Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: James E. Humphreys
Title: Representations of semisimple Lie algebras in the BGG category $ \mathcal O$
Additional book information: Graduate Studies in Mathematics, Vol. 94, American Mathematical Society, Providence, RI, 2008, xvi+289 pp., ISBN 978-0-8218-4678-0

References [Enhancements On Off] (What's this?)

  • [BFK99] Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $ U( {\mathfrak{sl}}\sb 2)$ via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199-241. MR 1714141 (2000i:17009)
  • [BG80] Joseph N. Bernstein and Sergei I. Gelfand, Tensor products of finite and infinite representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285. MR 581584 (82c:17003)
  • [BGG76] Joseph N. Bernstein, Israel M. Gelfand, and Sergei I. Gelfand, Category of $ {\mathfrak{g}}$-modules, Functional Analysis and its Applications 10 (1976), 87-92. MR 0407097 (53:10880)
  • [Dix74] Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Gauthier-Villars, 1974. MR 0498737 (58:16803a)
  • [Jan79] Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, 1979. MR 552943 (81m:17011)
  • [Jan83] -, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik, vol. 3, Springer, 1983. MR 721170 (86c:17011)
  • [MP95] Robert V. Moody and Arturo Pianzola, Lie algebras with triangular decompositions, John Wiley & Sons, New York, 1995. MR 1323858 (96d:17025)
  • [Str05] Catharina Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005), no. 3, 547-596. MR 2120117 (2005i:17011)

Review Information:

Reviewer: Wolfgang Soergel
Affiliation: Mathematisches Institut Albert-Ludwigs-Universität Freiburg, Germany
Journal: Bull. Amer. Math. Soc. 47 (2010), 367-371
MSC (2000): Primary 17B10; Secondary 20G05, 22E47
Published electronically: July 13, 2009
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society