Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Nikolai Chernov and Roberto Markarian
Title: Chaotic billiards
Additional book information: Mathematical Surveys and Monographs, Vol. 127, American Mathematical Society, Providence, RI, 2006, xii+316 pp., ISBN 0-8218-4096-7, US $85.00

References [Enhancements On Off] (What's this?)

  • 1. V. M. Alekseev, Quasirandom dynamical systems, Mat. USSR Sbornik 7 (1969), 1-43. MR 0249754 (40:2995)
  • 2. P. Balint, N. Chernov, D. Szasz and I. P. Toth, Geometry of multidimensional dispersing billiards, Astérisque 286 (2003), 119-150. MR 2052299 (2005c:37059)
  • 3. P. Balint and I. Melbourne, Decay of correlations and invariance principle for dispersing billiards with cusps, and related planar billiard flows, Preprint.
  • 4. L. A. Bunimovich, On billiards close to dispersing, Math. USSR Sb. 23 (1974), 45-67.
  • 5. L. A. Bunimovich, The ergodic properties of certain billiards, Funk. Anal. Prilozh. 8 (1974), 73-74. MR 0357736 (50:10204)
  • 6. L. A. Bunimovich, Many-dimensional nowhere dispersing billiards with chaotic behavior, Physica D 33 (1988), 58-64. MR 0984610 (90m:58158)
  • 7. L. A. Bunimovich, On absolutely focusing mirrors, In Ergodic Theory and Related Topics (Güstrow 1990). Edited by U. Krengel et al., Lect. Notes in Math. 1514, Springer, Berlin, 1992, pp. 62-82. MR 1179172 (93f:58212)
  • 8. L. A. Bunimovich, Mushrooms and other billiards with divided phase space, Chaos 11 (2001), 802-808. MR 1875161 (2002k:37120)
  • 9. L. A. Bunimovich and J. Rehácek, How many-dimensional stadia look like, Comm. Math. Phys. 197 (1998), 277-301. MR 1652730 (99k:58133)
  • 10. L. A. Bunimovich and A. Grigo, Focusing components in chaotic billiards should be absolutely focusing, Comm. Math. Phys., (to appear).
  • 11. L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers, Comm. Math. Phys. 78 (1981), 479-497. MR 0606459 (82m:82007)
  • 12. N. Chernov, Advanced statistical properties of dispersing billiards, J. Stat. Phys. 122 (2006), 1061-1094. MR 2219528 (2007h:37047)
  • 13. N. Chernov, A stretched exponential bound on time correlations for billiard flows, J. Stat. Phys. 127 (2007), 21-50. MR 2313061 (2008b:37062)
  • 14. N. Chernov and D. Dolgopyat, Hyperbolic billiards and statistical physics, Int-l Congress of Math-ns, vol. II. Eur. Math. Soc., Zürich, 2006, pp. 1679-1704. MR 2275665 (2007m:37094)
  • 15. N. Chernov and C. Haskell, Non-uniformly hyperbolic $ K$-systems are Bernoulli, Ergod. Th. and Dyn. Syst. 16 (1996), 19-44. MR 1375125 (97k:28031)
  • 16. G. Del Magno and R. Markarian, On the Bernoulli property of planar hyperbolic billiards, Preprint.
  • 17. V. J. Donnay, Geodesic flow on the two-sphere I: Positive measure entropy, Ergod. Th. and Dyn. Syst. 8 (1988), 531-553. MR 0980796 (90e:58127a)
  • 18. V. J. Donnay, Using integrability to produce chaos: Billiards with positive entropy, Comm. Math. Phys. 141 (1991), 225-257. MR 1133266 (93c:58111)
  • 19. E. Gutkin, Billiard dynamics: a survey with the emphasis on open problems, Reg. Chaotic Dyn-s 8 (2003), 1-13. MR 1963964 (2003m:37042)
  • 20. A. Katok and J.-M. Strelcyn, with the collaboration of F. Ledrappier and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math. 1222, Springer, New York, 1986. MR 0872698 (88k:58075)
  • 21. V. F. Lazutkin, Existence of caustics for the billiard ball problem in a convex domain, Math. USSR Izv. 37 (1973), 186-216. MR 0328219 (48:6561)
  • 22. H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems, vol. 1A. Edited by B. Hasselblatt and A. Katok, Elsevier, Amsterdam, 2002. MR 1928530 (2003j:37002)
  • 23. V. I. Oseledec, A multiplicative ergodic theorem, Trans. Moscow Math. Soc. 19 (1968), 197-231. MR 0240280 (39:1629)
  • 24. N. Simanyi, Proof of the Boltzamnn-Sinai ergodic hypothesis for typical hard disk systems, Invent. Math. 154 (2003), 123-178. MR 2004458 (2004k:82009)
  • 25. N. Simanyi, Proof of the ergodic hypothesis for typical hard ball systems, Ann. Inst. Henri Poincaré 5 (2004), 203-233. MR 2057672 (2005f:37062)
  • 26. Ya. G. Sinai, Classical dynamical systems with countably-multiple Lebesgue spectrum. II, Izv. Akad. Nauk SSSR Ser. Math. 30 (1966), 15-68. MR 0197684 (33:5847)
  • 27. Ya. G. Sinai, Dynamical systems with elastic reflections, Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137-189. MR 0274721 (43:481)
  • 28. H. Spohn, Large scale dynamics of interacting particles, Springer, Berlin, 1991.
  • 29. S. Tabachnikov, Billiards, Panor, Synth. No. 1, SMF, Paris, 1995. MR 1328336 (96c:58134)
  • 30. D. Szasz (editor), Hard balls systems and Lorentz gas, Springer, Berlin, 2000. MR 1805337 (2001h:82001)
  • 31. M. Wojtkowski, Invariant families of cones and Lyapounov exponents, Ergod. Th. and Dyn. Syst. 5 (1985), 145-161. MR 0782793 (86h:58090)
  • 32. M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys. 105 (1986), 391-414. MR 0848647 (87k:58165)
  • 33. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998), 585-650. MR 1637655 (99h:58140)
  • 34. L.-S. Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. MR 1750438 (2001j:37062)

Review Information:

Reviewer: Leonid Bunimovich
Affiliation: Georgia Institute of Technology
Journal: Bull. Amer. Math. Soc. 46 (2009), 683-690
MSC (2000): Primary 37D50; Secondary 37D25, 37A25, 37N05, 82B99
DOI: https://doi.org/10.1090/S0273-0979-09-01234-8
Published electronically: March 23, 2009
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society