seek an abelian group A which refines the Hochschild homology in
the sense that the latter is naturally A ⊗

Z
C. This immediately brings to mind

K-theory. Fortuitously, a similar integrality is required in noncommutative Hodge
theory [KKP, §2.2.6]. There is a well-formulated plan, due to Bondal and Toën,
to define the appropriate K-theory of appropriate dg-categories, based on work of
Toën-Vaquie [TV] and the semitopological K-theory of Friedlander-Walker [FW].10

Now that K-theory is on the table, we may be bolder and ask that F ′ map
into the world of stable homotopy theory, which is a natural home for K-theory.
In that world the integers are replaced by the sphere spectrum S, so at first we
can replace “Z” in the last column of (5.1) with “S”. Modules over the sphere
spectrum are spectra—just as modules over the integers are abelian groups—so we
would have a TQFT with values in spectra. A more refined conjecture is that we
can define F ′ to have values in K-modules, where “K” denotes K-theory, an E∞

ring spectrum. In other words, we refine Conjecture 5.2 to

Conjecture 5.3. The dimensional reduction F ′ is defined over K.

We remark that spectra have appeared in the context of Floer homology [CJS],
[M], and most likely this fits into TQFT and Conjecture 5.3. Also, this refined
conjecture is made in the noncommutative Hodge theory. Finally, one would nat-
urally extend these speculations to propose a 0-1-2 theory F ′ over K. This seems
quite mysterious, however, even in the explicit example of Chern-Simons for a finite
group.

While these speculations are rather abstract, there is a theorem which provides
some support. Looked at the other way, these speculations provide a context for
the theorem, and indeed closely related considerations motivated it in the first

9We can consider theories in which the complex vector spaces are Z/2Z-graded. In that case
we would not have nonnegativity of F ′(Y ).

10In fact, this K-theory group would refine the periodic cyclic homology, not the Hochschild
homology, but these are closely related.
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place [F4]. Namely, consider the case of Chern-Simons theory F for a compact Lie
group G and level λ ∈ H4(BG; Z). Denote the reduction to a 2-dimensional theory
by F ′. Then Conjecture 5.3 suggests that F ′(S1) is a K-theory group and can even
be refined to a spectrum which is a K-module. Sticking for the moment to abelian
groups, notice from Theorem 3.8 that F ′(S1) is a Frobenius ring. In this context
physicists call this the Verlinde ring, which first appeared in rational conformal
field theory [V]. Let us denote it as R(G, λ).

Theorem 5.4 (Freed-Hopkins-Teleman). There is a natural isomorphism

(5.5) Φ: R(G, λ) −→ K
τ(λ)
G (G).

The right-hand side is the twisted equivariant K-theory of the Lie group G,
where G acts on itself by conjugation. The twisting τ (λ) is transgressed from λ
and then shifted by a constant twisting.11 See [FHT1] for a detailed development
and proof.

Remark 5.6. In Theorem 5.4 the left-hand side R(G, λ) is defined to be the free
abelian group generated by positive energy representations of the loop group of G
at a fixed level; the product is the fusion product. This fits the Chern-Simons
story if we construct the modular tensor category F (S1) as the category of these
representations. The theorem itself lies at the intersection of representation theory
and algebraic topology.

Remark 5.7. While the statement of Theorem 5.4 was motivated by this physics,
the explicit map Φ was not. (There is other, closely related, physics which could
serve as motivation: the supersymmetric WZW model [Mi].) The explicit formula
for Φ justifies its name: the Dirac family associated to a representation of the loop
group. There is an analog for representations of the finite-dimensional group G.
These Dirac families should find more applications in representation theory.

Remark 5.8. There is a refinement over K in this case: one can make a K-module
whose nontrivial homotopy group is K

τ(λ)
G (G).

Remark 5.9. While the 3-dimensional Chern-Simons theory F is defined on a bor-
dism category of oriented manifolds with p1-structure, the 2-dimensional reduc-
tion F ′ factors to a theory of oriented manifolds: no p1-structures.

The known rigorous constructions of the 3-dimensional Chern-Simons theory F
use generators and relations—for the 1-2-3 theory as encoded in a modular tensor
category (Theorem 4.1) and for the 0-1-2-3 theory at least conjecturally in some
cases (Conjecture 3.14, Remark 4.10). One attractive feature of the 2-dimensional
reduction F ′ is that it has an a priori construction [FHT2] which follows the path
integral heuristic discussed in §2. Recall that if Y : S0 → S1 is a 2-dimensional
bordism, then the path integral linearizes the correspondence diagram

FY

s

���������� t

�������
���

FS0 FS1 ,

t∗ ◦ eiSY ◦ s∗ : L2(FS0) −→ L2(FS1).

Here F is the infinite-dimensional stack of G-connections. The definition of the
L2-spaces and the pushforward t∗ relies on measures which are consistent under

11This is the well-known shift k → k + n in the SU(n)-theories.
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gluing (and which do not usually exist, which is why this is a heuristic). Our a
priori construction replaces this path integral by a topological version:

MY

s

�����
��

��
��

t

����
��

��
��

�

MS0 MS1 ,

t∗ ◦ s∗ : K(MS0) −→ K(MS1).

In this topological diagram the infinite-dimensional stack F of G-connections has
been replaced by the finite-dimensional stack M of flat G-connections. The clas-
sical action S vanishes. Also, the Hilbert spaces of L2-functions are replaced by
the abelian K-theory groups. The push-pull linearization is pure topology: the
pullback s∗ is functorially defined and the pushforward t∗ depends on consistent
K-theory orientations of the maps t. The consistency conditions refer to gluing
of bordisms as expressed in diagram (2.6), but with the moduli stacks M of flat
G-connections replacing the stacks F of all G-connections. It is important that
flat G-connections are local in the sense that MX′◦X is a fiber product, just as
FX′◦X is. This topological linearization of a correspondence diagram brings us full
circle back to classical topology, though here we use K-theory in place of ordinary
cohomology.

The moduli stack MS1 of (flat) G-connections on the circle is equivalent to the
global quotient G//G of G acting on itself by conjugation. Therefore, K(MS1) ∼=
K(G//G) ∼= KG(G). A consistent orientation includes a twisting of this K-theory
group, and in fact it is the group which occurs on the right-hand side of (5.5). This
construction induces a Frobenius ring structure on this twisted equivariant K-
theory group: the product is analogous to the Pontrjagin product on the homology
of a topological group.

Remark 5.10. In [FHT2] we prove that consistent orientations exist and are induced
from a certain “universal orientation”. The group of universal orientations maps to
the group of levels, which is H4(BG; Z), but in general that map is neither injective
nor surjective. (It is a bijection for connected and simply connected groups such
as SU(n).) As the 2-dimensional reduction of Chern-Simons theory depends on a
universal orientation, we can ask whether that is true of the whole 3-dimensional
Chern-Simons theory, which is usually thought to depend only on the level.

Remark 5.11. We emphasize the analogy between measures and orientations. In
our formal picture of the path integral, measures enable analytic integration. In
this topological construction, orientations enable topological integration.

6. Summary and broader perspectives

The current state of affairs for constructions of quantum Chern-Simons theories
is as follows.

• There is a generators-and-relations construction of the 1-2-3 theory via
modular tensor categories for many classes of compact Lie groups G. These
include finite groups, tori, and simply connected groups, the latter via
quantum groups or operator algebras (§4).

• There are new generators-and-relations constructions—at this stage still
conjectural—of the 0-1-2-3 theory for certain groups, including finite groups
and tori (§4).
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• There is an a priori construction of the 0-1-2-3 theory for a finite group
(§4).

• There is an a priori construction of the dimensionally reduced 1-2 theory
for all compact Lie groups G (§5).

In many ways this represents a strong understanding of this particular 3-dimensional
topological field theory. It is a small part of the successes mathematicians have
achieved in understanding QFT-strings over the past 25 years. On the credit side
too are the general structure theorems for topological field theories recounted in §3
and §4. All of this may be viewed as a triumph of the axiomatization of path inte-
grals, which was motivated in §2 and carried out in the succinct Definition 3.1. But
we want to argue now that, in fact, this axiomatization falls far short of capturing
all properties of the path integral. In particular, it fails for the Chern-Simons path
integral, which is purely topological even at the classical level.

Remark 6.1. The beauty of the path integral heuristic is that it is an a priori def-
inition of the topological invariants. Indeed, one of Witten’s motivations in [W1]
was to find a description of the Jones polynomial invariant of a link which man-
ifestly exhibits 3-dimensional topological invariance. The bullet points above do
not include an a priori rigorous construction of these invariants except for a finite
gauge group, in which case the path integral heuristic can be expanded and made
rigorous.

Another observation: the path integral takes as input the classical Chern-Simons
invariant. But none of the mathematical constructions described in the bulleted
list above uses this invariant save the a priori construction for a finite group.

To illustrate our lack of understanding, let us return to the Chern-Simons path
integral (2.2) on a closed 3-manifold X:

(6.2) Fk(X)“=”
∫
FX

eikS(A) dA.

Now the usual expression for a path integral has integrand eiS/�, where � is Planck’s
constant. It is a constant of nature: � ∼ 1.054572 × 10−34 m2 kg/sec. But in this
context we can consider the limit � → 0 in which quantum effects are suppressed,
the so-called semiclassical limit. Mathematically, an oscillatory integral of the form

(6.3) F (�) =
∫

eiS(x)/� dx

has an asymptotic expansion as � → 0 which is derived by the method of stationary
phase [B]. It is a sum over the critical points of S if S is a Morse function or
an integral over the critical manifold if S is Morse-Bott; in physics this sum is
expressed in terms of Feynman diagrams and is the basis of perturbation theory
and the many spectacular computations in quantum field theory. Comparing (6.2)
and (6.3), we see the level k plays the role of 1/�. In other words, in this topological
theory � takes on a countable set of values tending to zero. So the semiclassical
limit is k → ∞ and we expect an asymptotic expansion which is a sum over the
critical points of S. Recall that the critical points of S are the flat connections
on X. Choose G = SU(2) and suppose that X is a closed oriented 3-manifold on
which there is a finite set of equivalence classes MX of flat SU(2)-connections. Let
M0

X denote the equivalence classes of irreducible flat SU(2)-connections, assumed
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nonempty. These contribute to the leading order asymptotics of Fk(X) as k → ∞
(see [W1], [FG]).

Conjecture 6.4. The quantum Chern-Simons invariant satisfies

(6.5) Fk(X) ∼ 1
2

e−3πi/4
∑

A∈M0
X

e2πiSX(A)(k+2) e−2πiIA/4
√

τX(A) .

In (6.5) SX(A) is the classical Chern-Simons invariant (2.1), IX(A) is the Atiyah-
Patodi-Singer spectral flow [APS], and τX(A) is the Franz-Reidemeister torsion [R],
[Fra].

Now to the point: The left-hand side is rigorously defined by the explicit con-
struction of Chern-Simons theory using quantum groups. The right-hand side is
a sum of classical invariants of flat connections. Thus, (6.5) is a well-formulated
mathematical statement, a conjecture derived from the path integral. We offer the
fact that this most basic consequence of the path integral is not proved as evidence
that the axiomatics of §3 do not capture all of its essential features. We will return
to this line of thought presently.

Remark 6.6. The left-hand side of (6.5) is defined from the theory of quantum
groups or loop groups. The computation of the exact quantum invariant, say for
Seifert fibered manifolds, has as a crucial ingredient explicit formulas in that liter-
ature [KaWa]. On the other hand, the right-hand side involves three invariants of
flat connections which are seemingly unrelated to quantum groups or loop groups.
Conjecture 6.4 is typical of many from quantum field theory and string theory in
that it relates parts of mathematics hitherto unconnected.

Remark 6.7. There are some special cases of Conjecture 6.4 which have been proved
in the mathematics literature. The proofs go by examining the explicit formula
for Fk(X) and using techniques of classical analysis to derive the large k asymp-
totics. For certain lens spaces this was carried out by Jeffrey [Jef] and Garoufa-
lidis [Gar]. Rozansky [Roz] generalized to all Seifert fibered manifolds. Of course,
most 3-manifolds are not Seifert fibered, and for these (6.5) remains a conjecture.

There is numerical evidence for Conjecture 6.4 for certain Seifert fibered mani-
folds12 [FG] and for some hyperbolic examples as well [Ha],[KSV]. Table 1 compares
some explicit values of Fk(X) and the approximation given by the asymptotic ex-
pansion in case X is the Brieskorn homology sphere X = Σ(2, 3, 17). The ratio
of Fk(X) to the predicted asymptotic value is close to one. We include this chart
partly as an antidote to the abstractions we recounted from the formal properties
of the path integral: the quantum Chern-Simons invariants are calculable! Indeed,
these calculations were some of the first concrete evidence in a mathematical context
that path integrals work as physicists claim. Yet this most basic statement about
the path integral—the stationary phase asymptotic expansion—remains unproved
in this topological example.13

There is much more to be said about the quantum Chern-Simons invariants in
mathematics. For example, the deeper terms in the asymptotic expansion are also
invariants of 3-manifolds (of “finite type”; see [Le] for a survey) and links [B-N].
The latter were invented by Vassiliev [Va] in a different context. There have been

12This has been superseded by the analytical work in [Roz], as explained in Remark 6.7.
13See [CG] for some recent discussion.
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Table 1. Exact and asymptotic values for X = Σ(2, 3, 17)

k exact value Fk(X) asymptotic value ratio

141 0.607899 +0.102594 i 0.596099 + 0.151172 i 0.999182− 0.081285 i

142 −0.104966− 0.151106 i −0.094614− 0.157913 i 0.997181− 0.067244 i

143 0.123614− 0.139016 i 0.132261− 0.128045 i 1.007707− 0.075491 i

144 −0.612014 +0.038199 i −0.614913− 0.008261 i 0.994271− 0.075479 i

145 −0.291162− 0.132171 i −0.281928− 0.153204 i 0.993986− 0.071336 i

146 −0.413944 +0.674785 i −0.465909 + 0.642185 i 0.994797− 0.077144 i

147 0.400490− 0.286350 i 0.419276− 0.254325 i 1.001116− 0.075706 i

148 −0.091879 +0.669230 i −0.143660 + 0.661309 i 0.995194− 0.077257 i

149 0.946786− 0.263649 i 0.962119− 0.191329 i 0.999048− 0.075356 i

150 −0.024553− 0.058313 i −0.021860− 0.059113 i 1.002906− 0.044484 i

works too numerous to mention that study the mathematical structure of these in-
variants, including analytic properties of generating functions, number-theoretical
properties, asymptotics of knot invariants, relations to hyperbolic geometry, etc.
Probably the most innovative proposal involving Chern-Simons invariants is that
they may be used in a model—both theoretical and practical—for quantum com-
putation [DFNSS]. The Chern-Simons construction appears often in theoretical
physics. One of the simplest uses is as a mass term in 3-dimensional abelian gauge
theory. The Chern-Simons invariant of the Levi-Civita connection also appears in
quantum theories of gravity [W2] in 3 dimensions. Higher-dimensional and higher-
degree analogs of Chern-Simons appear in supergravity and string theory. The
quantum Chern-Simons invariants are conjectured to have a relation to Gromov-
Witten invariants [GV]. From the beginning they have been closely connected with
2-dimensional conformal field theory. And on and on.

Chern-Simons theory is one of many fronts over the last 25 years in a vigorous
interaction between geometry and theories of quantum fields and quantum gravity.
It has been a very fruitful period. The depth and variety of mathematics which has
been applied to problems in physics is astounding. A new generation of theoretical
physicists has a vast array mathematical tools at its fingertips, and these are being
used to investigate many physical models. While the mathematical community
is justifiably excited about new frontiers for applications of mathematics, such as
biology, we should also keep in mind the impressive successes that contemporary
applications of mathematics to fundamental physics enjoy.

What is particularly appealing for mathematicians in this interaction is the im-
pact in the other direction: theoretical physics has opened up many new avenues of
investigation in mathematics. Quantum field theory and string theory have made
specific and concrete predictions that have motivated much mathematical work over
this period. In part this is due to a temporary gulf between theory and physical
experiments: in place of the traditional interplay between theorists and experimen-
talists has been an engagement with mathematics. Mathematicians have tested
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predictions of quantum field theory and string theory with independent mathemat-
ical techniques, in that way serving as experimentalists.14 But the ramifications
for mathematics go much deeper. There are new connections between areas of
mathematics and new lines of research in existing areas. It is a very exciting time.

However, it is hardly the moment to declare victory. What we find most excit-
ing are the possibilities for the future, as we believe we have only just begun to
absorb what this physics has to offer. To be more specific, one of the areas of suc-
cess is topological aspects of quantum field theory, which includes the topological
quantum field theories treated above. The axiomatics touched upon in §3 encode
a part of quantum field theory which applies beyond purely topological theories.
Indeed, it is an old idea of ’t Hooft [’t] that much can be learned about physical
theories by exploring the topological information in the incarnations of a theory at
different scales, and this idea has been valuable in many contexts. As we have seen,
contemporary mathematical research in topological quantum field theory is yield-
ing new structure theorems and interesting applications. Another exciting current
area of mathematics-physics interaction relates the geometric Langlands program
to 4-dimensional gauge theories [KW]. Lessons learned from 3-tier TQFTs, as rep-
resented in (3.9), have had a large impact here.15 Another broad area of success
over the past 25 years has been in conformal field theory, particularly in two dimen-
sions. There is a similar geometric axiomatization [Se2] as well as more algebraic
approaches [FBZ], [BeDr] of which the three cited references are only the tip of the
iceberg. Representation theory—most recently geometric parts of representation
theory—has been one part of mathematics intimately connected with conformal
field theory. Also, mirror symmetry in 2-dimensional conformal field theory and
string theory [HKKPTVVZ] has had many consequences for algebraic geometry.

The common feature shared by topological and conformal theories is the absence
of scale. Conformal invariance is precisely the statement that a theory looks the
same at all scales. And topology is usually studied without introducing scale in
the first place. Yet scale is one of the most basic concepts in all of physics, in
particular in quantum field theory. Even if one begins with a theory which is
conformally invariant at the classical level—and many important examples, such as
Yang-Mills theory in 4-dimensions and σ-models in 2 dimensions, are—the process
of regularization alluded to in §2 introduces a scale into the theory. The dependence
of the quantum theory on scale, encoded in the renormalization group [Wi], [Po], is
a basic part of quantum field theory which guides every practicing physicist in the
field. There is a body of mathematical work on quantum field theory (see [GJ] for
one account) which focuses on foundational analytic aspects which include scale,
but the newer investigations into topological and conformal features have been
largely disjoint. The asymptotic expression (6.5) belongs to the part of quantum
field theory which depends on scale: it is derived [W1] through a geometric version

14As this is being written, the LHC in Geneva is about to be turned on. There is a possibility
that new data from that large machine will turn practitioners of modern mathematical physics
back to a more traditional connection with experiment.

15In this n = 4-dimensional topological field theory there is a category assigned to each Rie-
mann surface. That category is argued to be one, or at least closely related to one, which enters
the geometric Langlands program. There is a basic symmetry in 4-dimensional gauge theory,
S-duality, which relates two different theories, and on a Riemann surface this is meant to induce
the conjectured geometric Langlands correspondence between two different categories attached to
the surface.
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of regularization together with standard manipulations of an integral. Its unrelieved
conjectural status is only one of many signals that we need to turn more attention
to the scale-dependent aspects of quantum field theory. I emphasize that this is
important even in theories which are scale-independent. In particular, new ideas
are needed to integrate the scale-dependent and scale-independent aspects.

We illustrate with an episode from 4-dimensional topology and field theory.
In 1988, Witten [W3] introduced a topological twisting of a supersymmetric gauge
theory which encodes the Donaldson invariants [Do] of 4-manifolds. The underly-
ing quantum field theory is not topological, but certain correlation functions in a
twisted version on oriented Riemannian 4-manifolds compute Donaldson invariants.
This new context for these invariants of smooth manifolds bore fruit six years later
when Seiberg and Witten [SW] described the long-distance physics of the under-
lying quantum field theory. Their work is very much a part of scale-dependent
physics: the long-distance approximation is a field theory with different fields than
the fundamental short-distance theory. Seiberg and Witten use not only standard
perturbation theory and renormalization group ideas, but also the supersymmetry
which severely constrains the form of the long-distance physics. As the Donaldson
invariants are topological, so independent of scale, they have an expression in both
the long-distance and short-distance theories. In the short-distance theory one gets
out Donaldson’s definition, which is Witten’s original work, but the long-distance
approximation gives a new expression in terms of new equations—what are now
known as the Seiberg-Witten equations. Geometers immediately ran with these
new equations, which are simpler than the instanton equations used by Donaldson,
and for many geometric purposes are all one needs. But it is important to realize
that they are part of a scale-dependent story in quantum field theory. There has
been considerable effort to prove the conjectured equivalence between the two sets
of 4-manifold invariants, and very recently it was finally proved by Feehan and
Leness [FL] for 4-manifolds of simple type. (All known 4-manifolds are of simple
type.) Here again we see that the discovery of scale-independent mathematics rests
on a deep understanding of scale-dependence.

The recent solution of the Poincaré conjecture by Perelman [P] offers some in-
sight. The statement of the theorem—a simply connected 3-manifold is homeomor-
phic to the 3-sphere—is very much in the realm of scale-invariant mathematics: no
scale enters at all. Hamilton’s Ricci flow [H] introduces scale on a smooth 3-manifold
in the form of a Riemannian metric. That metric may exhibit irregularities at ar-
bitrary small distances. The Ricci flow smooths out the small-scale fluctuations in
the metric and, as time evolves, shifts focus to larger and larger scales. Topological
consequences, such as Poincaré, are deduced in the infinite time limit when one ap-
proaches scale-independence. Of course, this is a poetic rendition of very intricate
mathematics, especially as the flow may be interrupted by singularities. Still, it
serves as a prototype for scale-dependence in quantum field theories, and for good
reason: Ricci flow is the renormalization group flow for a particular quantum field
theory, the 2-dimensional σ-model [Fr].

The past 25 years have seen much interaction between physics and algebraic,
topological, and geometrical ideas. The addition of analytic ideas relevant to the
study of scale will enrich this area in the years ahead.
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Appendix: The Chern-Simons-Weil theory of connections

Let G be a Lie group with finitely many components. Let g be its Lie algebra
and π : P → M a principal G-bundle. Each element g ∈ G acts on P by a diffeo-
morphism Rg : P → P . Let θ ∈ Ω1

G(g) be the left-invariant Maurer-Cartan form; it
transfers to any right G-torsor.16 Denote by im : Pm → P the inclusion of the fiber
at m ∈ M .

Definition A.1. A connection on P is a 1-form Θ ∈ Ω1
P (g) which satisfies

(A.2) R∗
gΘ = Adg−1 Θ, i∗mΘ = θ

for all m ∈ M .

The curvature of Θ is the g-valued 2-form

(A.3) Ω = dΘ +
1
2
[Θ ∧ Θ].

It satisfies the linear equations

R∗
gΩ = Adg−1 Ω, i∗MΩ = 0,

so lives in the linear space Ω2
M (gP ) of 2-forms on M with values in the adjoint

bundle of Lie algebras associated to P . Differentiating (A.3), we obtain the Bianchi
identity dΩ + [Θ ∧ Ω] = 0. To work out these equations, the reader will use the
Jacobi identity [[Θ ∧ Θ] ∧ Θ] = 0 and the structure equation dθ + 1

2 [θ ∧ θ] = 0.
The Chern-Weil construction is as follows. Fix

(A.4) 〈 〉 : g
⊗p −→ R,

which is G-invariant and symmetric.

Proposition A.5. ω(Θ) = 〈Ω ∧ · · · ∧ Ω〉 is a closed 2p-form on M .

The proof is immediate: differentiate ω(Θ) and use Bianchi and the g-invariance.

Example A.6. Let Σ be an oriented Riemannian 2-manifold, π : P → Σ its SO2-
bundle of oriented orthonormal frames, and Θ the Levi-Civita connection. Then
〈Ω〉 = K volΣ, where vol is the Riemannian volume 2-form. In this case p = 1,
and we define the linear map (A.4) to identify the Lie algebra of SO2 with R. (We
need not assume M is oriented: the Chern-Weil construction for the O2-bundle of
frames produces the density K dµΣ which appears in (1.1).)

The de Rham theorem tells that ω(Θ) determines a cohomology class on M .
It follows from (A.8) below that this class is independent of the connection, so it
is a topological invariant of the principal bundle π : P → M . More important to
us here is the geometry which follows from the fact that the pullback π∗ω(Θ) is
exact. The construction of Chern and Simons [CSi] which we now recount produces
a canonical antiderivative (A.9), following their philosophy that “the manner in
which a closed form which is zero in cohomology actually becomes exact contains
geometric information” (quoted in [DGMS]).17

16A torsor for G is a manifold on which G acts simply transitively. The fibers of a principal
bundle are right G-torsors.

17This is analogous to the rise of category number in geometry: the manner in which two sets
are isomorphic contains geometric information.
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As (A.2) are affine equations, the space of solutions AP ⊂ Ω1
P (g) is also affine.

It is the space of all connections on P . There is a universal connection ΘP on
AP × P → AP × M characterized by

ΘP

∣∣
{Θ}×P

= Θ, ΘP

∣∣
AP ×{p}= 0, Θ ∈ AP , p ∈ P.

Let ΩP denote its curvature and ω(ΘP ) its Chern-Weil form. Now any two con-
nections Θ0, Θ1 ∈ AP are the endpoints of a line segment ∆1 → AP , an affine map
with domain the standard 1-simplex. Define the Chern-Simons form

(A.7) α(Θ0, Θ1) =
∫

∆1
ω(ΘP ) ∈ Ω2p−1

M .

Stokes’ formula implies

(A.8) dα(Θ0, Θ1) = ω(Θ1) − ω(Θ0).

The affine structure of AP allows us to continue to higher simplices: three connec-
tions determine a 2-simplex and, by integration, a (2p − 2)-form whose differential
relates the three Chern-Simons forms on the boundary, etc.

Our interest is to define a geometric invariant of a single connection. For this
we work with the pullback bundle π∗P → P . It has a canonical trivialization
∆: P → π∗P : under the identification of π∗P with the fiber product P ×M P , the
section ∆ is the diagonal map. This section defines a trivial connection Θ∆ ∈ Aπ∗P

characterized by ∆∗Θ∆ = 0. Pullback of connections defines an affine embedding
π∗ : AP ↪→ Aπ∗P . For Θ ∈ AP define the Chern-Simons form

(A.9) α(Θ) = α(Θ∆, π∗Θ) ∈ Ω2p−1
P .

Then α(Θ) is a differential form on P . From (A.8) we deduce

dα(Θ) = π∗ω(Θ) ∈ Ω2p
P .

The construction is functorial. For example, applied to the unique connection on the
principal bundle G → pt, we obtain a closed form α(θ) ∈ Ω2p−1

G . The functoriality,
together with (A.2), implies the second of the equations

R∗
gα(Θ) = α(Θ), i∗mα(Θ) = α(θ).

Both (A.7) and (A.9) are termed “Chern-Simons forms”; the former lives on the
base M and depends on two connections, the latter lives on the total space P and
depends on a single connection.

Example A.10. In the situation of Example A.6, let C ⊂ Σ be a smooth oriented
curve. There is a canonical framing of Σ along C—the oriented tangent vector is
the first basis vector—and so a canonical lift of C to the frame bundle P . The
Chern-Simons 1-form α(Θ) then pulls down to a 1-form on C which is κC volC ;
compare (1.2).

The Chern-Simons invariant generalizes the total geodesic curvature (1.2). Sup-
pose Θ is a connection on a principal G-bundle π : P → M with M a closed oriented
(2p− 1)-manifold. Let 〈 〉 be an invariant polynomial as in (A.4) and assume it is
normalized so that the form α(θ) ∈ Ω2p−1

G has integral periods. Assume first that



250 DANIEL S. FREED

π : P → M is trivializable. Then if s : M → P is any section of π, the Chern-Simons
invariant

S(Θ) =
∫

M

s∗α(Θ) (mod 1)

is independent of s. Note that the invariant S(Θ) lives in R/Z.
For a general (nontrivializable) bundle π : P → M , we need a more intricate

construction [F3], [DW]. Let EG → BG be a universal bundle built from smooth
(Hilbert) manifolds, Θuniv a connection on EG, and γ : P → EG a G-equivariant
(classifying) map with quotient γ̄ : M → BG. Since the odd homology of BG is
torsion, for some positive integer N there is a smooth 2p-chain W in BG with ∂W =
N · γ̄([M ]). Then [ 1

N W ] ∈ H2p(BG; R/Z). The Chern-Simons invariant depends
on a choice of cohomology class λ ∈ H2p(BG; Z) whose image in H2p(BG; R) is
represented by the universal Chern-Weil form ω(Θuniv). The integrality assumption
on 〈 〉 guarantees the existence of λ. For a connection Θ on P set

S(Θ) =
1
N

∫
W

ω(Θuniv) +
∫

M

α(γ∗Θuniv, Θ) + λ
(
[
1
N

W ]
)
∈ R/Z.

One can check that the right-hand side is independent of the choices of γ, W and
defines a smooth function S : AP → R/Z.
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Birkhäuser, Basel, 1995, pp. 297–325. MR1362832 (96i:55012)

[C] K. Costello, Topological conformal field theories and Calabi-Yau categories,
Adv. Math. 210 (2007), no. 1, 165–214, arXiv:math/0412149. MR2298823
(2008f:14071)

[CG] O. Costin, S. Garoufalidis, Resurgence of the Kontsevich-Zagier power series,
arXiv:math/0609619.

[CSi] S.-S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. of
Math. (2) 99 (1974), 48–69. MR0353327 (50:5811)

[DFNSS] S. Das Sarma, M. Freedman, C. Nayak, S. H. Simon, A. Stern, Non-abelian anyons
and topological quantum computation, arXiv:0707.1889.

[DF] P. Deligne, D. S. Freed, Classical field theory, Quantum fields and strings: a
course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math.
Soc., Providence, RI, 1999, pp. 137–225. MR1701599 (2000i:53109)

[DGMS] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler
manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR0382702 (52:3584)

[D] R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory,

Ph.D. thesis.
[DW] R. Dijkgraaf, E. Witten, Topological gauge theories and group cohomology, Comm.

Math. Phys. 129 (1990), no. 2, 393–429. MR1048699 (91g:81133)
[Do] S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29

(1990), no. 3, 257–315. MR1066174 (92a:57035)
[FL] P. M. N. Feehan, T. G. Leness, Witten’s conjecture for four-manifolds of simple

type, arXiv:math/0609530.
[Fe] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev.

Modern Physics 20 (1948), 367–387. MR0026940 (10:224b)
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