Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Linear waves in the Kerr geometry: A mathematical voyage to black hole physics


Authors: Felix Finster, Niky Kamran, Joel Smoller and Shing-Tung Yau
Journal: Bull. Amer. Math. Soc. 46 (2009), 635-659
MSC (2000): Primary 83C57, 35L15, 83C55
Published electronically: May 5, 2009
MathSciNet review: 2525736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a survey of wave dynamics in the Kerr space-time geometry, the mathematical model of a rotating black hole in equilibrium. After a brief introduction to the Kerr metric, we review the separability properties of linear wave equations for fields of general spin  $ s=0,\frac{1}{2}, 1, 2$, corresponding to scalar, Dirac, electromagnetic fields and linearized gravitational waves. We give results on the long-time dynamics of Dirac and scalar waves, including decay rates for massive Dirac fields. For scalar waves, we give a rigorous treatment of superradiance and describe rigorously a mechanism of energy extraction from a rotating black hole. Finally, we discuss the open problem of linear stability of the Kerr metric and present partial results.


References [Enhancements On Off] (What's this?)

  • 1. N. Andersson, P. Laguna, P. Papadopoulos, ``Dynamics of scalar fields in the background of rotating black holes II: a note on superradiance,'' gr-qc/9802059, Phys. Rev. D58 (1998) 087503.
  • 2. D. Batic, ``Scattering theory for Dirac particles in the Kerr-Newman geometry,'' Dissertation, University of Regensburg, www.opus-bayern.de/uni-regensburg/volltexte/2005/551/ (2005).
  • 3. Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177–267. MR 1908823
  • 4. Hubert L. Bray, Black holes, geometric flows, and the Penrose inequality in general relativity, Notices Amer. Math. Soc. 49 (2002), no. 11, 1372–1381. MR 1936643
  • 5. Pieter Blue, Decay of the Maxwell field on the Schwarzschild manifold, J. Hyperbolic Differ. Equ. 5 (2008), no. 4, 807–856. MR 2475482, 10.1142/S0219891608001714
  • 6. János Bognár, Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. MR 0467261
  • 7. Vitor Cardoso, Óscar J. C. Dias, José P. S. Lemos, and Shijun Yoshida, Black-hole bomb and superradiant instabilities, Phys. Rev. D (3) 70 (2004), no. 4, 044039, 9. MR 2113792, 10.1103/PhysRevD.70.044039
  • 8. B. Carter,``Axisymmetric black hole has only two degrees of freedom,'' Phys. Rev. Lett. 26 (1971), 331-332.
  • 9. Brandon Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972) Gordon and Breach, New York, 1973, pp. 57–214. MR 0465047
  • 10. S. Chandrasekhar,``An introduction to the theory of the Kerr metric and its perturbations,'' in ``General Relativity, an Einstein centenary survey,'' ed. S.W. Hawking and W. Israel, Cambridge University Press (1979).
  • 11. Subrahmanyan Chandrasekhar, The mathematical theory of black holes, International Series of Monographs on Physics, vol. 69, The Clarendon Press, Oxford University Press, New York, 1983. Oxford Science Publications. MR 700826
  • 12. S. Chandrasekhar,``Truth and Beauty--Aesthetics and Motivations in Science,''The University of Chicago Press (1987).
  • 13. D. Christodoulou, ``Reversible and irreversible transformations in black hole physics,''Phys. Rev. Lett. 25, 1956-1957.
  • 14. D. Christodoulou, ``The formation of black holes in general relativity,'' arXiv:0805.3880 (2008).
  • 15. D. Christodoulou, ``On the role of vector fields in the analysis of Euler-Lagrange systems of partial differential equations'', private communication (2009).
  • 16. Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
  • 17. M. Dafermos, I. Rodnianski, ``The redshift and radiation decay on black hole spacetimes,'' arXiv:gr-qc/0512119.
  • 18. M. Dafermos, I. Rodnianski, ``A note on energy currents and decay for the wave equation on a Schwarzschild background,'' arXiv:0710.0171.
  • 19. Mihalis Dafermos and Igor Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), no. 2, 381–457. MR 2199010, 10.1007/s00222-005-0450-3
  • 20. M. Dafermos, I. Rodnianski, ``A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds,'' arXiv:0805.4309.
  • 21. Thierry Daudé, Propagation estimates for Dirac operators and application to scattering theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 2021–2083 (2005) (English, with English and French summaries). MR 2134232
  • 22. Felix Finster, Joel Smoller, and Shing-Tung Yau, Non-existence of black hole solutions for a spherically symmetric, static Einstein-Dirac-Maxwell system, Comm. Math. Phys. 205 (1999), no. 2, 249–262. MR 1712611, 10.1007/s002200050675
  • 23. Felix Finster, Joel Smoller, and Shing-Tung Yau, Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background, J. Math. Phys. 41 (2000), no. 4, 2173–2194. MR 1751884, 10.1063/1.533234
  • 24. Felix Finster, Niky Kamran, Joel Smoller, and Shing-Tung Yau, Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry, Comm. Pure Appl. Math. 53 (2000), no. 7, 902–929. MR 1752438, 10.1002/(SICI)1097-0312(200007)53:7<902::AID-CPA4>3.0.CO;2-4
  • 25. Felix Finster, Niky Kamran, Joel Smoller, and Shing-Tung Yau, The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry, Adv. Theor. Math. Phys. 7 (2003), no. 1, 25–52. MR 2014957
  • 26. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry, Comm. Math. Phys. 230 (2002), no. 2, 201–244. MR 1936790, 10.1007/s002200200648
  • 27. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, An integral spectral representation of the propagator for the wave equation in the Kerr geometry, Comm. Math. Phys. 260 (2005), no. 2, 257–298. MR 2177321, 10.1007/s00220-005-1390-x
  • 28. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), no. 2, 465–503. MR 2215614, 10.1007/s00220-006-1525-8
  • 29. F. Finster, N. Kamran, J. Smoller and S.-T. Yau,``A rigorous treatment of energy extraction from a rotating black hole,'' gr-qc/0701018, Commun. Math. Phys. 287 (2009), 829-847.
  • 30. F. Finster, J. Smoller, ``Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry,'' gr-qc/0607046, Adv. Theor. Math. Phys. 13 (2009), 71-110.
  • 31. Felix Finster and Joel Smoller, A time-independent energy estimate for outgoing scalar waves in the Kerr geometry, J. Hyperbolic Differ. Equ. 5 (2008), no. 1, 221–255. MR 2405857, 10.1142/S0219891608001453
  • 32. Valeri P. Frolov and Igor D. Novikov, Black hole physics, Fundamental Theories of Physics, vol. 96, Kluwer Academic Publishers Group, Dordrecht, 1998. Basic concepts and new developments; Chapter 4 and Section 9.9 written jointly with N. Andersson. MR 1668599
  • 33. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
  • 34. Dietrich Häfner, Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Math. (Rozprawy Mat.) 421 (2003), 102 (French, with English summary). MR 2031494, 10.4064/dm421-0-1
  • 35. D. Häfner, ``Creation of fermions by rotating charged black-holes,'' arXiv:math/0612501 (2006).
  • 36. Dietrich Häfner and Jean-Philippe Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16 (2004), no. 1, 29–123. MR 2047861, 10.1142/S0129055X04001911
  • 37. Markus Heusler, Black hole uniqueness theorems, Cambridge Lecture Notes in Physics, vol. 6, Cambridge University Press, Cambridge, 1996. MR 1446003
  • 38. W. Israel,``Event horizons is static vacuum space-times,''Phys. Rev. 164 (1967), 1776-1779.
  • 39. Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
  • 40. S. W. Hawking and W. Israel (eds.), Three hundred years of gravitation, Cambridge University Press, Cambridge, 1987. MR 920445
  • 41. Bernard S. Kay and Robert M. Wald, Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere, Classical Quantum Gravity 4 (1987), no. 4, 893–898. MR 895907
  • 42. Roy P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963), 237–238. MR 0156674
  • 43. Johann Kronthaler, The Cauchy problem for the wave equation in the Schwarzschild geometry, J. Math. Phys. 47 (2006), no. 4, 042501, 29. MR 2226325, 10.1063/1.2186258
  • 44. J. Kronthaler, ``Decay rates for spherical scalar waves in the Schwarzschild geometry,'' arXiv:0709.3703.
  • 45. C. S. Morawetz, ``The decay of solutions of the exterior initial-boundary value problem for the wave equation'', Comm. Pure Appl. Math. 14 (1961), 561-568.
  • 46. R. Penrose, ``Gravitational collapse: The role of general relativity,''Rev. del Nuovo Cimento 1 (1969), 252-276.
  • 47. D. Robinson, ``Uniqueness of the Kerr black hole,'' Phys. Rev. Lett. 34 (1975), 905-906.
  • 48. Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR 526976
  • 49. A.A. Starobinsky, ``Amplification of waves during reflection from a black hole,'' Soviet Physics JETP 37 (1973), 28-32.
  • 50. S. Teukolsky, W.H. Press, ``Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation,'' Astrophys. J. 193 (1974), 443-461.
  • 51. Sanjay M. Wagh and Naresh Dadhich, The energetics of black holes in electromagnetic fields by the Penrose process, Phys. Rep. 183 (1989), no. 4, 137–192. MR 1025448, 10.1016/0370-1573(89)90156-7
  • 52. Robert M. Wald, General relativity, University of Chicago Press, Chicago, IL, 1984. MR 757180
  • 53. Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381–402. MR 626707
  • 54. Bernard F. Whiting, Mode stability of the Kerr black hole, J. Math. Phys. 30 (1989), no. 6, 1301–1305. MR 995773, 10.1063/1.528308
  • 55. Ya.B. Zel'dovich, ``Amplification of cylindrical electromagnetic waves from a rotating body,'' Soviet Physics JETP 35 (1972), 1085-1087.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 83C57, 35L15, 83C55

Retrieve articles in all journals with MSC (2000): 83C57, 35L15, 83C55


Additional Information

Felix Finster
Affiliation: NWF I – Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email: Felix.Finster@mathematik.uni-regensburg.de

Niky Kamran
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, H3A 2K6 Canada
Email: nkamran@math.mcgill.ca

Joel Smoller
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: smoller@umich.edu

Shing-Tung Yau
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 01238
Email: yau@math.harvard.edu

DOI: http://dx.doi.org/10.1090/S0273-0979-09-01258-0
Received by editor(s): January 9, 2008
Received by editor(s) in revised form: August 11, 2008, and February 18, 2009
Published electronically: May 5, 2009
Additional Notes: The first author’s research was supported in part by the Deutsche Forschungsgemeinschaft.
The second author’s research supported by NSERC grant RGPIN 105490-2004.
The third author’s research was supported in part by the National Science Foundation, Grant No. DMS-0603754.
The fourth author’s research was supported in part by the NSF, Grant No. 33-585-7510-2-30.
Article copyright: © Copyright 2009 American Mathematical Society