Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

How can we construct abelian Galois extensions of basic number fields?


Author: Barry Mazur
Journal: Bull. Amer. Math. Soc. 48 (2011), 155-209
MSC (2010): Primary 11R04, 18-XX, 20-XX, 23-XX
DOI: https://doi.org/10.1090/S0273-0979-2011-01326-X
Published electronically: January 18, 2011
MathSciNet review: 2774089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Irregular primes--37 being the first such prime--have played a great role in number theory. This article discusses Ken Ribet's construction--for all irregular primes $ p$--of specific abelian, unramified, degree $ p$ extensions of the number fields $ \mathbf{Q}(e^{2\pi i/p})$. These extensions with explicit information about their Galois groups (they are Galois over $ \mathbf{Q}$) were predicted to exist ever since the work of Herbrand in the 1930s. Ribet's method involves a tour through the theory of modular forms; it demonstrates the usefulness of congruences between cuspforms and Eisenstein series, a fact that has inspired, and continues to inspire, much work in number theory.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, J. Tate, Class Field Theory, Addison-Wesley, 1990. MR 1043169 (91b:11129)
  • 2. J. Bellaïche, Relèvement des formes modulaires de Picard, J. London Math. Soc. (2), no. 1, 74, 13-25 (2006). MR 2254549 (2007f:11050)
  • 3. J. Bellaïche, Congruences endoscopiques et représentations galoisiennes, Thesis, Université Paris-Sud, 2002.
  • 4. J. Bellaïche, A propos d'un lemme de Ribet, Rend. Sem. Mat. Univ. Padova 109, 45-62 (2003). MR 1997986 (2004h:20064)
  • 5. J. Bellaïche, G. Chenevier, Formes non tempérées pour $ {\mathrm U}(3)$ et conjectures de Bloch-Kato, Annales scientifiques de l'Ecole Norm. Sup. 37 no. 4, 611-662 (2004). MR 2097894 (2005m:11096)
  • 6. J. Bellaïche, G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009). MR 2656025
  • 7. J. Bernoulli, The Art of Conjecturing, together with Letter to a Friend on Sets in Court Tennis; English Translation and Commentary by Edith Dudley Sylla, The Johns Hopkins Press, 2006. MR 2195221 (2006j:01006)
  • 8. R. Brauer, C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42, 556-590 (1941). MR 0004042 (2:309c)
  • 9. J. Buhler, R. Crandall, R. Ernval, T. Metsänkylä, M. Amin Shokrollahie, Irregular primes and cyclotomic invariants to $ 12$ million, Journal of Symbolic Computation 31, 89-96 (2001). MR 1806208 (2001m:11220)
  • 10. J. Buhler, D. Harvey, Irregular primes to $ 163$ million, arXiv:0912.2121v2 [math.NT] (2009).
  • 11. F. Calegari, B. Mazur, Nearly ordinary Galois deformations over arbitrary number fields, Journal of the Institute of Mathematics of Jussieu, 8, Issue 01, 99-177 (2009). MR 2461903 (2009i:11070)
  • 12. Algebraic Number Theory (Eds. J. W. S. Cassel, A. Fröhlich, Proceedings of an Instructional Conference, London Mathematical Society, 1967. MR 911121 (88h:11073)
  • 13. N. Cebotarev, Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95, 191-228 (1926). MR 1512273
  • 14. G. Chenevier, Familles $ p$-adiques de formes automorphes pour $ \mathrm{GL}(n)$, Journal für die reine und angewandte Mathematik 570, 143-217 (2004). MR 2075765 (2006b:11046)
  • 15. G. Chenevier, Une correspondance de Jacquet-Langlands $ p$-adique, Duke Math. Journal 126 no. 1, 161-194 (2005). MR 2111512 (2006f:11144)
  • 16. G. Chenevier, The $ p$-adic analytic space of pseudo-characters of a profinite group and pseudo-representations over arbitrary rings, arXiv:0809.0415v1 [math.NT] Sept. 2 (2008).
  • 17. L. Clozel, On Ribet's Level-raising Theorem for $ {\mathrm U}(3)$, American Journal of Math. 122, 1265-1287 (2000). MR 1797662 (2001k:11087)
  • 18. C. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Wiley, 1962. MR 1013113 (90g:16001)
  • 19. P. Deligne, Formes modulaires et représentations $ {\ell}$-adiques, Séminaire Bourbaki, Lect. Notes in Math. 1799 Springer, 139-172 (1971).
  • 20. P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 143-316 in Lecture Notes in Math. 349, Springer, 1973. MR 0337993 (49:2762)
  • 21. P. Deligne, J.-P. Serre, Formes modulaires de poids $ 1$. Annales de l'Ecole Norm. Sup. 74, 507-530 (1974). MR 0379379 (52:284)
  • 22. M. Emerton, The Eisenstein ideal in Hida's ordinary Hecke algebra, Internat. Math. Res. Notices 15, 793-802 (1999). MR 1710074 (2000e:11057)
  • 23. B. Ferrero, L. Washington, The Iwasawa invariant $ {\mu_p}$ vanishes for abelian number fields, Ann. of Math. (2) 109, 377-395 (1979). MR 528968 (81a:12005)
  • 24. W.T. Gan, N. Gurevich, CAP representations of $ G_2$ and the spin $ L$-function of $ {\rm PGSp}_6$, Israel J. Math. 170, 1-52 (2009). MR 2506316 (2010c:22023)
  • 25. L. R. Graham, J.M. Kantor, Naming Infinity, Belknap Press, 2009. MR 2526973 (2010c:01007)
  • 26. J. Herbrand, Sur les classes des corps circulaires, J. Math. Pure Appl. (9) II 417-441 (1932).
  • 27. H. Hida, On $ p$-adic Hecke algebras for $ \mathrm{GL}_2$ over totally real fields, Ann. of Math. (2) 128, 295-384 (1988). MR 960949 (89m:11046)
  • 28. H. Hida, On nearly ordinary Hecke algebras for $ \mathrm{GL}(2)$ over totally real fields, Advanced Studies in Pure Math. 17, 139-169 (1989). MR 1097614 (92f:11064)
  • 29. H. Hida, $ p$-Adic ordinary Hecke algebras for $ \mathrm{GL}(2)$, Ann. de l'Institut Fourier 44, 1289-1322 (1994). MR 1313784 (95k:11065)
  • 30. H. Hida, Control Theorems and Applications, Lectures at Tata Institute of Fundamental Research (Version of 2/15/00) [See http://www.math.ucla.edu/$ \sim$hida/]
  • 31. H. Hida, Hilbert Modular Forms and Iwasawa Theory, Oxford University Press, 2006. MR 2243770 (2007h:11055)
  • 32. H. Hida, J. Tilouine and E. Urban, Adjoint modular Galois representations and their Selmer groups, Proc. Natl. Acad. Sci. USA 94, 11121-11124 (1997). MR 1491970 (98m:11034)
  • 33. C. Khare, Serre's modularity conjecture: a survey of the level one case, pp. 270-299 in $ L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., 320, Cambridge Univ. Press, 2007. MR 2392357 (2009g:11066)
  • 34. C. Khare, Notes on Ribet's converse to Herbrand, Cyclotomic fields, Bhaskaracharya Pratishthana, Poona, 273-284 (2000). MR 1802388 (2002e:11143)
  • 35. C. Khare, J.-P. Wintenberger, On Serre's conjecture for $ 2$-dimensional mod $ p$ representations of $ \mathrm{Gal}({\overline{\mathbf{Q}}}/{\mathbf{Q}})$, Ann. of Math. (2) 169 no. 1, 229-253 (2009). MR 2480604 (2009m:11077)
  • 36. C. Khare, J.-P. Wintenberger, Jean-Pierre Serre's modularity conjecture. I; and II. Invent. Math. 178, 485-504 and 505-586 (2009). MR 2551763 (2010k:11087); MR2551764 (2010k:11088)
  • 37. M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153 (2) 373-454 (2003). MR 1992017 (2004f:11053)
  • 38. M. Koike, Congruences between cuspforms of weight one and of weight two and a remark on a theorem of Deligne and Serre (Int. Symposium on Algebraic Number Theory, Kyoto, March 1976).
  • 39. S. Lang, Algebraic Number Theory (Second Edition) Springer, 1993. MR 1282723 (95f:11085)
  • 40. B.Mazur, Deforming Galois representations, pp. 385-437 in Galois groups over $ \mathbf{Q}$, Math. Sci. Res. Inst. Publ., 16, Springer, 1989. MR 1012172 (90k:11057)
  • 41. B. Mazur, A. Wiles, Analogies between function fields and number fields, Amer. J. Math. 105, 507-521 (1983). MR 701567 (84g:12003)
  • 42. B. Mazur, A. Wiles, Class fields of abelian extensions of $ \mathbf{Q}$, Invent. Math. 76 no.2, 179-330 (1984). MR 742853 (85m:11069)
  • 43. B. Mazur, A. Wiles, $ p$-adic analytic families of Galois representations, Compositio Math. 59 231-264 (1986). MR 860140 (88e:11048)
  • 44. I. Piatetski-Shapiro, Two Conjectures on $ L$-functions, pp. 519-522 in Wolf Prize in Mathematics Vol 2. (Eds. S.S. Chern and F. Hirzebruch) World Scientific, 2000.
  • 45. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math., 71(2) 309-338 (1983). MR 689647 (84e:10038)
  • 46. F. Pollaczek, Über die irregulären Kreiskörper der $ {\ell}$-ten und $ {\ell}^2$-ten Einheitswurzeln, Math. Zeit. 21, 1-38 (1924). MR 1544682
  • 47. Srinivasa Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (9) 159-184 (1916).
  • 48. M. Raynaud, Schémas en groupes de type $ (p,p,\dots,p)$, Bull. Soc. Math. France. 102, 241-280 (1974). MR 0419467 (54:7488)
  • 49. K. Ribet, A modular construction of unramified $ p$-extensions of $ \mathbf{Q}(\mu_p)$, Inventiones Math. 34, 151-162 (1976). MR 0419403 (54:7424)
  • 50. K. Ribet, Galois representations attached to eigenforms with nebentypus, pp. 18-52 in Modular Functions of one Variable V, Lecture Notes in Mathematics, 601, Springer, 1977. MR 0453647 (56:11907)
  • 51. K. Ribet and W. Stein, Lectures on Serres' conjectures, pp. 143-232 in Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser. 9, Amer. Math. Soc., Providence, RI, 2001. MR 1860042 (2002h:11047)
  • 52. D. Rohrlich, Modular Curves, Hecke Correspondences, and $ L$-functions, pp.41-99 in Modular Forms and Fermat's Last Theorem, Springer, 1997. MR 1638476
  • 53. J.-P. Serre, Zeta and $ L$-functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965. MR 0194396 (33:2606)
  • 54. J.-P. Serre, Abelian $ \ell$-adic Representations and Elliptic Curves, W.A. Benjamin, Inc., 1968. MR 0263823 (41:8422)
  • 55. J.-P. Serre, Une interprétation des congruences relatives à la fonction $ \tau$ de Ramanujan, pp. 498-511 in Jean-Pierre Serre, Oeuvres, Collected Papers, Volume II (1960-1971) Springer, 1986. MR 0926690 (89h:01109b)
  • 56. J.-P. Serre, Modular Forms of weight one and Galois Representations, pp. 292-367 in Jean-Pierre Serre, Oeuvres, Collected Papers, Volume III (1972-1984) Springer, 1986. MR 0926691 (89h:01109c)
  • 57. J.-P. Serre, Représentations $ \ell$-adiques, pp. 384-401 in Jean-Pierre Serre, Oeuvres, Collected Papers, Volume III (1972-1984) Springer, 1986. MR 0926691 (89h:01109c)
  • 58. J.-P. Serre, Trees (transl. J. Stillwell) Springer Monographs in Mathematics (2003). MR 1954121 (2003m:20032)
  • 59. J.-P. Serre, Sur les représentations modulaires de degré $ 2$ de $ \mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$, Duke Math. J. 54, 179-230 (1987). MR 885783 (88g:11022)
  • 60. G. Shimura, On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan 25, 523-544 (1973). MR 0318162 (47:6709)
  • 61. G. Shimura, Introduction to Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, 11, Tokyo-Princeton (1971). MR 0314766 (47:3318)
  • 62. C. Skinner, Elliptic Curves and Main Conjectures, Kuwait Foundation Lecture 49, May 24, 2005. http://www.dpmms.cam.ac.uk/Seminars/Kuwait/abstracts/L49.pdf
  • 63. C. Skinner, A. Wiles, Residually reducible representations and modular forms, Publications Mathématiques de l'IHÉS 89, 6-126 (1999). MR 1793414 (2002b:11072)
  • 64. C. Skinner, E. Urban, Sur les déformations $ p$-adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5 no. 4. 629-698 (2006). MR 2261226 (2008a:11072)
  • 65. C. Skinner, E. Urban, Vanishing of $ L$-functions and ranks of Selmer groups, pp. 473-500 in Proceedings of the International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zurich (2006); See also: http://www.math.columbia.edu/$ \sim$urban/EURP08.html. MR 2275606 (2008a:11063)
  • 66. C. Skinner, E. Urban, The main conjecture for $ \mathrm{GL}_2$; See: http://www.math. columbia.edu/$ \sim$urban/EURP08.html
  • 67. W. Stein, An introduction to computing modular forms using modular symbols, pp. 642-652 in Algorithmic Number Theory, MSRI Publications 44 (2008). MR 2467560 (2009k:11085)
  • 68. H. P. F. Swinnerton-Dyer, On $ \ell$-adic representations and congruences for coefficients of modular forms, I: pp. 1-55 in Modular functions of one variable, III, Lecture Notes in Mathematics, 350, Springer, 1973. MR 0406931 (53:10717a)
  • 69. H. P. F. Swinnerton-Dyer, On $ \ell$-adic representations and congruences for coefficients of modular forms, II: pp. 63-90 in Modular functions of one variable, V, Lecture Notes in Mathematics, 601, Springer, 1977. MR 0498392 (58:16520)
  • 70. E. Urban, On residually reducible representations on local rings, J. Algebra 212 no. 2, 738-742 (1999). MR 1676863 (2000a:16020)
  • 71. E. Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 no. 3, 485-525 (2001). MR 1813234 (2002b:11073)
  • 72. E. Urban, Groupes de Selmer et Fonctions $ L$ $ p$-adiques pour les représentations modulaires adjointes, See: http://www.math.columbia.edu/$ \sim$urban/EURP08.html
  • 73. H. Vandiver, Fermat's Last Theorem: Its history and the nature of the known results concerning it, Amer. Math. Monthly 53, 555-578 (1946); 60, 164-167 (1953).
  • 74. L. Washington, Introduction to Cyclotomic Fields, Springer, 1982. MR 718674 (85g:11001)
  • 75. A. Wiles, On ordinary $ {\lambda}$-adic representations associated to modular forms, Invent. Math. 94, 529-573 (1988). MR 969243 (89j:11051)
  • 76. A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131, 493-540 (1990). MR 1053488 (91i:11163)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 11R04, 18-XX, 20-XX, 23-XX

Retrieve articles in all journals with MSC (2010): 11R04, 18-XX, 20-XX, 23-XX


Additional Information

Barry Mazur
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts

DOI: https://doi.org/10.1090/S0273-0979-2011-01326-X
Received by editor(s): September 20, 2009
Received by editor(s) in revised form: January 29, 2010
Published electronically: January 18, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society