Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Spaces of graphs and surfaces: on the work of Søren Galatius


Author: Ulrike Tillmann
Journal: Bull. Amer. Math. Soc. 49 (2012), 73-90
MSC (2010): Primary 20J06
DOI: https://doi.org/10.1090/S0273-0979-2011-01360-X
Published electronically: October 19, 2011
MathSciNet review: 2869008
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We put Soren Galatius's result on the homology of the automorphism group of free groups into context. In particular we explain its relation to the Mumford conjecture and the main ideas of the proofs.


References [Enhancements On Off] (What's this?)

  • 1. S. Araki, T. Kudo, Topology of $ H_{n}$-spaces and $ H_{n}$-squaring operations, Mem. Fac. Sci. Kyushu Univ. Ser A 10 (1956), 85-120. MR 0087948 (19:442b)
  • 2. M. Barratt, S. Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1-14. MR 0314940 (47:3489)
  • 3. J. Birman, B.  Wajnryb, Presentations of the mapping class group. Errata, Israel J. Math. 88 (1994), no. 1-3, 425-427. MR 1303506 (95j:57014)
  • 4. S. K. Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients, Mat. Zeit., to appear arXiv:0904.3269
  • 5. K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87 Springer-Verlag (1982). MR 672956 (83k:20002)
  • 6. R. Charney, R. Lee, An application of homotopy theory to mapping class groups, J. Pure Appl. Algebra 44 (1987), no. 1-3, 127-135. MR 885100 (88m:55024)
  • 7. M. Culler, K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91-119. MR 830040 (87f:20048)
  • 8. C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19-43. MR 0276999 (43:2737a)
  • 9. E. Dyer, R. Lashof, Homology of iterated loop spaces., Amer. J. Math. 84 (1962), 35-88. MR 0141112 (25:4523)
  • 10. J. Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, arXiv:0902.4719
  • 11. J. Ebert, Algebraic independence of generalized Morita-Miller-Mumford classes, Algebr. Geom. Topol. 11 (2011), 69-105. MR 2764037
  • 12. B. Farb, D. Margalit, A primer on mapping class groups, Princeton University Press, to appear.
  • 13. S. Galatius, Mod $ p$ homology of the stable mapping class group, Topology 43 (2004), no. 5, 1105-1132. MR 2079997 (2006a:57020)
  • 14. S. Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. 173 (2011), 705-768. math/0610216 MR 2784914
  • 15. S. Galatius, I. Madsen, U. Tillmann, Divisibility of the stable Miller-Morita-Mumford classes, J. Amer. Math. Soc. 19 (2006), no. 4, 759-779. MR 2219303 (2006m:57039)
  • 16. S. Galatius, I. Madsen, U. Tillmann, and M. Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009), no. 2, 195-239. MR 2506750 (2011c:55022)
  • 17. S. Galatuis and O. Randal-Williams, Monoids of moduli spaces of manifolds, Geom. Topol. 14 (2010), no. 3, 1243-1302. MR 2653727 (2011j:57047)
  • 18. S. M. Gersten, A presentation for the special automorphism group of a free group, J. Pure Appl. Algebra 33 (1984), no. 3, 269-279. MR 761633 (86f:20041)
  • 19. J. Giansiracusa, U. Tillmann, Vanishing of universal charcteristic classes for handlebody groups and boundary bundles, arXiv:0910.5367
  • 20. J. Harer, The second homology of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239. MR 700769 (84g:57006)
  • 21. J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215-249. MR 786348 (87f:57009)
  • 22. J. L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157-176. MR 830043 (87c:32030)
  • 23. A. Hatcher, A proof of the Smale conjecture, $ Diff (S^{3}) \simeq SO (3)$, Ann. of Math. 117 (1983), 553-607. MR 701256 (85c:57008)
  • 24. A. Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39-62. MR 1314940 (95k:20030)
  • 25. A. Hatcher, K. Vogtmann, Rational homology of $ \Aut (F_{n})$, Math. Res. Lett. 5 (1998), no. 6, 759-780. MR 1671188 (99m:20127)
  • 26. A. Hatcher, K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. 58 (1998), 633-655. MR 1678155 (2000e:20041)
  • 27. A. Hatcher, K. Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253-1272. MR 2113904 (2005j:20038)
  • 28. A. Hatcher, K. Vogtmann, N. Wahl, Erratum to: Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 6 (2006), 573-579. MR 2220689 (2006k:20069)
  • 29. A. Hatcher, N. Wahl, Stabilization for mapping class groups of 3-manifolds, Duke Math. J. 155 (2010), 205-269. MR 2736166
  • 30. K. Igusa, Higher Franz-Reidemeister torsion. AMS/IP Studies in Advanced Mathematics, 31. American Mathematical Society (2002). MR 1945530 (2004f:19003)
  • 31. N. V. Ivanov, Stabilization of the homology of Teichmüller modular groups, (Russian) Algebra i Analiz 1 (1989), no. 3, 110-126; translation in Leningrad Math. J. 1 (1990), no. 3, 675-691. MR 1015128 (91g:57010)
  • 32. I. Madsen and U. Tillmann, The stable mapping class group and $ Q(CP^{\infty }_{+})$, Invent. Math. 145 (2001), no. 3, 509-544. MR 1856399 (2002h:55011)
  • 33. I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. 165 (2007), 843-941. MR 2335797 (2009b:14051)
  • 34. E. Y. Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986), no. 1, 1-14. MR 857372 (88b:32051)
  • 35. J. W. Milnor and J. D. Stasheff, Characteristic classes; Ann. of Math. Stud., 76 Princeton University Press, (1974). MR 0440554 (55:13428)
  • 36. D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik 34, Springer (1965) (Third enlarged edition with J. Fogarty, F. Kirwan (1994)). MR 0214602 (35:5451)
  • 37. D. Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, 271-328, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983. MR 717614 (85j:14046)
  • 38. M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. 2 71 (1960) 16-42. MR 0112134 (22:2989)
  • 39. E. Friedlander, B. Mazur, Filtrations on the homology of algebraic varieties. With an appendix by Daniel Quillen. Mem. Amer. Math. Soc. 110 (1994). MR 1211371 (95a:14023)
  • 40. O. Randal-Williams, Resolutions of moduli spaces and homological stability, arXiv:0909.4278
  • 41. G.  Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213-221. MR 0331377 (48:9710)
  • 42. U. Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997), no. 2, 257-275. MR 1474157 (99k:57036)
  • 43. K. Vogtmann, The cohomology of automorphism groups of free groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich (2006), 1101-1117. MR 2275637 (2007k:20090)
  • 44. N. Wahl, Homological stability for the mapping class groups of non-orientable surfaces, Invent. Math. 171 (2008), no. 2, 389-424. MR 2367024 (2008m:57047)
  • 45. B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174. MR 719117 (85g:57007)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 20J06

Retrieve articles in all journals with MSC (2010): 20J06


Additional Information

Ulrike Tillmann
Affiliation: Mathematical Institute, Oxford University, 24-29 St Giles St., Oxford OX1 3LB, United Kingdom
Email: tillmann@maths.ox.ac.uk

DOI: https://doi.org/10.1090/S0273-0979-2011-01360-X
Received by editor(s): July 18, 2011
Received by editor(s) in revised form: August 7, 2011
Published electronically: October 19, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society