Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Linear waves in the Kerr geometry: A mathematical voyage to black hole physics
HTML articles powered by AMS MathViewer

by Felix Finster, Niky Kamran, Joel Smoller and Shing-Tung Yau PDF
Bull. Amer. Math. Soc. 46 (2009), 635-659 Request permission

Abstract:

This paper gives a survey of wave dynamics in the Kerr space-time geometry, the mathematical model of a rotating black hole in equilibrium. After a brief introduction to the Kerr metric, we review the separability properties of linear wave equations for fields of general spin $s=0,\frac {1}{2}, 1, 2$, corresponding to scalar, Dirac, electromagnetic fields and linearized gravitational waves. We give results on the long-time dynamics of Dirac and scalar waves, including decay rates for massive Dirac fields. For scalar waves, we give a rigorous treatment of superradiance and describe rigorously a mechanism of energy extraction from a rotating black hole. Finally, we discuss the open problem of linear stability of the Kerr metric and present partial results.
References
    ALP N. Andersson, P. Laguna, P. Papadopoulos, “Dynamics of scalar fields in the background of rotating black holes II: a note on superradiance,” gr-qc/9802059, Phys. Rev. D58 (1998) 087503. Batic D. Batic, “Scattering theory for Dirac particles in the Kerr-Newman geometry,” Dissertation, University of Regensburg, www.opus-bayern.de/uni-regensburg/volltexte/2005/551/ (2005).
  • Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177–267. MR 1908823
  • Hubert L. Bray, Black holes, geometric flows, and the Penrose inequality in general relativity, Notices Amer. Math. Soc. 49 (2002), no. 11, 1372–1381. MR 1936643
  • Pieter Blue, Decay of the Maxwell field on the Schwarzschild manifold, J. Hyperbolic Differ. Equ. 5 (2008), no. 4, 807–856. MR 2475482, DOI 10.1142/S0219891608001714
  • János Bognár, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York-Heidelberg, 1974. MR 0467261
  • Vitor Cardoso, Óscar J. C. Dias, José P. S. Lemos, and Shijun Yoshida, Black-hole bomb and superradiant instabilities, Phys. Rev. D (3) 70 (2004), no. 4, 044039, 9. MR 2113792, DOI 10.1103/PhysRevD.70.044039
  • C0 B. Carter,“Axisymmetric black hole has only two degrees of freedom,” Phys. Rev. Lett. 26 (1971), 331-332.
  • Brandon Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972) Gordon and Breach, New York, 1973, pp. 57–214. MR 0465047
  • Ch0 S. Chandrasekhar,“An introduction to the theory of the Kerr metric and its perturbations,” in “General Relativity, an Einstein centenary survey,” ed. S.W. Hawking and W. Israel, Cambridge University Press (1979).
  • Subrahmanyan Chandrasekhar, The mathematical theory of black holes, International Series of Monographs on Physics, vol. 69, The Clarendon Press, Oxford University Press, New York, 1983. Oxford Science Publications. MR 700826
  • CH1 S. Chandrasekhar,“Truth and Beauty—Aesthetics and Motivations in Science,”The University of Chicago Press (1987). Christo D. Christodoulou, “Reversible and irreversible transformations in black hole physics,”Phys. Rev. Lett. 25, 1956-1957. Christo2 D. Christodoulou, “The formation of black holes in general relativity,” arXiv:0805.3880 (2008). Christo3 D. Christodoulou, “On the role of vector fields in the analysis of Euler-Lagrange systems of partial differential equations”, private communication (2009).
  • Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
  • DR3 M. Dafermos, I. Rodnianski, “The redshift and radiation decay on black hole spacetimes,” arXiv:gr-qc/0512119. DR4 M. Dafermos, I. Rodnianski, “A note on energy currents and decay for the wave equation on a Schwarzschild background,” arXiv:0710.0171.
  • Mihalis Dafermos and Igor Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), no. 2, 381–457. MR 2199010, DOI 10.1007/s00222-005-0450-3
  • DR1 M. Dafermos, I. Rodnianski, “A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds,” arXiv:0805.4309.
  • Thierry Daudé, Propagation estimates for Dirac operators and application to scattering theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 2021–2083 (2005) (English, with English and French summaries). MR 2134232
  • Felix Finster, Joel Smoller, and Shing-Tung Yau, Non-existence of black hole solutions for a spherically symmetric, static Einstein-Dirac-Maxwell system, Comm. Math. Phys. 205 (1999), no. 2, 249–262. MR 1712611, DOI 10.1007/s002200050675
  • Felix Finster, Joel Smoller, and Shing-Tung Yau, Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background, J. Math. Phys. 41 (2000), no. 4, 2173–2194. MR 1751884, DOI 10.1063/1.533234
  • Felix Finster, Niky Kamran, Joel Smoller, and Shing-Tung Yau, Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry, Comm. Pure Appl. Math. 53 (2000), no. 7, 902–929. MR 1752438, DOI 10.1002/(SICI)1097-0312(200007)53:7<902::AID-CPA4>3.0.CO;2-4
  • Felix Finster, Niky Kamran, Joel Smoller, and Shing-Tung Yau, The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry, Adv. Theor. Math. Phys. 7 (2003), no. 1, 25–52. MR 2014957
  • F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry, Comm. Math. Phys. 230 (2002), no. 2, 201–244. MR 1936790, DOI 10.1007/s002200200648
  • F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, An integral spectral representation of the propagator for the wave equation in the Kerr geometry, Comm. Math. Phys. 260 (2005), no. 2, 257–298. MR 2177321, DOI 10.1007/s00220-005-1390-x
  • F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), no. 2, 465–503. MR 2215614, DOI 10.1007/s00220-006-1525-8
  • FKSY07 F. Finster, N. Kamran, J. Smoller and S.-T. Yau,“A rigorous treatment of energy extraction from a rotating black hole,” gr-qc/0701018, Commun. Math. Phys. 287 (2009), 829-847. FS0 F. Finster, J. Smoller, “Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry,” gr-qc/0607046, Adv. Theor. Math. Phys. 13 (2009), 71-110.
  • Felix Finster and Joel Smoller, A time-independent energy estimate for outgoing scalar waves in the Kerr geometry, J. Hyperbolic Differ. Equ. 5 (2008), no. 1, 221–255. MR 2405857, DOI 10.1142/S0219891608001453
  • Valeri P. Frolov and Igor D. Novikov, Black hole physics, Fundamental Theories of Physics, vol. 96, Kluwer Academic Publishers Group, Dordrecht, 1998. Basic concepts and new developments; Chapter 4 and Section 9.9 written jointly with N. Andersson. MR 1668599, DOI 10.1007/978-94-011-5139-9
  • S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186
  • Dietrich Häfner, Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Math. (Rozprawy Mat.) 421 (2003), 102 (French, with English summary). MR 2031494, DOI 10.4064/dm421-0-1
  • H2 D. Häfner, “Creation of fermions by rotating charged black-holes,” arXiv:math/0612501 (2006).
  • Dietrich Häfner and Jean-Philippe Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16 (2004), no. 1, 29–123. MR 2047861, DOI 10.1142/S0129055X04001911
  • Markus Heusler, Black hole uniqueness theorems, Cambridge Lecture Notes in Physics, vol. 6, Cambridge University Press, Cambridge, 1996. MR 1446003, DOI 10.1017/CBO9780511661396
  • I W. Israel,“Event horizons is static vacuum space-times,”Phys. Rev. 164 (1967), 1776-1779.
  • Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
  • S. W. Hawking and W. Israel (eds.), Three hundred years of gravitation, Cambridge University Press, Cambridge, 1987. MR 920445
  • Bernard S. Kay and Robert M. Wald, Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation $2$-sphere, Classical Quantum Gravity 4 (1987), no. 4, 893–898. MR 895907
  • Roy P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963), 237–238. MR 156674, DOI 10.1103/PhysRevLett.11.237
  • Johann Kronthaler, The Cauchy problem for the wave equation in the Schwarzschild geometry, J. Math. Phys. 47 (2006), no. 4, 042501, 29. MR 2226325, DOI 10.1063/1.2186258
  • K2 J. Kronthaler, “Decay rates for spherical scalar waves in the Schwarzschild geometry,” arXiv:0709.3703. morawetz C. S. Morawetz, “The decay of solutions of the exterior initial-boundary value problem for the wave equation”, Comm. Pure Appl. Math. 14 (1961), 561-568. Penrose R. Penrose, “Gravitational collapse: The role of general relativity,”Rev. del Nuovo Cimento 1 (1969), 252-276. R D. Robinson, “Uniqueness of the Kerr black hole,” Phys. Rev. Lett. 34 (1975), 905-906.
  • Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR 526976
  • S A.A. Starobinsky, “Amplification of waves during reflection from a black hole,” Soviet Physics JETP 37 (1973), 28-32. TeP S. Teukolsky, W.H. Press, “Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation,” Astrophys. J. 193 (1974), 443-461.
  • Sanjay M. Wagh and Naresh Dadhich, The energetics of black holes in electromagnetic fields by the Penrose process, Phys. Rep. 183 (1989), no. 4, 137–192. MR 1025448, DOI 10.1016/0370-1573(89)90156-7
  • Robert M. Wald, General relativity, University of Chicago Press, Chicago, IL, 1984. MR 757180, DOI 10.7208/chicago/9780226870373.001.0001
  • Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381–402. MR 626707
  • Bernard F. Whiting, Mode stability of the Kerr black hole, J. Math. Phys. 30 (1989), no. 6, 1301–1305. MR 995773, DOI 10.1063/1.528308
  • Z Ya.B. Zel’dovich, “Amplification of cylindrical electromagnetic waves from a rotating body,” Soviet Physics JETP 35 (1972), 1085-1087.
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 83C57, 35L15, 83C55
  • Retrieve articles in all journals with MSC (2000): 83C57, 35L15, 83C55
Additional Information
  • Felix Finster
  • Affiliation: NWF I – Mathematik, Universität Regensburg, 93040 Regensburg, Germany
  • Email: Felix.Finster@mathematik.uni-regensburg.de
  • Niky Kamran
  • Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, H3A 2K6 Canada
  • MR Author ID: 97615
  • Email: nkamran@math.mcgill.ca
  • Joel Smoller
  • Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
  • Email: smoller@umich.edu
  • Shing-Tung Yau
  • Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 01238
  • MR Author ID: 185480
  • ORCID: 0000-0003-3394-2187
  • Email: yau@math.harvard.edu
  • Received by editor(s): January 9, 2008
  • Received by editor(s) in revised form: August 11, 2008, and February 18, 2009
  • Published electronically: May 5, 2009
  • Additional Notes: The first author’s research was supported in part by the Deutsche Forschungsgemeinschaft.
    The second author’s research supported by NSERC grant RGPIN 105490-2004.
    The third author’s research was supported in part by the National Science Foundation, Grant No. DMS-0603754.
    The fourth author’s research was supported in part by the NSF, Grant No. 33-585-7510-2-30.
  • © Copyright 2009 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 46 (2009), 635-659
  • MSC (2000): Primary 83C57, 35L15, 83C55
  • DOI: https://doi.org/10.1090/S0273-0979-09-01258-0
  • MathSciNet review: 2525736