Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Christian Kassel and Vladimir Turaev
Title: Braid groups (With the graphical assistance of Olivier Dodane)
Additional book information: Graduate Texts in Mathematics, 247, Springer Science and Business Media, New York, 2008, xii+340 pp., ISBN 978-0-387-33841-5, hardcover, US$59.95

Author: Patrick Dehornoy
Title: Ordering braids
Additional book information: Mathematical Surveys and Monographs 148, American Mathematical Society, Providence, Rhode Island, 2008, x+323 pp., ISBN 978-0-8218-4431-1, hardcover, US$89.95

References [Enhancements On Off] (What's this?)

  • 1. S.I. Adyan, Fragments of the word $ \Delta$ in the braid group, Mat. Zametki 36, No. 1 (1984), 25-34. English translation Math. Notes 36 (1984), No. 1-2, 505-510. MR 757642 (86b:20048)
  • 2. J.W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. 9 (1923), 93-95.
  • 3. E. Artin, Theorie der Zopfe, Abh. Math. Sem. Hamburg, 4 (1925), 47-72.
  • 4. V. Bardakov, R. Mikhailov, V. Vershinin, J. Wu, Brunnian braids on surfaces, preprint arXiv:0909.3387v1 [math.GT] 18 Sept. 2009.
  • 5. A. Berrick, F. Cohen, E. Hanbury, Y. Wong and J. Wu, Braids: Introductory lectures on braids, configurations and their applications, National Univ. of Singapore, Lecture Notes Series 19, World Scientific Publishing 2010.
  • 6. A. Berrick, F. Cohen, Y. Wang and J. Wu, Configurations, braids and homotopy groups, J. Amer. Math. Soc. 19, no. 2 (2005), 265-326. MR 2188127 (2007e:20073)
  • 7. J. Birman and W. Menasco, Stabilization in the braid groups I: MTWS, Geometry and Topology 10 (2006) 413-540. MR 2224463 (2007e:57005)
  • 8. J. Birman and R. Williams, Knotted periodic orbits in dynamical systems-I: Lorenz's equations, Topology 22, No. 1 (1983), 47-82. MR 682059 (84k:58138)
  • 9. W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hamburg II (1936), 171-178.
  • 10. G. Burde and H. Zieschang, Knots, de Gruyter, Berlin and New York, 1985. MR 808776 (87b:57004)
  • 11. R. Courant, Differential and Integral Calculus, 2, Nordeman Publishing, 1948.
  • 12. P. Dehornoy, Braid groups and non-distributive operations, Trans. Amer. Math. Soc. 345 (1994), No. 1, 115-151. MR 1214782 (95a:08003)
  • 13. P. Dehornoy, Groupes de Garside, Ann. Sci. Ecole Norm. Sup. 35 (2002), 267-306. MR 1914933 (2003f:20068)
  • 14. P. Dehornoy (with I. Dynnikov, D. Rolfsen and B. Wiest), Ordering Braids, Math. Surveys and Monographs 148, American Mathematical Society, Providence, RI, 2008. MR 2463428 (2009j:20046)
  • 15. I. A. Dynnikov, Arc-presentations of links: Monotonic simplification, Fund. Math. 190 (2006), 29-76. MR 2232855 (2007e:57006)
  • 16. D. Eisenbud and W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud. 110, Princeton Univ. Press, 1985. MR 817982 (87g:57007)
  • 17. D. Epstein, J. Cannon, F. Holt, S. Levy, M. Patterson and W. Thurston, Word processing in groups, Jones and Bartlett, Boston, MA, 1992, Chapter 9. MR 1161694 (93i:20036)
  • 18. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • 19. R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke and B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), 49-74. MR 1725462 (2000j:20064)
  • 20. F. Garside, The braid group and other groups, Quart. J. Math Oxford 20 (1969), 235-254. MR 0248801 (40:2051)
  • 21. E. Ghys, Knots and dynamics, Proc. Int. Congress of Mathematicians 2007, Vol. 1, Zürich, European Math. Society, 247-277. MR 2334193 (2008k:37001)
  • 22. E. Ghys and J. Leys, Lorenz and Modular Flows: A Visual Introduction, AMS Feature Column, Nov. 2006, http://www.ams.org/featurecolumn/archive/lorenz.html.
  • 23. E. Gorin and V. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Mat. Sbornik, Volume 78 (1969), 579-610. MR 0251712 (40:4939)
  • 24. A. Hurwitz, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-61. MR 1510692
  • 25. T. Ito, Braid ordering and the geometry of a closed braid, arXiv:0805.1447 [math:GT].
  • 26. V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. MR 908150 (89c:46092)
  • 27. C. Kassel and V. Turaev, Braid Groups, Graduate Texts in Mathematics 247, Springer Science and Business Media, New York, 2008. MR 2435235 (2009e:20082)
  • 28. E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Science 20 (1963), 130-141.
  • 29. D. Mackenzie, What's Happening in the Mathematical Sciences 7 (2009), American Mathematical Society, 2-17.
  • 30. A.A. Markov, Uber die freie Äquivalenz der geschlossenen Zopfe, Recueil Mathematique Moscou, Mat Sb 1 43 (1936), 73-78.
  • 31. W. Menasco and M. Thistlethwaite, editors, Handbook of Knot Theory, Elsevier, 2005. MR 2179010 (2006h:57001)
  • 32. J. Milnor, Singular points of complex hypersurfaces. Ann. of Math. 61, Princeton University Press, 1968. MR 0239612 (39:969)
  • 33. J. Nielsen, Jakob Nielsen: Collected Mathematical Papers, $ \char93 $[N-18, 20, 21], Birkhäuser, 1986.
  • 34. S. Orevkov, Link theory and oval arrangements of real algebraic curves, Topology 38, no. 4 (1999), 779-810. MR 1679799 (2000b:14066)
  • 35. S. Orevkov, Quasipositivity problem for $ 3$-braids, Turkish J. Math. 28, no. 1 (2004), 89-93. MR 2056762 (2005d:20063)
  • 36. T. Pinsky, private conversations at Technion, Haifa, Israel, in January 2008 and again in January 2010.
  • 37. J. Przytycki, Classical roots of knot theory, Chaos, Solitons and Fractals 9 (1998), no. 4-5, 531-545. MR 1628740 (99c:57030)
  • 38. L. Rudolph, Algebraic functions and closed braids, Topology 22, no. 2 (1983), 191-202. MR 683760 (84e:57012)
  • 39. H. Short and B. Wiest, Orderings of mapping class groups after Thurston, Enseignement Math. (2), 46 (2000), No. 3-4, 279-312. MR 1805402 (2003b:57003)
  • 40. P. Vogel, Representations of links by braids: A new algorithm, Comment. Math. Helv. 65 (1990), 104-113. MR 1036132 (90k:57013)
  • 41. S. Yamada, The minimum number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), 347-356. MR 894383 (88f:57015)

Review Information:

Reviewer: Joan S. Birman
Affiliation: Columbia University
Email: jb@math.columbia.edu
Journal: Bull. Amer. Math. Soc. 48 (2011), 137-146
MSC (2000): Primary 20F36, 57M25, 37E30, 20C08, 06F15, 20F60, 55R80
DOI: https://doi.org/10.1090/S0273-0979-2010-01305-7
Published electronically: August 4, 2010
Review copyright: © Copyright 2010 by the author
American Mathematical Society