IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

About the cover: Early images of minimal surfaces


Authors: Matthias Weber and Michael Wolf
Journal: Bull. Amer. Math. Soc. 48 (2011), 457-460
DOI: https://doi.org/10.1090/S0273-0979-2011-01339-8
Published electronically: April 11, 2011
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [Cos] C. Costa.
    Example of a complete minimal immersion in $ \mathbb{R}^3$ of genus one and three embedded ends.
    Bull. Soc. Bras. Mat. 15 (1984), 47-54.
    MR 0794728
  • [Eul] L. Euler.
    Methodus inveniendi lineas curvas maximi minimive propietate gaudeates sive solutio problematis isoperimetrici latissimo sensu accepti.
    Harvard Univ. Press, Cambridge, MA, 1969; and
    Opera omnia (1) 24 Fussli, Turici, 1952. A source book in mathematics, partially translated by D. J. Struik, pp. 399-406.
  • [Hof] D. Hoffman.
    The computer-aided discovery of new embedded minimal surfaces.
    Mathematical Intelligencer 9 (1987), 8-21.
    MR 0895770
  • [HMI] D. Hoffman and W. H. Meeks III.
    A complete embedded minimal surface in $ \mathbb{R}^3$ with genus one and three ends.
    J. Differential Geom. 21 (1985), 109-127.
    MR 0806705
  • [MIP] W. H. Meeks III and J. Pérez.
    The classical theory of minimal surfaces.
    Bull. Amer. Math. Soc. 48 (2011), 325-407.
  • [Meu] J. B. Meusnier.
    Mémoire sur la courbure des surfaces.
    Mém. Mathém. Phys. Acad. Sci. Paris, prés. par div. Savans 10 (1785), 477-510.
    Presented in 1776.
  • [Neo] E. R. Neovius.
    Bestimmung zweier spezieller periodischer Minimalflächen.
    Akad. Abhandlungen, Helsingfors, 1883.
    JFM 15.0732.01.
  • [Rie] B. Riemann.
    Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung.
    Abh. Königl, d. Wiss. Göttingen, Mathem. Cl. 13 (1867), 3-52.
    K. Hattendorf, editor. JFM 01.0218.01.
  • [Sch] H. A. Schwarz.
    Gesammelte Mathematische Abhandlungen, volume 1.
    Springer, Berlin, 1890.


Additional Information

Matthias Weber
Affiliation: Indiana University
Email: matweber@indiana.edu

Michael Wolf
Affiliation: Rice University
Email: mwolf@math.rice.edu

DOI: https://doi.org/10.1090/S0273-0979-2011-01339-8
Published electronically: April 11, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society