Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Geometric cycles, arithmetic groups and their cohomology


Author: Joachim Schwermer
Journal: Bull. Amer. Math. Soc. 47 (2010), 187-279
MSC (2000): Primary 11F75, 22E40; Secondary 11F70, 57R95
DOI: https://doi.org/10.1090/S0273-0979-10-01292-9
Published electronically: February 2, 2010
MathSciNet review: 2594629
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is the aim of this article to give a reasonably detailed account of a specific bundle of geometric investigations and results pertaining to arithmetic groups, the geometry of the corresponding locally symmetric space $ X/\Gamma$ attached to a given arithmetic subgroup $ \Gamma \subset G$ of a reductive algebraic group $ G$ and its cohomology groups $ H^{\ast}(X/\Gamma, \C)$. We focus on constructing totally geodesic cycles in $ X/\Gamma$ which originate with reductive subgroups $ H \subset G$. In many cases, it can be shown that these cycles, to be called geometric cycles, yield non-vanishing (co)homology classes. Since the cohomology of an arithmetic group $ \Gamma$ is strongly related to the automorphic spectrum of $ \Gamma$, this geometric construction of non-vanishing classes leads to results concerning, for example, the existence of specific automorphic forms.


References [Enhancements On Off] (What's this?)

  • 1. I. AGOL, Virtual Betti numbers of symmetric spaces, arXiv:math/0611828v1.
  • 2. A. A. ALBERT AND N. JACOBSON, On reduced exceptional simple Jordan algebras, Ann. of Math. (2) 66 (1957), 400-417. MR 0088487 (19:527b)
  • 3. R.C. ALPERIN, An elementary account of Selberg's lemma, L'Enseign. Math. 33 (1987), 269-273. MR 925989 (89f:20051)
  • 4. A. ASH, Non-square-integrable cohomology of arithmetic groups, Duke Math. J. 47 (1980), 435-449. MR 575906 (82m:22013)
  • 5. A. ASH, A note on minimal modular symbols, Proc. Amer. Math. Soc. 96 (1986), 394-396. MR 822426 (87e:22024)
  • 6. A. ASH, Non-minimal modular symbols for GL(n), Invent. Math. 91 (1988), 483-491. MR 928493 (89c:11089)
  • 7. A. ASH, A. BOREL, Generalized modular symbols, In: Cohomology of Arithmetic Groups and Automorphic Forms, ed. J.-P. Labesse , J. Schwermer, Lecture Notes in Math. 1447 (1990), 57-75. MR 1082962 (92e:11058)
  • 8. A. ASH, D. GINZBURG, S. RALLIS, Vanishing periods of cusp forms over modular symbols, Math. Ann. 296 (1993), 709-723 MR 1233493 (94f:11044)
  • 9. A. ASH, D. GINZBURG, Generalized modular symbols and relative Lie algebra cohomology, Pacific J. Math. 175 (1996), 337-355. MR 1432835 (98g:11057)
  • 10. A. ASH AND L. RUDOLPH, The modular symbol and continued fractions in higher dimensions, Invent. Math. 55 (1979), 241-250. MR 553998 (82g:12011)
  • 11. N. BERGERON, Lefschetz properties for arithmetic real and complex hyperbolic manifolds, Int. Math. Research Notices 20 (2003), 1089-1122. MR 1963482 (2004a:11040)
  • 12. N. BERGERON, Restriction de la cohomologie d'une variété de Shimura à ses sous-variétés, Transformation Groups 14 (2009), 41-86. MR 2480852
  • 13. L. BIANCHI, Sui gruppi di sostitutioni lineari con coefficienti a corpi quadratici imaginari, Math. Ann. 40 (1892), 332-411. MR 1510727
  • 14. D. BIRKES, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459-475. MR 0296077 (45:5138)
  • 15. A. BOREL, Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969. MR 0244260 (39:5577)
  • 16. A. BOREL, Stable real cohomology of arithmetic groups, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 235-272. MR 0387496 (52:8338)
  • 17. A. BOREL, Cohomologie de sous-groupes discrets et représentations de groupes semi-simples, Astérisque 32-33 (1976), 73-112. MR 0578913 (58:28282)
  • 18. A. BOREL, Commensurability classes and volumes of hyperbolic $ 3$-manifolds. Ann. Scuola Norm. Sup. Pisa 8 (1981), 1-33. MR 616899 (82j:22008)
  • 19. A. BOREL, HARISH-CHANDRA, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. MR 0147566 (26:5081)
  • 20. A. BOREL, H. JACQUET, Automorphic forms and automorphic representations, In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. 33 I, Amer. Math. Soc., Providence, RI, 1979, pp. 189-202. MR 546598 (81m:10055)
  • 21. A. BOREL, J.-P. LABESSE, J. SCHWERMER, On the cuspidal cohomology of S-arithmetic groups of reductive groups over number fields, Compositio Math. 102 (1996), 1-40. MR 1394519 (97j:11026)
  • 22. A. BOREL, J.-P. SERRE, Corners and arithmetic groups, Comment. Math. Helvet. 48 (1973), 436-491. MR 0387495 (52:8337)
  • 23. A. BOREL, N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Ann. Math. Studies 94, Princeton: Princeton University Press, 1980. MR 554917 (83c:22018)
  • 24. G. BREDON, Topology and Geometry, Graduate Texts in Math. 139, New York-Berlin-Heidelberg: Springer-Verlag, 1993. MR 1224675 (94d:55001)
  • 25. G. BREDON, Sheaf Theory, 2nd edition, Graduate Texts in Math. 170, New York-Berlin-Heidelberg: Springer-Verlag, 1997. MR 1481706 (98g:55005)
  • 26. M.R. BRIDSON, A. HAEFLIGER, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. Bd. 319, Berlin-Heidelberg-New York: Springer-Verlag, 1999. MR 1744486 (2000k:53038)
  • 27. M. BURGER, J.-S. LI, P. SARNAK, Ramanujan duals and automorphic spectrum, Bull. Amer. Math. Soc. 26 (1992), 253-257. MR 1118700 (92h:22023)
  • 28. L. CLOZEL, On the cuspidal cohomology of arithmetic subgroups of $ SL(2n)$ and the first Betti number of arithmetic $ 3$-manifolds, Duke Math. J. 55 (1987), 475-486. MR 894591 (88m:22022)
  • 29. L. CLOZEL AND T.N. VENKATARAMANA, Restriction of the holomorphic cohomology of a Shimura variety to a smaller Shimura variety, Duke Math, J. 95 (1998), 51-106. MR 1646542 (99g:11077)
  • 30. J. COGDELL, Arithmetic cycles on Picard modular surfaces and modular forms of Nebentypus, J. Reine Angew. Math. 357 (1985), 115-137. MR 783537 (86m:11030)
  • 31. A. DOLD, Lectures on Algebraic Topology, Grundlehren Math. Wiss. Bd. 200, Berlin-Heidelberg-New York: Springer-Verlag, 1972. MR 0415602 (54:3685)
  • 32. N. DUNFIELD AND W.P. THURSTON, The virtual Haken conjecture: Experiments and examples. Geometric Topol. 7 (2003), 399-441. MR 1988291 (2004i:57024)
  • 33. J. ELSTRODT, F. GRUNEWALD, J. MENNICKE, Groups acting on hyperbolic space. Berlin-Heidelberg-New York: Springer-Verlag, 1997. MR 1483315 (98g:11058)
  • 34. T. ENRIGHT, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J. 46 (1979), 513-525. MR 544243 (81i:22007)
  • 35. F. FARELL, P. ONTANEDA, M.S. RAGHUNATHAN, Non-univalent harmonic maps homotopic to diffeomorphisms, J. Differential Geometry 54 (2000), 227-253. MR 1818179 (2002e:58026)
  • 36. J. FRANKE, Harmonic analysis in weighted $ L_2$-spaces, Ann. Sci. Ecole Norm. Sup. (4) 31 (1998), 181-279. MR 1603257 (2000f:11065)
  • 37. J. FRANKE, A topological model for some summand of the Eisenstein cohomology of congruence subgroups, [preprint 1991]. In: Eisenstein Series and Applications, Progress Math. 258, pp. 27-85, Berlin-Heidelberg-New York: Birkhäuser-Verlag, 2008. MR 2402680 (2009i:11069)
  • 38. J. FRANKE AND J. SCHWERMER, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), 765-790. MR 1637980 (99k:11077)
  • 39. W. FULTON, Intersection Theory, Ergebnisse der Mathematik (3), vol. 2, Berlin-Heidelberg-New York: Springer-Verlag, 1984. MR 732620 (85k:14004)
  • 40. J. FUNKE AND J.J. MILLSON, Cycles in hyperbolic manifolds of non-compact type and Fourier coefficients of Siegel modular forms, Manuscripta Math. 107 (2002), 409-444. MR 1906769 (2003d:11070)
  • 41. J. FUNKE AND J.J. MILLSON, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, Amer. J. Math. 128 (2006), 899-948. MR 2251589 (2007i:11068)
  • 42. J. FUNKE AND J.J. MILLSON, Boundary behaviour of special cohomology classes arising from the Weil representation, preprint 2007.
  • 43. M. GORESKY, Compactifications and cohomology of modular varieties, In: Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc. 4, pp. 551-582, Amer. Math. Soc., Providence, RI, 2005. MR 2192016 (2006h:14033)
  • 44. G. GOTSBACHER AND J. SCHWERMER, Automorphic cohomology of arithmetically defined hyperbolic $ n$-manifolds, forthcoming.
  • 45. M. GROMOV AND I. PIATETSKI-SHAPIRO, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. Inst. Hautes Études Sci. 66 (1988), 93-103. MR 932135 (89j:22019)
  • 46. F. GRUNEWALD AND S. K¨UHNLEIN, On the proof of Humbert's volume formula, Manuscripta Math. 95 (1998), 431-436. MR 1618190 (99h:11044)
  • 47. F. GRUNEWALD AND J. SCHWERMER, Arithmetic quotients of hyperbolic $ 3$-space, cusp forms and link complements, Duke Math. J. 48 (1981), 351-358. MR 620254 (82j:10046)
  • 48. F. GRUNEWALD AND J. SCHWERMER, Free non-abelian quotients of $ SL_2$ over orders of imaginary quadratic number fields, J. Algebra 69 (1981), 298-304. MR 617080 (82i:10027)
  • 49. F. GRUNEWALD AND J. SCHWERMER, A non-vanishing theorem for the cuspidal cohomology of $ SL_2$ over imaginary quadratic integers, Math. Ann. 258 (1981), 183-200. MR 641824 (83c:10032)
  • 50. P. E. GUNNELLS, Modular symbols for $ \Q$-rank one groups and Voronoĭ reduction, J. Number Theory 75 (1999), 198-219. MR 1681629 (2000c:11084)
  • 51. P. E. GUNNELLS, Symplectic modular symbols, Duke Math. J. 102 (2000), 329-350. MR 1749441 (2001i:11062)
  • 52. G. HARDER, On the cohomology of $ SL(2, \mathcal {O} )$, In: Lie groups and their representations. Proc. of the Summer School on Group Representations. pp. 139-150. London: Hilger, 1975. MR 0425019 (54:12977)
  • 53. G. HARDER, On the cohomology of discrete arithmetically defined groups, In: Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), pp. 129-160. Oxford Univ. Press, Bombay, 1975. MR 0425018 (54:12976)
  • 54. G. HARDER, General aspect in the theory of modular symbols, Séminaire de théorie des nombres, Progress Math. 38, pp. 72-88. Boston: Birkhäuser, 1983. MR 729161 (85h:11032)
  • 55. G. HARDER, Eisenstein cohomology of arithmetic groups. The case $ GL_2$, Invent. Math. 89 (1987), no. 1, 37-118. MR 892187 (89b:22018)
  • 56. G. HARDER, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup.(4) 4 (1971), 409-455. MR 0309145 (46:8255)
  • 57. G. HARDER, R.P. LANGLANDS AND M. RAPOPORT, Algebraische Zyklen auf Hilbert-Blumenthal-flächen, J. Reine Angew. Math. 366 (1986), 53-120. MR 833013 (87k:11066)
  • 58. HARISH-CHANDRA, Automorphic Forms on Semi-Simple Lie Groups, Lecture Notes in Math. 62. Berlin-Heidelberg-New York: Springer-Verlag, 1968. MR 0232893 (38:1216)
  • 59. M. HARRIS AND J. S. LI, Lefschetz property for subvarieties of Shimura varieties, J. Algebraic Geometry 7 (1998), 77-122. MR 1620690 (99e:14027)
  • 60. S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, New York and London: Academic Press, 1962. MR 514561 (80k:53081)
  • 61. F. HIRZEBRUCH AND D. ZAGIER, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57-113. MR 0453649 (56:11909)
  • 62. N. JACOBSON, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55-80. MR 0101253 (21:66)
  • 63. N. JACOBSON, Some groups of transformations defined by Jordan algebras I, J. Reine Angew. Math. 201 (1959), 178-195. MR 0106936 (21:5666)
  • 64. N. JACOBSON, Some groups of transformations defined by Jordan algebras II, Groups of type $ F_{4}$, J. Reine Angew. Math. 204 (1960), 7-98. MR 0159849 (28:3065)
  • 65. N. JACOBSON, Finite-dimensional Division Algebras over Fields, Berlin-Heidelberg: Springer-Verlag, 1996. MR 1439248 (98a:16024)
  • 66. H. JACQUET AND R.P. LANGLANDS, Automorphic Forms on $ GL(2)$, Lecture Notes in Math., 114, Berlin-Heidelberg-New York: Springer-Verlag, 1970. MR 0401654 (53:5481)
  • 67. H. JACQUET, E. LAPID AND J. ROGAWSKI, Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173-240. MR 1625060 (99c:11056)
  • 68. H. JACQUET, I. PIATETSKI-SHAPIRO, J. SHALIKA, Relèvement cubique non normal, C.R. Acad. Sci. Paris 292 (1981), 567-571. MR 615450 (82i:10035)
  • 69. E. KLEINERT, Units of classical orders: A survey, L'Enseignement Mathématique 40 (1994), 205-248. MR 1309127 (95k:11151)
  • 70. A. KNAPP, D. VOGAN, Cohomological Induction and Unitary Representations, Princeton: Princeton University Press, 1995. MR 1330919 (96c:22023)
  • 71. M.-A. KNUS, A. MERKURJEV, M. ROST AND J.-P. TIGNOL, The Book of Involutions, Colloquium Publications 44. Amer. Math. Soc., 1998. MR 1632779 (2000a:16031)
  • 72. T. KOBAYASHI, T. ODA, A vanishing theorem for modular symbols on locally symmetric spaces, Comment. Math. Helv. 73 (1998), 45-70. MR 1610583 (99b:11052)
  • 73. J.-L. KOSZUL, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65-127. MR 0036511 (12:120g)
  • 74. S. KUDLA, Intersection numbers for quotients of the complex $ 2$-ball and Hilbert modular forms, Invent. Math. 47 (1978), 189-208. MR 501929 (80a:10044)
  • 75. S. KUDLA, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), 39-78. MR 1427845 (98e:11058)
  • 76. S. KUDLA, J. MILLSON, Geodesic cycles and the Weil representation - I. Quotients of hyperbolic space and Siegel modular forms, Compositio Math. 45 (1982), 207-271. MR 651982 (83m:10037)
  • 77. S. KUDLA, J. MILLSON, The theta correspondence and harmonic forms I, Math. Ann. 274 (1986), 353-378; II, 277 (1987), 267-314. MR 842618 (88b:11023)
  • 78. S. KUDLA, J. MILLSON, Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math. Inst. Hautes Études Sci., 71 (1990), 121-170. MR 1079646 (92e:11035)
  • 79. S. KUDLA, M. RAPOPORT, T, YANG, Modular Forms and Special Cycles on Shimura Curves, Annals of Mathematics Studies 161, Princeton: Princeton University Press, 2006. MR 2220359 (2007i:11084)
  • 80. J.P. LABESSE AND J. SCHWERMER, On liftings and cusp cohomology of arithmetic groups, Invent. Math. 83 (1986), 383-401. MR 818358 (87g:11060)
  • 81. J.F. LAFONT, B. SCHMIDT, On submanifolds in locally symmetric spaces of noncompact type, Algebraic & Geometric Topology 6 (2006), 2455-2472. MR 2286032 (2008b:57041)
  • 82. R.P. LANGLANDS, Base Change for $ GL(2)$, Ann. of Math. Studies, vol. 96, Princeton: Princeton University Press, 1980. MR 574808 (82a:10032)
  • 83. R.P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, In: Representation Theory and Harmonic Analysis in Semisimple Lie Groups, Math. Surveys Monogr. 31, pp. 101-170, American Math. Soc., Providence, 1989. MR 1011897 (91e:22017)
  • 84. R. LEE AND J. SCHWERMER, The Lefschetz number of an involution on the space of cusp forms of $ SL_{3}$, Invent. Math. 73 (1983), 189-239. MR 714089 (84k:22016)
  • 85. R. LEE AND J. SCHWERMER, Geometry and arithmetic cycles attached to $ SL_{3}(\Z)$-I, Topology 25 (1986), 159-174. MR 837619 (87h:22015)
  • 86. J.-S. LI, Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428 (1992), 177-217. MR 1166512 (93e:11067)
  • 87. J.-S. LI AND J.J. MILLSON, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J. 71 (1993), 365-401. MR 1233441 (94e:11062)
  • 88. J.-S. LI AND J. SCHWERMER, Constructions of automorphic forms and related cohomology classes for arithmetic subgroups of $ G_{2}$, Compositio Math. 87 (1993), 45-78. MR 1219452 (96b:11071)
  • 89. J.-S. LI AND J. SCHWERMER, Automorphic representations and cohomology of arithmetic groups, In: Challenges for the 21st century (Singapore, 2000), 102-137, World Sci. Publishing, 2001. MR 1875016 (2003c:11051)
  • 90. J.-S. LI AND J. SCHWERMER, On the Eisenstein cohomology of arithmetic groups, Duke Math. J. 123 (2004), 141-169. MR 2060025 (2005h:11108)
  • 91. J.-S. LI AND J. SCHWERMER, On the cuspidal cohomology of arithmetic groups, Amer. J. Math. 131 (2009), 1431-1464.
  • 92. A. LUBOTZKY, Free quotients and the first Betti number of some hyperbolic manifolds, Transformation Groups 1 (1996), 71-82. MR 1390750 (97d:57016)
  • 93. C. MACLACHLAN AND A. REID, The Arithmetic of Hyperbolic $ 3$-manifolds, Graduate Texts in Math. 219, Berlin-Heidelberg-New York: Springer-Verlag, 2003. MR 1937957 (2004i:57021)
  • 94. G.A. MARGULIS AND E. VINBERG, Some linear groups virtually having a free quotient, J. Lie Theory 10 (2000), 171-180. MR 1748082 (2001h:22016)
  • 95. Y. MATSUSHIMA, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. Journal 14 (1962), 1-20. MR 0141138 (25:4549)
  • 96. B. MAZUR, Courbes elliptiques et symboles modulaires. Séminaire Boubaki 1971/72. exp. 414, In: Lecture Notes in Math., 317, pp. 277-294, Berlin-Heidelberg-New York: Springer-Verlag, 1973. MR 0429921 (55:2930)
  • 97. E. MENDOZA, Cohomology of $ PGL_2$ over imaginary quadratic integers, Bonner Math. Schriften 128. Math. Institut, Universität Bonn, Bonn, 1980. MR 611515 (82g:22012)
  • 98. A. MEYER, Zur Theorie der indefiniten quadratischen Formen, J. Reine Angew. Math. 108 (1891), 125-139.
  • 99. J. MILLSON, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976), 235-247. MR 0422501 (54:10488)
  • 100. J. MILLSON, A remark on Raghunathan's vanishing theorem, Topology 24 (1985), 495-498. MR 816528 (87g:22010)
  • 101. J. MILLSON, Cycles and harmonic forms on locally symmetric spaces, Canad. Math. Bull. 28 (1985), 3-38. MR 778258 (87b:11038)
  • 102. J. MILLSON AND M.S. RAGHUNATHAN, Geometric construction of cohomology for arithmetic groups I. In: Geometry and Analysis (Papers dedicated to the memory of V. K. Patodi), pp. 103-123, Indian Academy of Sciences, Bangalore, 1980. MR 592256 (81m:22020)
  • 103. J. MILNOR AND J. STASHEFF, Characteristic classes, Ann. of Math. Studies, vol.76, Princeton: Princeton University Press, 1974. MR 0440554 (55:13428)
  • 104. H. MINKOWSKI, Über den arithmetischen Begriff der Äquivalenz und über die endlichen Gruppen linearer ganzzahliger Substitutionen, J. Reine Angew. Math. 100 (1887), 449-458.
  • 105. H. MINKOWSKI, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196-202.
  • 106. G. D. MOSTOW, Strong Rigidity in Locally Symmetric Spaces, Annals of Mathematics Studies 78, Princeton: Princeton University Press, 1973. MR 0385004 (52:5874)
  • 107. T. ODA, A note on the Albanese variety of an arithmetic quotient of the complex hyperball, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 28 (1981), 481-486. MR 656032 (83j:14035)
  • 108. D. QUILLEN, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., 7 (1971), 29-56. MR 0290382 (44:7566)
  • 109. M.S. RAGHUNATHAN, A note on quotients of real algebraic groups by arithmetic subgroups, Invent. Math. 4 (1968), 318-335. MR 0230332 (37:5894)
  • 110. M.S. RAGHUNATHAN, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik 68, Berlin-Heidelberg-New York: Springer-Verlag, 1972. MR 0507234 (58:22394a)
  • 111. M.S. RAGHUNATHAN, The first Betti number of compact locally symmetric spaces. In: Current Trends in Mathematics and Physics. 116-137, New Delhi: Narosa, 1995. MR 1354176 (97a:11082)
  • 112. M.S. RAGHUNATHAN, Arithmetic lattices in semisimple groups, Proc. Indian Acad. Sci. (Math. Sci), 91 (1982), 133-138. MR 682519 (84a:22025)
  • 113. M.S. RAGHUNATHAN AND T.N. VENKATARAMANA, The first Betti number of arithmetic groups and the congruence subgroup problem. In: Linear Algebraic Groups and their Representations, Contemporary Math. 153 (1993), 95-107. MR 1247500 (94i:20086)
  • 114. C.S. RAJAN, On the image and fibres of solvable base change, Math. Res. Letters 9 (2002), 499-508. MR 1928869 (2003g:11054)
  • 115. C.S. RAJAN, On the non-vanishing of the first Betti number of hyperbolic three-manifolds, Math. Ann. 330 (2004), 323-329. MR 2089429 (2005j:11038)
  • 116. J.G. RATCLIFFE, Foundations of Hyperbolic Manifolds. Graduate Texts in Math. 149. New York-Berlin-Heidelberg: Springer-Verlag, 1994. MR 1299730 (95j:57011)
  • 117. I. REINER, Maximal orders. London Math. Soc. Monographs, London-New York: Academic Press, 1975. MR 0393100 (52:13910)
  • 118. J. ROHLFS, Arithmetisch definierte Gruppen mit Galoisoperation, Invent. Math. 48 (1978), 185-205. MR 507801 (80j:20043)
  • 119. J. ROHLFS, On the cuspidal cohomology of the Bianchi modular groups, Math. Zeitschrift 188 (1985), 253-269. MR 772354 (86e:11042)
  • 120. J. ROHLFS, The Lefschetz number of an involution on the space of classes of positive definite quadratic forms, Comment. Math. Helvet. 56 (1981), 272-296. MR 630954 (83a:10037)
  • 121. J. ROHLFS, Lefschetz numbers for arithmetic groups, In: Cohomology of Arithmetic Groups and Automorphic Forms, (ed. J.-P. Labesse, J. Schwermer), Lecture Notes in Math., 1447, pp. 303-313, Berlin-Heidelberg-New York: Springer-Verlag, 1990. MR 1082971 (92d:11055)
  • 122. J. ROHLFS AND J. SCHWERMER, Intersection numbers of special cycles, J. American Math. Soc. 6 (1993), 755-778. MR 1186963 (94a:11075)
  • 123. J. ROHLFS AND J. SCHWERMER, An arithmetic formula for a topological invariant of Siegel modular varieties, Topology 37 (1998), 149-159. MR 1480883 (98f:11044)
  • 124. J. SCHWERMER, A note on link complements and arithmetic groups, Math. Ann. 249 (1980), 107-110. MR 578717 (82e:22027)
  • 125. J. SCHWERMER, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Math., 988, Berlin-Heidelberg-New York: Springer-Verlag, 1983. MR 822473 (87i:22034)
  • 126. J. SCHWERMER, Cohomology of arithmetic groups, automorphic forms and L-functions In: Cohomology of Arithmetic Groups and Automorphic Forms, (ed. J.-P. Labesse, J. Schwermer), Lecture Notes in Math., 1447, pp. 1-29, Berlin-Heidelberg-New York: Springer-Verlag, 1990. MR 1082960 (92e:11059)
  • 127. J. SCHWERMER, Eisenstein series and cohomology of arithmetic groups: The generic case, Invent. Math. 116 (1994), 481-511. MR 1253202 (95h:11049)
  • 128. J. SCHWERMER, Arithmetic Groups--Geometric Aspects. Lectures at ETH Zürich (Nachdiplomvorlesung) 1999/2000, in preparation.
  • 129. J. SCHWERMER, Special cycles and automorphic forms on arithmetically defined hyperbolic $ 3$-manifolds, Asian J. Mathematics 8 (2004), 837-860. MR 2127951 (2005m:11073)
  • 130. J. SCHWERMER, Reduction theory of quadratic forms: Towards Räumliche Anschauung in Minkowski's early work, In: The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae (ed. C. Goldstein, N. Schappacher, J. Schwermer), pp. 483-504, Berlin-Heidelberg-New York: Springer-Verlag, 2007. MR 2308294
  • 131. J. SCHWERMER, The cohomological approach to cuspidal automorphic representations, In: Automorphic forms and $ L$-functions I: Global Aspects--a volume in honor of Steve Gelbart, Contemporary Math. 488, pp. 257-284, American Math. Society, 2009.
  • 132. J. SCHWERMER, Minkowski in Königsberg 1884: a talk in Lindemann's colloquium, Bull. Amer. Math. Soc. 47 (2010), no. 2, 355-362.
  • 133. J. SCHWERMER, Geometric cycles, Albert algebras and related cohomology classes for arithmetic groups (preprint).
  • 134. J. SCHWERMER AND K. VOGTMANN, The integral homology of $ SL_2$ and $ PSL_2$ of Euclidean imaginary quadratic integers, Comment. Math. Helvetici 58 (1983), 573-598. MR 728453 (86d:11046)
  • 135. J.-P. SERRE, Corps Locaux. Paris: Hermann 1962. MR 0354618 (50:7096)
  • 136. J.-P. SERRE, Cohomologie Galoisienne. Lecture Notes in Math. 5. Berlin-Heidelberg-New York: Springer, 1964.
  • 137. J.-P. SERRE, Cohomologie des groupes discrets, In: Prospects in Mathematics, Annals of Mathematics Studies 70, pp. 77-169, Princeton: Princeton University Press, 1971. MR 0385006 (52:5876)
  • 138. J.-P. SERRE, Le problème des groupes de congruence pour $ SL_{2}$, Ann. of Math. (2) 92 (1972), 489-527. MR 0272790 (42:7671)
  • 139. C. L. SIEGEL, Einheiten quadratischer Formen, Abh. Math. Seminar Hansische U. 13 (1940), 209-239. MR 0003003 (2:148b)
  • 140. C. L. SIEGEL, Symplectic geometry, Amer. J. Math. 65 (1943), 1-85. MR 0008094 (4:242b)
  • 141. E. H. SPANIER, Algebraic Topology. New York: McGraw-Hill, 1966. MR 0210112 (35:1007)
  • 142. B. SPEH, Representation theory and the cohomology of arithmetic groups, Proc. Int. Congress Math. Madrid, 2006, vol. II, European Math. Soc. 2006, 1327-1335. MR 2275647 (2008b:11061)
  • 143. B. SPEH, T. N. VENKATARAMANA, Construction of some generalised modular symbols, Pure Appl. Math. Q. 1 (2005), 737-754. MR 2200998 (2006i:11052)
  • 144. T.A. SPRINGER, Linear Algebraic Groups, 2nd ed., Progr. in Math. 9, Boston: Birkhäuser, 1998. MR 1642713 (99h:20075)
  • 145. T.A. SPRINGER, F.D. VELDKAMP, Octonions, Jordan Algebras and Exceptional Groups. Berlin-Heidelberg-New York: Springer, 2000. MR 1763974 (2001f:17006)
  • 146. R. SWAN, Generators and relations for certain special linear groups. Advances Math. 6 (1971), 1-77. MR 0284516 (44:1741)
  • 147. J. TITS, Classification of algebraic semisimple groups, In: Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math. 9 (1966), pp. 33-62. MR 0224710 (37:309)
  • 148. Y.L. TONG, S.P. WANG, Theta functions defined by geodesic cycles in quotients of $ SU(p,1)$, Invent. math. 71 (1983), 467-499. MR 695901 (85c:11046)
  • 149. T.N. VENKATARAMANA, Cohomology of compact locally symmetric spaces, Compositio Math. 125 (2001), 221-253. MR 1815394 (2002c:11056)
  • 150. T. N. VENKATARAMANA, On cycles on compact locally symmetric spaces, Monatshefte Math. 135 (2002), 221-244. MR 1897577 (2003a:14037)
  • 151. M.-F. VIGNÉRAS, Arithmétique des Algèbres de Quaternions. Lecture Notes in Math. 800. Berlin-Heidelberg-New York: Springer-Verlag, 1980. MR 580949 (82i:12016)
  • 152. D. VOGAN, Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), 141-187. MR 750719 (86h:22028)
  • 153. D. VOGAN, Cohomology and group representations, In: Proc. Sympos. Pure Math. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 219-243. MR 1476500 (98k:22064)
  • 154. D. VOGAN, AND G. ZUCKERMAN, Unitary Representations with Non-Zero Cohomology, Compositio Math. 53 (1984), 51-90. MR 762307 (86k:22040)
  • 155. K. VOGTMANN, Rational homology of Bianchi groups, Math. Ann. 272 (1985), 399-419. MR 799670 (87a:22025)
  • 156. F. WALDHAUSEN, The word problem in fundamental groups of sufficiently large irreducible $ 3$-manifolds, Ann. of Math. (2) 88 (1968), 272-280. MR 0240822 (39:2167)
  • 157. C. WALDNER, Geometric cycles and the cohomology of arithmetic subgroups of the exceptional group $ G_{2}$, thesis, Vienna, 2008; to appear in J. Topology.
  • 158. N. R. WALLACH, Real Reductive Groups, I. Pure Appl. Math. 132, Boston: Academic Press, 1988. MR 929683 (89i:22029)
  • 159. N. R. WALLACH, Real Reductive Groups, II. Pure Appl. Math. 133, Boston: Academic Press, 1988. MR 1170566 (93m:22018)
  • 160. A WEIL, Adèles and Algebraic Groups, Progress Math., 23, Boston: Birkhäuser, 1982. MR 670072 (83m:10032)
  • 161. X. XUE, On the Betti numbers of a hyperbolic manifold, Geom. Funct. Anal. 2 (1992), 126-136. MR 1143667 (93b:57031)
  • 162. J. YANG, On the real cohomology of arithmetic groups and the rank conjecture for number fields, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 287-306. MR 1169133 (93g:11056)
  • 163. H. ZASSENHAUS, On the units of orders, J. of Algebra 20 (1972), 368-395. MR 0289469 (44:6659)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11F75, 22E40, 11F70, 57R95

Retrieve articles in all journals with MSC (2000): 11F75, 22E40, 11F70, 57R95


Additional Information

Joachim Schwermer
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria, and Erwin-Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Vienna, Austria
Email: Joachim.Schwermer@univie.ac.at

DOI: https://doi.org/10.1090/S0273-0979-10-01292-9
Keywords: Arithmetic groups, geometric cycles, cohomology, automorphic forms
Received by editor(s): September 12, 2008
Received by editor(s) in revised form: June 8, 2009
Published electronically: February 2, 2010
Additional Notes: This work was supported in part by FWF Austrian Science Fund, grant number P 16762-N04.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society