Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Feliks Przytycki and Mariusz Urbański
Title: Conformal fractals: ergodic theory methods
Additional book information: London Mathematical Society Lecture Note Series, 371, Cambridge University Press, Cambridge, 2010, x+354 pp., ISBN 978-0-521-43800-1

References [Enhancements On Off] (What's this?)

  • 1. A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, 132, Springer-Verlag, 1991. MR 1128089 (92j:30026)
  • 2. L. Carleson and T.W. Gamelin, Complex Dynamics, Springer-Verlag, 1993. MR 1230383 (94h:30033)
  • 3. A. Connes, Classification of injective factors. Cases $ II_{1}$, $ II_{\infty }$, $ III_{\lambda }$, $ \lambda \neq1$, Ann. of Math. (2) 104 (1976), no. 1, 73-115. MR 0454659 (56:12908)
  • 4. A. Connes and M. Takesaki, The flow of weights on factors of type $ {\rm III}$, Tôhoku Math. J. (2) 29 (1977), no. 4, 473-575. MR 480760 (82a:46069a)
  • 5. M. Denker and M. Urbański, Hausdorff measures on Julia sets of subexpanding rational maps. Israel J. Math. 76 (1991), no. 1-2, 193-214. MR 1177340 (93g:58078)
  • 6. A. Freire, A. Lopes, and R. Mańé, An invariant measure for rational maps, Bol. Soc. Brasil Mat. 14 (1983), 45-62. MR 736568 (85m:58110b)
  • 7. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204-256. MR 0498471 (58:16583)
  • 8. H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981. MR 603625 (82j:28010)
  • 9. J. Hawkins, Lebesgue ergodic rational maps in parameter space, Internat. J. Bifurcation and Chaos, 6 (2003), Vol. 13, 1423-1447. MR 1992056 (2004e:37065)
  • 10. G. Keller, Equilibrium States in Ergodic Theory, London Math. Soc. Student Texts 42, 1998. MR 1618769 (99e:28022)
  • 11. W. Krieger, On ergodic flows and the isomorphism of factors. Math. Ann. 223 (1976), no. 1, 1970. MR 0415341 (54:3430)
  • 12. M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory and Dynam. Systems 3 (1983), 351-385. MR 741393 (85k:58049)
  • 13. R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Math., 14 (1983), no. 1, 27-43. MR 736567 (85m:58110a)
  • 14. J. Milnor, Dynamics in One Complex Variable, $ 3$rd Ed, Princeton Univ. Press, 2006. MR 2193309 (2006g:37070)
  • 15. V. A. Rohlin, On the fundamental ideas of measure theory, Trans. Amer. Math. Soc. 71 (1952), 1-54. MR 0047744 (13:924e)
  • 16. C.E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379-423, 623-656. MR 0026286 (10:133e)
  • 17. D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry, Proc. Inter. Congress of Math. Berkeley, AMS (1986), 1216-1228. MR 934326 (90a:58160)
  • 18. Terence Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory and Dynam. Systems 28 (2008), no. 2, 657688. MR 2408398 (2009k:37012)
  • 19. M. Urbański, Measures and dimensions in conformal dynamics. Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 3, 281-321. MR 1978566 (2004f:37063)
  • 20. A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. MR 1032883 (90m:58120)
  • 21. M. Zinmeister, Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts and Mono., Vol. 2 (2000), AMS; in French (1996), SMF.

Review Information:

Reviewer: Jane Hawkins
Affiliation: University of North Carolina, Chapel Hill, North Carolina
Email: jmh@math.unc.edu
Journal: Bull. Amer. Math. Soc. 49 (2012), 181-186
MSC (2010): Primary 37F35
DOI: https://doi.org/10.1090/S0273-0979-2011-01337-4
Published electronically: May 16, 2011
Review copyright: © Copyright 2011 American Mathematical Society
American Mathematical Society