Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Taubes's proof of the Weinstein conjecture in dimension three


Author: Michael Hutchings
Journal: Bull. Amer. Math. Soc. 47 (2010), 73-125
MSC (2010): Primary 57R17, 57R57, 53D40
DOI: https://doi.org/10.1090/S0273-0979-09-01282-8
Published electronically: October 29, 2009
MathSciNet review: 2566446
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Does every smooth vector field on a closed three-manifold, for example the three-sphere, have a closed orbit? The answer is no, according to counterexamples by K. Kuperberg and others. On the other hand, there is a special class of vector fields, called Reeb vector fields, which are associated to contact forms. The three-dimensional case of the Weinstein conjecture asserts that every Reeb vector field on a closed oriented three-manifold has a closed orbit. This conjecture was recently proved by Taubes using Seiberg-Witten theory. We give an introduction to the Weinstein conjecture, the main ideas in Taubes's proof, and the bigger picture into which it fits.


References [Enhancements On Off] (What's this?)

  • 1. C. Abbas, The chord problem and a new method of filling by pseudoholomorphic curves, Int. Math. Res. Not. 2004, 913-927. MR 2037757 (2005a:53150)
  • 2. C. Abbas, K. Cieliebak, and H. Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005), 771-793. MR 2182700 (2006g:53135)
  • 3. P. Albers and H. Hofer, On the Weinstein conjecture in higher dimensions, Comment. Math. Helv. 84 (2009), 429-436. MR 2495800
  • 4. V. Arnold and B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences 125, Springer-Verlag, 1998. MR 1612569 (99b:58002)
  • 5. D. Auroux, La conjecture de Weinstein en dimension $ 3$ [d'après C.H. Taubes], Séminaire Bourbaki, 2008-2009, no. 1002.
  • 6. N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, 1990. MR 1215720 (94e:58130)
  • 7. R. Bott, Morse theory indomitable, Inst. Hautes Etudes Sci. Publ. Math. No. 68 (1988) 99-114. MR 1001450 (90f:58027)
  • 8. F. Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 2002, no. 30, 1571-1574. MR 1912277 (2003f:53157)
  • 9. F. Bourgeois, A Morse-Bott approach to contact homology, Symplectic and contact topology: Interactions and perspectives, 55-77, Fields Inst. Commum. 35, Amer. Math. Soc., 2003. MR 1969267 (2004a:53109)
  • 10. F. Bourgeois, K. Cieliebak, and T. Ekholm, A note on Reeb dynamics on the tight $ 3$-sphere, J. Modern Dynamics 1 (2007), 597-613. MR 2342700 (2008h:53150)
  • 11. F. Bourgeois, T. Ekholm, and Y. Eliashberg, A Legendrian surgery long exact sequence for linearized contact homology, in preparation.
  • 12. F. Bourgeois and K. Niederkrüger, Towards a good definition of algebraically overtwisted, arXiv:0709.3415
  • 13. K. Cieliebak and J. Mohnke, Compactness of punctured holomorphic curves, J. Symplectic Geom. 3 (2005), 589-654. MR 2235856 (2007b:53181)
  • 14. V. Colin, E. Giroux, and K Honda, Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. IHES 109 (2009), 245-293. MR 2511589
  • 15. V. Colin and K. Honda, Reeb vector fields and open book decompositions, arXiv:0809.5088.
  • 16. S.K. Donaldson, The Seiberg-Witten equations and $ 4$-manifold topology, Bull. Amer. Math. Soc. 33 (1996), 45-70. MR 1339810 (96k:57033)
  • 17. S.K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, Proceedings of the Kirbyfest (Berkeley, CA, 1998), 87-102, Geom. Topol. Monogr. 2, Geom. Topol. Publ., 1999. MR 1734402 (2001f:57033)
  • 18. Y. Eliashberg, Classification of overtwisted contact structures on $ 3$-manifolds, Invent. Math. 98 (1989), 623-637. MR 1022310 (90k:53064)
  • 19. Y. Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989), 45-67, London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, 1990. MR 1171908 (93g:53060)
  • 20. Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. 2000, Special Volume, Part II, 560-673. MR 1826267 (2002e:53136)
  • 21. J. Etnyre, Introductory lectures on contact geometry, Proc. Sympos. Pure Math. 71, pp. 81-107, Amer. Math. Soc. 2003. MR 2024631 (2005b:53139)
  • 22. J. Etnyre, Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, 103-141, Clay Math. Proc. 5, Amer. Math. Soc., 2006. MR 2249250 (2007g:57042)
  • 23. O. Garcia-Prada, A direct existence proof for the vortex equations over a compact Riemann surface, Bull. London Math. Soc. 26 (1994), 88-96. MR 1246476 (95d:53025)
  • 24. H. Geiges, An introduction to contact topology, Cambridge University Press, 2008. MR 2397738 (2008m:57064)
  • 25. V. Ginzburg, The Weinstein conjecture and theorems of nearby and almost existence, The Breadth of Symplectic and Poisson Geometry, Festschrift in Honor of Alan Weinstein, Birkhäuser (2005), 139-172. MR 2103006 (2005m:53168)
  • 26. V. Ginzburg and B. Gürel, A $ C^2$-smooth counterexample to the Hamiltonian Seifert conjecture in $ \mathbb{R}^4$, Ann. of Math. (2) 158 (2003), 953-976. MR 2031857 (2005e:37133)
  • 27. E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the ICM, Beijing, 2002, Vol. II, 405-414. MR 1957051 (2004c:53144)
  • 28. J. Harrison, $ C^2$ counterexamples to the Seifert conjecture, Topology 27 (1998), 249-278. MR 963630 (89m:58167)
  • 29. H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), 515-563. MR 1244912 (94j:58064)
  • 30. H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), 125-255. MR 1954266 (2004a:53108)
  • 31. H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser, 1994. MR 1306732 (96g:58001)
  • 32. M. Hutchings, The embedded contact homology index revisited, arXiv:0805.1240, to appear in the Yashafest proceedings.
  • 33. M. Hutchings and M. Sullivan, Rounding corners of polygons and the embedded contact homology of $ T^3$, Geom. Topol. 10 (2006), 269-266. MR 2207793 (2006k:53150)
  • 34. M. Hutchings and C.H. Taubes, An introduction to the Seiberg-Witten equations on symplectic four-manifolds, Symplectic geometry and topology (Park City, UT, 1997), 103-142, Amer. Math. Soc., 1999. MR 1702943 (2000j:57066)
  • 35. M. Hutchings and C.H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom. 5 (2007), 43-137. MR 2371184 (2008k:53201)
  • 36. M. Hutchings and C.H. Taubes, The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol. 13 (2009), 901-941. MR 2470966
  • 37. A. Jaffe and C.H. Taubes, Vortices and monopoles. Structure of static gauge theories, Progress in Physics, 2. Birkhäuser, Boston, 1980. MR 614447 (82m:81051)
  • 38. P.B. Kronheimer and T.S. Mrowka, Monopoles and three-manifolds, Cambridge University Press, 2007. MR 2388043 (2009f:57049)
  • 39. G. Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71 (1996), 70-97. MR 1371679 (96m:58199)
  • 40. G. Kuperberg and K. Kuperberg, Generalized counterexamples to the Seifert conjecture, Ann. of Math. (2) 143 (1996), 547-576. MR 1394969 (97k:57031a)
  • 41. K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2) 140 (1994), 723-732. MR 1307902 (95g:57040)
  • 42. H. Lawson and M. Michelson, Spin geometry, Princeton University Press, 1989. MR 1031992 (91g:53001)
  • 43. Y-J. Lee and C.H. Taubes, Periodic Floer homology and Seiberg-Witten Floer cohomology, arXiv:0906.0383.
  • 44. MSRI Hot Topics Workshop, Contact structures, dynamics and the Seiberg-Witten equations in dimension $ 3$, June 2008, videos at www.msri.org.
  • 45. D. McDuff and D. Salamon, Introduction to symplectic topology, 2nd edition, Oxford University Press, 1998. MR 1698616 (2000g:53098)
  • 46. G. Meng and C.H. Taubes, $ \underline{SW}=\textit{Milnor torsion}$, Math. Res. Lett. 3 (1996), 661-674. MR 1418579 (98j:57049)
  • 47. K. Mohnke, Holomorphic disks and the chord conjecture, Ann. of Math. (2) 154 (2001), 219-222. MR 1847594 (2002f:53147)
  • 48. J. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton Univ. Press, 1996. MR 1367507 (97d:57042)
  • 49. Y-G. Oh and K. Zhu, Embedding property of $ J$-holomorphic curves in Calabi-Yau manifolds for generic $ J$, arXiv:0805.3581.
  • 50. P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027-1158. MR 2113019 (2006b:57016)
  • 51. P. Ozsváth and Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), 326-400. MR 2222356 (2007i:57029)
  • 52. T. Perutz, Lagrangian matching invariants for fibred four-manifolds: I, Geom. Topol. 11 (2007), 759-828. MR 2302502 (2008e:53175)
  • 53. P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math 31 (1978), 157-184. MR 0467823 (57:7674)
  • 54. A. Rechtman, Existence of periodic orbits for geodesible vector fields on closed $ 3$-manifolds, arXiv:0904.2719.
  • 55. J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), 1-33. MR 1331677 (96d:58021)
  • 56. M. Schwarz, Morse homology, Progress in Mathematics, Birkhäuser, 1993. MR 1239174 (95a:58022)
  • 57. M. Schwarz, On the action spectrum for closed symplectially aspherical manifolds, Pac. J. Math. 193 (2000), 419-461. MR 1755825 (2001c:53113)
  • 58. P. Schweizer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386-400. MR 0356086 (50:8557)
  • 59. C.H. Taubes, $ Gr\Rightarrow SW$: From pseudo-holomorphic curves to Seiberg-Witten solutions, J, Diff. Geom. 51 (1999), 203-334. MR 1728301 (2000i:53123)
  • 60. C.H. Taubes, $ SW\Rightarrow Gr$: From the Seiberg-Witten equations to pseudo-holomorphic curves, in ``Seiberg-Witten and Gromov invariants for symplectic 4-manifolds'', Internat. Press, 2000.
  • 61. C.H. Taubes, Seiberg-Witten and Gromov invariants for symplectic $ 4$-manifolds, First International Press Lecture Series 2, International Press, 2000. MR 1798809 (2002j:53115)
  • 62. C.H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202. MR 2350473 (2009b:57055)
  • 63. C.H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field, Geom. Topol. 13 (2009), 1337-1417. MR 2496048
  • 64. C.H. Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007), 569-587. MR 2379805 (2009a:58025)
  • 65. C.H. Taubes, An observation concerning uniquely ergodic vector fields on $ 3$-manifolds, arXiv:0811.3983.
  • 66. C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, arXiv:0811.3985.
  • 67. C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology II-IV, preprints, 2008.
  • 68. C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology V, preprint, 2008.
  • 69. V. Turaev, A combinatorial formulation for the Seiberg-Witten invariants of $ 3$-manifolds, Math. Res. Lett. 5 (1998), 583-598. MR 1666856 (2000c:57027)
  • 70. M. Usher, Vortices and a TQFT for Lefschetz fibrations on $ 4$-manifolds, Algebr. Geom. Topol. 6 (2006), 1677-1743. MR 2263047 (2007g:53101)
  • 71. C. Viterbo, A proof of Weinstein's conjecture in $ \mathbb{R}^{2n}$, Annales de l'Institut Henri Poincaré Anal. Non Linéaire, 4 (1987), 337-356. MR 917741 (89d:58048)
  • 72. A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), 507-518. MR 512430 (80g:58034)
  • 73. A. Weinstein, On the hypothesis of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979), 353-358. MR 543704 (81a:58030b)
  • 74. E. Witten, From superconductors and four-manifolds to weak interactions, Bull. Amer. Math. Soc. 44 (2007), 361-391. MR 2318156 (2008e:58021)
  • 75. E. Zehnder, Remarks on periodic solutions on hypersurfaces, Periodic solutions of Hamiltonian systems and related topics, Reidel Publishing Co. (1987), 267-279. MR 920629 (89b:58083)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 57R17, 57R57, 53D40

Retrieve articles in all journals with MSC (2010): 57R17, 57R57, 53D40


Additional Information

Michael Hutchings
Affiliation: Mathematics Department, 970 Evans Hall, University of California, Berkeley, California 94720
Email: hutching@math.berkeley.edu

DOI: https://doi.org/10.1090/S0273-0979-09-01282-8
Received by editor(s): June 11, 2009
Received by editor(s) in revised form: August 26, 2009
Published electronically: October 29, 2009
Additional Notes: Partially supported by NSF grant DMS-0806037
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society