SELECTED MATHEMATICAL REVIEWS
related to the paper in the previous section by
NICOLAS KATZ

MR0823264 (87h:11051) 11G05;11G40, 11R45
Murty, V. Kumar
Explicit formulae and the Lang-Trotter conjecture.
Number theory (Winnipeg, Man., 1983).

Let E be an elliptic curve defined over the rationals, and let $\pi_E(x)$ count the number of primes $p < x$ such that E_p, the reduction of E modulo p, is supersingular, i.e., E_p has $p + 1$ points over $\text{GF}(p)$. M. Deuring [Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1953, 85–94; MR0061333 (15,779d)], ibid. 1955, 13–42; MR0070666 (17,17c); ibid. 1957, 55–80; MR0089227 (19,637a) showed that $\pi_E(x) \sim \frac{1}{2\pi} \pi(x)$ if E has complex multiplication, where $\pi(x)$ is the number of primes $\leq x$. For non-CM curves, S. Lang and H. F. Trotter [Frobenius distributions in GL_2-extensions, Lecture Notes in Math., 504, Springer, Berlin 1976; MR0668299 (58 #27900)] conjectured that $\pi_E(x) \sim c_E x^{1/2}/\log x$ where $c_E > 0$. J.-P. Serre [Inst. Hautes Études Sci. Publ. Math. No. 54 (1981), 323–401; MR0645559 (83k:12011)] proved for non-CM curves that $\pi_E(x) \leq x/(\log x)^{5/4-\varepsilon}$ unconditionally, and that $\pi_E(x) \ll x^{3/4}$ assuming the Riemann hypothesis for all Artin L-functions. His proofs use an effective version of the Chebotarev density theorem due to the reviewer and A. M. Odlyzko [Algebraic number fields: L-functions and Galois properties (Durham, 1975), 409–464, Academic Press, London, 1977; MR0471911 (56 #5506)].

Let $p + 1 + a_p$ denote the number of points of E_p and set $a_p = 2p^{1/2}\cos \theta_p$. Sato and Tate conjectured that for any interval I in $(0, 2\pi)$, $\# \{p \leq x : \theta_p \in I\} \sim \mu_E(I)\pi(x)$ where μ_E is a certain specific measure. The author of this paper considers the L-functions defined by $L_k(s) = \prod_p \prod_{n=0}^k (1 - \alpha_p^{-n}p^{-s})^{-1}$, where $\alpha_p, \overline{\alpha}_p$ are the roots of $x^2 - a_p x + p = 0$. Under the assumptions that these L-functions analytically continue to \mathbb{C}, satisfy appropriate functional equations, and satisfy the analogue of the Riemann hypothesis, the author shows that the Sato-Tate conjecture follows in the form $\# \{p \leq x : \theta_p \in I\} = \mu_E(I)\pi(x) + O(x^{1/2}(\log x)(\log N x) f(x))$ where $f(x) \to 0$ as $x \to \infty$ and $x > f^{-1}(1/\mu_E(I))$. This implies that $\pi_E(x) \leq c_E x^{3/4}(\log x)$ in the non-CM case, and more generally that $\# \{p \leq x : a_p = a\} \leq c_E x^{3/4}\log x$, where c is a constant depending on E and a. The L-functions studied are attached to the symmetric powers $\text{Sym}^2(\sigma_1)$ of a compatible system of l-adic representations σ_i attached to E. The methods involve proving an analogue of an effective Chebotarev density theorem for these L-functions.

{For the entire collection see MR0823239 (87a:11007)}

From MathSciNet, April 2009

J. C. Lagarias
Elkies, Noam D.
The existence of infinitely many supersingular primes for every elliptic curve over \mathbb{Q}.

In this important paper, the author confirms one of the outstanding conjectures in the study of elliptic curves, namely that every curve defined over the field \mathbb{Q} of rational numbers has infinitely many supersingular primes. Indeed he shows this for any elliptic curve defined over a number field of odd degree over \mathbb{Q}.

Suppose that E is an elliptic curve defined over \mathbb{Q} which has good reduction at a prime p. Its reduction $E_p \mod p$ is supersingular if and only if its endomorphism ring contains an order \mathcal{O}_D of discriminant $-D$ in an imaginary quadratic field in which p either ramifies or remains prime. Let P_D be the monic polynomial in x whose roots are all the j-invariants of the isomorphism classes of elliptic curves over \mathbb{Q} with complex multiplication by \mathcal{O}_D. Let J denote the j-invariant of E. If p divides the numerator of $P_D(J)$, then by the Deuring lifting theorem, E_p has complex multiplication by \mathcal{O}_D' for some D' (perhaps differing from D by a square). If in addition $-D$ is not a p-adic square, then p is a supersingular prime. The author’s main lemma shows that if l is a prime congruent to 3 mod 4, then modulo l, both P_l and P_{4l} factor as $(x - 1728)$ times a square.

The proof of the theorem roughly parallels Euclid’s demonstration of the infinitude of primes in \mathbb{Z}! Suppose that S is a finite set of primes containing all the primes at which E has bad or supersingular reduction. Let l be any prime congruent to 3 mod 4 not in S, such that p is a square mod l for all p in S, and sufficiently large so that $P_l(J) > 0$ and $P_{4l}(J) < 0$. Then $P_l(J)P_{4l}(J)$ is a negative rational number which is a perfect square modulo l (by the main lemma), and whose denominator is a perfect square (being the denominator of J to an even power). Hence the absolute value of its numerator is a perfect square modulo l (by the main lemma), and whose denominator is a perfect square (being the denominator of J to an even power). Hence the absolute value of its numerator must be divisible by a prime p which is either l or a quadratic nonresidue modulo l. Hence p is a supersingular prime which is not in S.

From MathSciNet, April 2009

David Grant

David, Chantal; Pappalardi, Francesco
Average Frobenius distributions of elliptic curves.

Let E be an elliptic curve defined over the rationals. For any prime p of good reduction, let $a_p(E)$ denote the trace of the Frobenius morphism of $E \mod p$. For a fixed integer r, what can be said about the number $\pi_r(x) = \pi_r(x, E)$ of primes $p \leq x$ such that $a_p(E) = r$? If $r = 0$ and E has complex multiplication, then a classical theorem of Deuring says that the number of such primes $p \leq x$ is $\sim x/2\log x$ as $x \to \infty$. If $r = 0$ and E has no complex multiplication, then a theorem of N. D. Elkies [Invent. Math. 89 (1987), no. 3, 561–567; MR0903384 (88i:11034)] shows there are infinitely many such primes. Later, E. Fouvry and the reviewer [Canad. J. Math. 48 (1996), no. 1, 81–104; MR1382477 (97a:11084)]
proved that for any \(\epsilon > 0 \), \(\pi_0(x) \geq (\log \log \log x)^{1-\epsilon} \) for \(x \) sufficiently large and that \(\pi_0(x) \gg \log \log x \) for infinitely many \(x \to \infty \). Earlier, Elkies and the reviewer noted that the generalized Riemann hypothesis for classical Dirichlet \(L \)-functions implies that \(\pi_0(x) > \log \log x \) for infinitely many \(x \to \infty \) and \(\pi_0(x) > \log x \) for infinitely many \(x \to \infty \). Unconditionally, they observed that \(\pi_0(x) = O(x^{3/4}) \) can be derived by using a result of M. Kaneko \[Osaka J. Math. 26 (1989), no. 4, 849–855; MR1040429(91c:11033) \; see also N. D. Elkies, Astérisque No. 198-200 (1991), 127–132 (1992); MR1144318(93b:11070) \; M. R. Murty, in Proceedings of the Ramanujan Centennial International Conference (Annaalaimagar, 1987), 45–53, Ramanujan Math. Soc., Annaalaimagar, 1988; MR0993343(90f:11036)\].

S. Lang and H. Trotter \[Frobenius distributions in GL_2-extensions, Lecture Notes in Math., 504, Springer, Berlin, 1976; MR0568299(58 #27900) \] conjectured that if \(E \) has no complex multiplication, then \(\pi_0(x) \sim C \sqrt{x}/\log x \) for some positive constant \(C \), as \(x \to \infty \). More generally, Lang and Trotter conjectured that for \(r \neq 0 \), and \(E \) any elliptic curve over \(\mathbb{Q} \), \(\pi_r(x) \sim C_{E,r} \sqrt{x}/\log x \) for some suitable constant \(C_{E,r} \). If proved, this conjecture also implies the classical conjecture of Hardy and Littlewood that there are infinitely many primes of the form \(n^2 + 1 \).

In the paper of Fouvry and the reviewer [op. cit.], the average of \(\pi_0(x, E) \) is studied as \(E \) varies over a family of elliptic curves \(y^2 = x^3 + ax + b \). The authors of the paper under review extend these results for \(r \neq 0 \) and study \(\pi_r(x, E) \) as \(E \) varies. More precisely, let \(\pi_r(x; a, b) \) denote the number of primes \(p \leq x \) such that \(a_p(E) = r \) for the curve \(E : Y^2 = X^3 + aX + b \). The main theorem of the paper is that for \(c > 0 \),

\[
\frac{1}{4AB} \sum_{|a| \leq A, |b| \leq B} \pi_r(x; a, b) = C_r \frac{\sqrt{x}}{\log x} + O\left(\frac{1}{A} + \frac{1}{B} \right) x^{3/2} + \frac{x^{5/2}}{AB} + \frac{\sqrt{x}}{\log x},
\]

where (for \(p \) denoting a prime number) we have

\[
C_r = \frac{2}{\pi} \prod_{p \mid r} \left(1 - \frac{1}{p^2} \right)^{-1} \prod_{(p, r) = 1} p\left(p^2 - p - 1 \right) \left(p - 1 \right) \left(p^2 - 1 \right).
\]

Thus, the Lang-Trotter conjecture holds “on average”. The techniques of Fouvry and the reviewer do not extend automatically to the case \(r \neq 0 \) and the authors must circumvent this by a clever application of a classical theorem of Barban, Davenport and Halberstam.

From MathSciNet, April 2009

M. Ram Murty