Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Yakov Berkovich
Title: Groups of prime power order. Vol. 1 (with a foreword by Zvonimir Janko)
Additional book information: de Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, xx+512 pp., ISBN 978-3-11-020418-6

Author: Yakov Berkovich and Zvonimir Janko
Title: Groups of prime power order. Vol. 2
Additional book information: de Gruyter Expositions in Mathematics, 47, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, xvi+596 pp., ISBN 978-3-11-020419-3

References [Enhancements On Off] (What's this?)

  • 1. S. I. Adian, The Burnside problem and identities in groups. Translated from the Russian by J. Lennox and J. Wiegold. Ergebnisse der Mathematik und ihrer Grenzgebiete, 95, Springer, Berlin, 1979. MR 537580 (80d:20035)
  • 2. H. U. Besche, B. Eick, and E. A. O'Brien. A millennium project: constructing small groups. Intern. J. Comput. 12(5) (2002), 623-644. MR 1935567 (2003h:20042)
  • 3. S. R. Blackburn, P. M. Neumann, and G. Venkataraman. Enumeration of finite groups. Cambridge Tracts in Mathematics, 173. Cambridge University Press, Cambridge, 2007. MR 2382539 (2009c:20041)
  • 4. M. R. Bridson. Decision problems and profinite completions of groups. J. Algebra (to appear).
  • 5. R. M. Bryant and L. G. Kovács. Lie representations and groups of prime power order. J. London Math. Soc. 17 (1978), 415-421. MR 0506776 (58:22263)
  • 6. B. Eick. Automorphism groups of $ 2$-groups. J. Algebra 300 (2006), 91-101. MR 2228637 (2007f:20039)
  • 7. B. Eick and C. R. Leedham-Green. On the classification of prime-power groups by coclass. Bull. London Math. Soc. 40(2) (2008), 274-288. MR 2414786 (2009b:20030)
  • 8. M. du Sautoy. Counting $ p$-groups and nilpotent groups. Inst. Hautes Études Sci. Publ. Math. 92 (2001), 63-112. MR 1839487 (2002f:11122)
  • 9. W. Gaschütz. Nicht abelsche $ p$-Gruppen besitzen äußere $ p$-Automorphismen. J. Algebra 4 (1966), 1-2. MR 0193144 (33:1365)
  • 10. N. Gupta. The dimension subgroup conjecture. Bull. London Math. Soc. 22(5) (1990), 453-456. MR 1082014 (92d:20009)
  • 11. P. Hall. A contribution to the theory of groups of prime power order. Proc. London Math. Soc. 36 (1933), 29-95.
  • 12. M. Hall and J. K. Senior. The groups of order $ 2^n$ $ (n\le 6)$. Macmillan, New York, 1964. MR 0168631 (29:5889)
  • 13. G. Higman. Enumerating $ p$-groups II: Problems whose solution is PORC. Proc. London Math. Soc. 10 (1960), 566-582. MR 0123605 (23:A930)
  • 14. D. R. Hughes. A research problem in group theory. Bull. Amer. Math. Soc. 63 (1957), 209.
  • 15. D. R. Hughes and J. G. Thompson. The $ {H}_p$ problem and the structure of $ {H}_p$-groups. Pacific J. Math. 9 (1959), 1097-1101. MR 0108532 (21:7248)
  • 16. B. Huppert, Endliche Gruppen I. Springer, Berlin, 1967. MR 0224703 (37:302)
  • 17. E. I. Khukhro. $ p$-automorphisms of finite $ p$-groups. London Mathematical Society Lecture Note Series 246, Cambridge University Press, Cambridge, 1997. MR 1615819 (99d:20029)
  • 18. E. I. Khukhro. Nilpotent groups and their automorphisms. De Gruyter Expositions in Mathematics 8, De Gruyter, Berlin, New York, 1993. MR 1224233 (94g:20046)
  • 19. M. Lazard. Groupes analytiques $ p$-adiques. Publ. Math. IHES 26 (1965), 389-603. MR 0209286 (35:188)
  • 20. A. Lubotzky and A. Mann. Powerful $ p$-groups. I: finite groups. J. Algebra 105 (1987), 484-505; II: $ p$-adic analytic groups. J. Algebra 105 (1987), 506-515. MR 873681 (88f:20045)
  • 21. E. A. O'Brien. The $ p$-group generation program. J. Symbolic Comp. 9 (1990), 677-698. MR 1075431 (91j:20050)
  • 22. E. A. O'Brien and M. R. Vaughan-Lee. The groups of order $ p^7$ for odd prime $ p$. J. Algebra 292(1) (2005), 243-258. MR 2166803 (2006d:20038)
  • 23. E. A. O'Brien and M. R. Vaughan-Lee. The $ 2$-generator restricted Burnside group of exponent $ 7$. Internat. J. Algebra Comput. 12(4) (2002), 575-592. MR 1919689 (2003i:20032)
  • 24. M. A. M. Salim and R. Sandling. The modular group algebra problem for groups of order $ p^5$. J. Austral. Math. Soc. (Series A) 61 (1996), 229-237. MR 1405536 (97e:16064)
  • 25. A. Shalev. The structure of finite $ p$-groups: effective proof of the coclass conjectures. Invent. Math. 115 (1994), 315-345. MR 1258908 (95j:20022b)
  • 26. C. C. Sims. Computation with finitely presented groups. Encyclopedia of Mathematics and Its Applications 48. Cambridge University Press, Cambridge, 1994. MR 1267733 (95f:20053)
  • 27. M. Vaughan-Lee. Lie rings of groups of prime exponent. J. Austral. Math. Soc. 49 (1990), 386-398. MR 1074510 (91m:20059)
  • 28. M. Vaughan-Lee. The restricted Burnside problem. Oxford University Press. Second Edition, 1993. MR 1364414 (98b:20047)
  • 29. G. E. Wall. On Hughes' $ {H}_p$-problem, 1967 Proc. Internat. Conf. Theory of Groups (Canberra, 1965). Lecture Notes in Math. 372. Springer, 1974, 667-690. MR 0219607 (36:2686)
  • 30. B. Wilkens. On quaternion-free $ 2$-groups. J. Algebra 258 (2002), 477-492. MR 1943930 (2003i:20033)
  • 31. E. Zelmanov. Solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk SSSR Ser. Mat. 54 (1991), 42-59. MR 1044047 (91i:20037)
  • 32. E. Zelmanov. Solution to the restricted Burnside problem for $ 2$-groups. Mat. Sb. 182(4) (1991), 568-592. MR 1119009 (93a:20063)

Review Information:

Reviewer: C. R. Leedham-Green
Affiliation: Queen Mary, University of London
Journal: Bull. Amer. Math. Soc. 48 (2011), 315-323
DOI: https://doi.org/10.1090/S0273-0979-2011-01298-8
Published electronically: January 13, 2011
Review copyright: © Copyright 2011 American Mathematical Society
American Mathematical Society