Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Richard Evan Schwartz
Title: Outer billiards on kites
Additional book information: Annals of Mathematics Studies, 171, Princeton University Press, Princeton, New Jersey, 2009, xiv+306 pp., ISBN 978-0-691-14249-4

References [Enhancements On Off] (What's this?)

  • 1. J. Cassaigne, P. Hubert, and S. Troubetzkoy, Complexity and growth for polygonal billiards. Ann. Inst. Fourier (Grenoble) 52 (2002), 835-847. MR 1907389 (2003d:37096)
  • 2. F. Dogru, S. Tabachnikov. Dual billiards. Math. Intelligencer 27 No 4 (2005), 18-25. MR 2183864 (2006i:37121)
  • 3. D. Dolgopyat, B. Fayad, Unbounded orbits for semicircular outer billiard. Ann. Henri Poincaré 10 (2009), 357-375. MR 2511890 (2010d:37076)
  • 4. D. Genin, Research announcement: boundedness of orbits for trapezoidal outer billiards. Electron. Res. Announc. Math. Sci. 15 (2008), 71-78. MR 2457051 (2009k:37036)
  • 5. E. Gutkin, N. Simanyi, Dual polygonal billiards and necklace dynamics. Comm. Math. Phys. 143 (1991), 431-450. MR 1145593 (92k:58139)
  • 6. E. Gutkin, S. Tabachnikov, Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards on surfaces of constant curvature. Mosc. Math. J. 6 (2006), 673-701. MR 2291158 (2008f:37080)
  • 7. R. Kolodziej, The antibilliard outside a polygon. Bull. Polish Acad. Sci. 37 (1989), 163-168. MR 1101465 (92g:52002)
  • 8. L. Li, On Moser's boundedness problem of dual billiards. Ergodic Theory Dynam. Syst. 29 (2009), 613-635. MR 2486786 (2010b:37121)
  • 9. J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies, 77, Princeton Univ. Press, Princeton, NJ, 1973. MR 0442980 (56:1355)
  • 10. J. Moser, Is the solar system stable? Math. Intelligencer 1 (1978), 65-71. MR 0495314 (58:14029)
  • 11. B. Neumann, Sharing ham and eggs. Iota, Manchester University, 1959.
  • 12. R. Schwartz, Obtuse triangular billiards. I. Near the $ (2,3,6)$ triangle. Experiment. Math. 15 (2006), 161-182. MR 2253003 (2007c:37034)
  • 13. R. Schwartz, Unbounded orbits for outer billiards. I. J. Mod. Dyn. 1 (2007), 371-424. MR 2318496 (2008f:37082)
  • 14. R. Schwartz, Obtuse triangular billiards. II. One hundred degrees worth of periodic trajectories. Experiment. Math. 18 (2009), 137-171. MR 2549685 (2010g:37060)
  • 15. R. Schwartz, Outer billiards on kites, Ann. of Math. Studies, 171, Princeton Univ. Press, Princeton, NJ, 2009. MR 2562898
  • 16. R. Schwartz, Outer Billiards and the Pinwheel Map. arXiv:1004.3025.
  • 17. R. Schwartz, Outer Billiards, Arithmetic Graphs, and the Octagon. arXiv:1006.2782.
  • 18. S. Tabachnikov, On the dual billiard problem. Adv. Math. 115 (1995), 221-249. MR 1354670 (96g:58154)
  • 19. S. Tabachnikov, Billiards, Soc. Math. France ``Panoramas et Syntheses'', No 1, 1995.
  • 20. S. Tabachnikov, Geometry and billiards, Student Math. Library, 30. Amer. Math. Soc., Providence, RI, 2005. MR 2168892 (2006h:51001)
  • 21. S. Tabachnikov, A proof of Culter's theorem on the existence of periodic orbits in polygonal outer billiards. Geom. Dedicata 129 (2007), 83-87. MR 2353984 (2008m:37062)
  • 22. F. Vivaldi, A. Shaidenko, Global stability of a class of discontinuous dual billiards. Comm. Math. Phys. 110 (1987), 625-640. MR 895220 (89c:58067)

Review Information:

Reviewer: Serge Tabachnikov
Affiliation: Department of Mathematics, Penn State, University Park, Pennsylvania 16802
Email: tabachni@math.psu.edu
Journal: Bull. Amer. Math. Soc. 48 (2011), 285-291
MSC (2000): Primary 37D50; Secondary 37E99, 52C23
DOI: https://doi.org/10.1090/S0273-0979-2010-01313-6
Published electronically: October 20, 2010
Review copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society