Von Neumann's comments about existence and uniqueness for the initialboundary value problem in gas dynamics
Author:
Denis Serre
Journal:
Bull. Amer. Math. Soc. 47 (2010), 139144
MSC (2010):
Primary 01A60, 35L65, 35L67, 35Q35, 35Q85, 76N10, 76N15, 76P05, 85A30
Published electronically:
October 15, 2009
MathSciNet review:
2566448
Fulltext PDF
References 
Similar Articles 
Additional Information
 1.
Alberto
Bressan, Hyperbolic systems of conservation laws, Oxford
Lecture Series in Mathematics and its Applications, vol. 20, Oxford
University Press, Oxford, 2000. The onedimensional Cauchy problem. MR 1816648
(2002d:35002)
 2.
GuiQiang
Chen and Mikhail
Feldman, Potential theory for shock reflection by a largeangle
wedge, Proc. Natl. Acad. Sci. USA 102 (2005),
no. 43, 15368–15372. MR 2188921
(2006f:35214), http://dx.doi.org/10.1073/pnas.0505549102
 3.
Ronald
J. DiPerna, Convergence of the viscosity method for isentropic gas
dynamics, Comm. Math. Phys. 91 (1983), no. 1,
1–30. MR
719807 (85i:35118)
 4.
James
Glimm, Solutions in the large for nonlinear hyperbolic systems of
equations, Comm. Pure Appl. Math. 18 (1965),
697–715. MR 0194770
(33 #2976)
 5.
S.
N. Kružkov, Generalized solutions of the Cauchy problem in
the large for first order nonlinear equations, Dokl. Akad. Nauk. SSSR
187 (1969), 29–32 (Russian). MR 0249805
(40 #3046)
 6.
P.
D. Lax, Hyperbolic systems of conservation laws. II, Comm.
Pure Appl. Math. 10 (1957), 537–566. MR 0093653
(20 #176)
 7.
Jeffrey
Rauch, BV estimates fail for most quasilinear hyperbolic systems in
dimensions greater than one, Comm. Math. Phys. 106
(1986), no. 3, 481–484. MR 859822
(87m:35139)
 1.
 A. Bressan. Hyperbolic systems of conservation laws. Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford (2000). MR 1816648 (2002d:35002)
 2.
 G.Q. Chen and M. Feldman. Potential theory for shock reflection by a largeangle wedge. Proc. Nat. Acad. Sci. USA, 102 (2005), pp. 1536815372. MR 2188921 (2006f:35214)
 3.
 R. J. DiPerna. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys., 91 (1983) pp. 130. Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal., 82 (1983), pp. 2770. MR 719807 (85i:35118)
 4.
 J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18 (1965), pp. 697715. MR 0194770 (33:2976)
 5.
 S. Kruzkov. Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order. Dokl. Akad. Nauk SSSR, 187 (1969), pp. 2932. MR 0249805 (40:3046)
 6.
 P. D. Lax. Hyperbolic systems of conservation laws (II). Comm. Pure Appl. Math., 10 (1957), pp. 537566. MR 0093653 (20:176)
 7.
 J. Rauch. BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one. Comm. Math. Phys., 106 (1986), pp. 481484. MR 859822 (87m:35139)
Similar Articles
Retrieve articles in Bulletin of the American Mathematical Society
with MSC (2010):
01A60,
35L65,
35L67,
35Q35,
35Q85,
76N10,
76N15,
76P05,
85A30
Retrieve articles in all journals
with MSC (2010):
01A60,
35L65,
35L67,
35Q35,
35Q85,
76N10,
76N15,
76P05,
85A30
Additional Information
Denis Serre
Affiliation:
École Normale Supérieure de Lyon, D. S.: UMPA, CNRS UMR 5669. ENS de Lyon, 46 allée d’Italie. F69364 Lyon, cedex 07, France
DOI:
http://dx.doi.org/10.1090/S0273097909012865
PII:
S 02730979(09)012865
Received by editor(s):
September 8, 2009
Published electronically:
October 15, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
