Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Grothendieck's Theorem, past and present


Author: Gilles Pisier
Journal: Bull. Amer. Math. Soc. 49 (2012), 237-323
MSC (2010): Primary 46B28, 46L07; Secondary 46B85, 81P40
DOI: https://doi.org/10.1090/S0273-0979-2011-01348-9
Published electronically: August 12, 2011
MathSciNet review: 2888168
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Probably the most famous of Grothendieck's contributions to Banach space theory is the result that he himself described as ``the fundamental theorem in the metric theory of tensor products''. That is now commonly referred to as ``Grothendieck's theorem'' (``GT'' for short), or sometimes as ``Grothendieck's inequality''. This had a major impact first in Banach space theory (roughly after 1968), then, later on, in $ C^*$-algebra theory (roughly after 1978). More recently, in this millennium, a new version of GT has been successfully developed in the framework of ``operator spaces'' or non-commutative Banach spaces. In addition, GT independently surfaced in several quite unrelated fields: in connection with Bell's inequality in quantum mechanics, in graph theory where the Grothendieck constant of a graph has been introduced and in computer science where the Grothendieck inequality is invoked to replace certain NP hard problems by others that can be treated by ``semidefinite programming'' and hence solved in polynomial time. This expository paper (where many proofs are included), presents a review of all these topics, starting from the original GT. We concentrate on the more recent developments and merely outline those of the first Banach space period since detailed accounts of that are already available, for instance the author's 1986 CBMS notes.


References [Enhancements On Off] (What's this?)

  • 1. A. Acín, N. Gisin and B. Toner, Grothendieck's constant and local models for noisy entangled quantum states, Phys. Rev. A (3) 73 (2006), no. 6, part A, 062105, 5 pp. MR 2244753 (2007d:81020)
  • 2. A.B. Aleksandrov and V.V. Peller, Hankel and Toeplitz-Schur multipliers, Math. Ann. 324 (2002), 277-327. MR 1933859 (2003i:47027)
  • 3. N. Alon and E. Berger, The Grothendieck constant of random and pseudo-random graphs, Discrete Optim. 5 (2008), no. 2, 323-327. MR 2408427 (2009e:05282)
  • 4. N. Alon, K. Makarychev, Y. Makarychev, and A. Naor, Quadratic forms on graphs, Invent. Math. 163 (2006), no. 3, 499-522. MR 2207233 (2008a:05156)
  • 5. N. Alon and A. Naor, Approximating the cut-norm via Grothendieck's inequality, SIAM J. Comput. 35 (2006), no. 4, 787-803 (electronic). MR 2203567 (2006k:68176)
  • 6. S. Arora, E. Berger, E. Hazan, G. Kindler, and M. Safra, On non-approximability for quadratic programs, Preprint, to appear.
  • 7. A. Aspect, Bell's theorem: the naive view of an experimentalist, Quantum [Un]speakables (Vienna, 2000), 119-153, Springer, Berlin, 2002 (arXiv:quant-ph/0402001). MR 2008131
  • 8. A. Aspect, Testing Bell's inequalities, Quantum Reflections, 69-78, Cambridge Univ. Press, Cambridge, 2000. MR 1798336
  • 9. J. Audretsch, Entangled Systems, Wiley-Vch, VerlagGmbH & Co., KGaA, Weinheim, 2007.
  • 10. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, New York, 1976. MR 0482275 (58:2349)
  • 11. D. P. Blecher et al., ``A collection of problems on operator algebras'', pp. 205-214 in Selfadjoint and nonselfadjoint operator algebras and operator theory, Proceedings of the CBMS Regional Conference held at Texas Christian University, Fort Worth, Texas, May 19-26, 1990. Edited by Robert S. Doran. Contemporary Mathematics, 120. American Mathematical Society, Providence, RI, 1991. MR 1126266 (92d:00034)
  • 12. D. Blecher, Tracially completely bounded multilinear maps on $ C^*$-algebras, J. London Math. Soc. 39 (1989), no. 3, 514-524. MR 1002463 (91b:46049)
  • 13. D. Blecher, Generalizing Grothendieck's program, ``Function spaces'', K. Jarosz (ed.), Lecture Notes in Pure and Applied Math., Vol. 136, Marcel Dekker, 1992. MR 1152330 (92i:46001)
  • 14. R.C. Blei, Multidimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68. MR 543503 (81b:43008)
  • 15. R.C. Blei, Analysis in Integer and Fractional Dimensions, Cambridge University Press, Cambridge, 2001. MR 1853423 (2003a:46008)
  • 16. M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Unione Mat. Ital. (6) 3-A (1984), 297-302. MR 753889 (86b:43009)
  • 17. M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor, The Grothendieck constant is strictly smaller than Krivine's bound. Preprint, March 31, 2011.
  • 18. J. Briët, F.M. de Oliveira Filho and F. Vallentin, The positive semidefinite Grothendieck problem with rank constraint, pp. 31-42 in Proceedings of the 37th International Colloquium on Automata, Languages and Programming, ICALP 2010 S. Abramsky, et al. (eds.), Part I, LNCS 6198, 2010.
  • 19. J. Briët, F.M. de Oliveira Filho and F. Vallentin, Grothendieck inequalities for semidefinite programs with rank constraint, arXiv:1011.1754v1 [math.OC]
  • 20. J. Briët, H. Burhman and B. Toner, A generalized Grothendieck inequality and entanglement in XOR games, arXiv:0901.2009v1 [quant-ph].
  • 21. N.P. Brown and N. Ozawa, $ C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008. MR 2391387 (2009h:46101)
  • 22. A. Buchholz, Optimal constants in Khintchine type inequalities for Fermions, Rademachers and $ q$-Gaussian operators, Bull. Polish Acad. Sci. Math. 53 (2005), 315-321. MR 2213610 (2007a:46070)
  • 23. M. Charikar and A. Wirth, Maximizing quadratic programs: extending Grothendieck's inequality, FOCS (2004), 54-60.
  • 24. M.D. Choi and E. Effros, Nuclear $ C^*$-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), 443-446. MR 0430794 (55:3799)
  • 25. B. Collins and K. Dykema, A linearization of Connes' embedding problem. New York J. Math. 14 (2008), 617-641. MR 2465797 (2010a:46141)
  • 26. A. Connes, Classification of injective factors. Cases $ II_{1}$, $ II_{\infty}$, $ III_{\lambda}$, $ \lambda \ne 1$, Ann. of Math. (2) 104 (1976), 73-115. MR 0454659 (56:12908)
  • 27. A.M. Davie, Matrix norms related to Grothendieck's inequality, Banach spaces (Columbia, MO, 1984), 22-26, Lecture Notes in Math., 1166, Springer, Berlin, 1985. MR 827755
  • 28. A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam, 1993. MR 1209438 (94e:46130)
  • 29. J. Diestel, J.H. Fourie and J. Swart, The metric theory of tensor products. Grothendieck's résumé revisited, American Mathematical Society, Providence, RI, 2008. MR 2428264 (2010a:46005)
  • 30. J. Diestel, H. Jarchow and A. Pietsch, Operator ideals, Handbook of the Geometry of Banach Spaces, Vol. I, 437-496, North-Holland, Amsterdam, 2001. MR 1863699 (2003h:47137)
  • 31. J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. Sci. École Norm. Sup. 66 (1949), 209-261. MR 0032940 (11:370c)
  • 32. E. Dubinsky, A. Pełczyński and H.P. Rosenthal, On Banach spaces $ X$ for which $ \Pi_{2}({\mathcal L}_{\infty}, X)=B({\mathcal L}_{\infty}, X)$, Studia Math. 44 (1972), 617-648. MR 0365097 (51:1350)
  • 33. K. Dykema and K. Juschenko, Matrices of unitary moments, Preprint (arXiv:0901.0288).
  • 34. E.G. Effros and Z.J. Ruan, A new approach to operator spaces, Canadian Math. Bull. 34 (1991), 329-337. MR 1127754 (93a:47045)
  • 35. E.G. Effros and Z.J. Ruan, Operator Spaces, The Clarendon Press, Oxford University Press, New York, 2000, xvi+363 pp. MR 1793753 (2002a:46082)
  • 36. P.C. Fishburn and J.A. Reeds, Bell inequalities, Grothendieck's constant, and root two, SIAM J. Discrete Math. 7 (1994), no. 1, 48-56. MR 1259009 (95e:05013)
  • 37. T. Fritz, Tsirelson's problem and Kirchberg's conjecture, 2010 (arXiv:1008.1168).
  • 38. T.W. Gamelin and S.V. Kislyakov, Uniform algebras as Banach spaces, Handbook of the Geometry of Banach Spaces, Vol. I, 671-706, North-Holland, Amsterdam, 2001. MR 1863704 (2003b:46065)
  • 39. D. Pérez-García, M.M. Wolf, C. Palazuelos, I. Villanueva, and M. Junge, Unbounded violation of tripartite Bell inequalities, Comm. Math. Phys. 279 (2008), no. 2, 455-486. MR 2383595 (2008m:81018)
  • 40. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach. 42 (1995), 1115-1145. MR 1412228 (97g:90108)
  • 41. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boll. Soc. Mat. São-Paulo 8 (1953), 1-79. Reprinted in Resenhas 2 (1996), no. 4, 401-480. MR 1466414 (98e:46091)
  • 42. A. Grothendieck, Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers, Bol. Soc. Mat. São Paulo 8 (1953), 81-110. Reprinted in Resenhas 3 (1998), no. 4, 447-477. MR 1675413 (2000a:46029)
  • 43. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires (French), Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 pp. MR 0075539 (17:763c)
  • 44. M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197. MR 625550 (84a:90044)
  • 45. M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial optimization, Second edition, Algorithms and Combinatorics, 2, Springer-Verlag, Berlin, 1993. MR 1261419 (95e:90001)
  • 46. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light, Cambridge Univ. Press, 2010.
  • 47. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), 231-283 (1982). MR 654838 (83m:60031)
  • 48. U. Haagerup, Solution of the similarity problem for cyclic representations of $ C^*$-algebras, Ann. of Math. (2) 118 (1983), 215-240. MR 717823 (85d:46080)
  • 49. U. Haagerup, All nuclear $ C^*$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305-319. MR 723220 (85g:46074)
  • 50. U. Haagerup, The Grothendieck inequality for bilinear forms on $ C^*$-algebras, Adv. Math. 56 (1985), no. 2, 93-116. MR 788936 (86j:46061)
  • 51. U. Haagerup, A new upper bound for the complex Grothendieck constant, Israel J. Math. 60 (1987), no. 2, 199-224. MR 931877 (89f:47029)
  • 52. U. Haagerup and T. Itoh, Grothendieck type norms for bilinear forms on $ C^*$-algebras, J. Operator Theory 34 (1995), 263-283. MR 1373324 (97a:46070)
  • 53. U. Haagerup and M. Musat, On the best constants in noncommutative Khintchine-type inequalities, J. Funct. Anal. 250 (2007), 588-624. MR 2352492 (2008m:46111)
  • 54. U. Haagerup and M. Musat, The Effros-Ruan conjecture for bilinear forms on $ C^*$-algebras, Invent. Math. 174 (2008), 139-163. MR 2430979 (2009i:46102)
  • 55. U. Haagerup and G. Pisier, Linear operators between $ C^*$-algebras, Duke Math. J. 71 (1993), 889-925. MR 1240608 (94k:46112)
  • 56. U. Haagerup and S. Thorbjørnsen, Random matrices and $ K$-theory for exact $ C^*$-algebras, Doc. Math. 4 (1999), 341-450 (electronic). MR 1710376 (2000g:46092)
  • 57. U. Haagerup and S. Thorbjørnsen, A new application of random matrices: $ {\rm Ext}(C^*_{\text{red}}(F_2))$ is not a group, Ann. of Math. (2) 162 (2005), no. 2, 711-775. MR 2183281 (2009k:46121)
  • 58. A. Harcharras, Fourier analysis, Schur multipliers on $ S^p$ and non-commutative $ \Lambda(p)$-sets, Studia Math. 137 (1999), no. 3, 203-260. MR 1736011 (2001f:43004)
  • 59. J. Håstad, Some optimal inapproximability results, J.ACM 48 (2001), 798-859. MR 2144931 (2006c:68066)
  • 60. H. Heydari, Quantum correlation and Grothendieck's constant, J. Phys. A 39 (2006), no. 38, 11869-11875. MR 2275888 (2007g:81012)
  • 61. K. Itô and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), 35-48. MR 0235593 (38:3897)
  • 62. T. Itoh, On the completely bounded map of a $ C^*$-algebra to its dual space, Bull. London Math. Soc. 19 (1987), 546-550. MR 915431 (89i:46066)
  • 63. K. John, On the compact nonnuclear operator problem, Math. Ann. 287 (1990), 509-514. MR 1060689 (91f:47029)
  • 64. W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 1-84, North-Holland, Amsterdam, 2001. MR 1863689 (2003f:46013)
  • 65. M. Junge, Embedding of the operator space $ OH$ and the logarithmic `little Grothendieck inequality', Invent. Math. 161 (2005), no. 2, 225-286. MR 2180450 (2006i:47130)
  • 66. M. Junge, M. Navascues, C. Palazuelos, D. Peréz-García, V.B. Scholz, and R.F. Werner, Connes' embedding problem and Tsirelson's problem, 2010, Preprint (arXiv:1008.1142).
  • 67. M. Junge and C. Palazuelos, Large violations of Bell's inequalities with low entanglement, (arXiv:1007.3043).
  • 68. M. Junge and J. Parcet, Rosenthal's theorem for subspaces of noncommutative $ L_p$, Duke Math. J. 141 (2008), no. 1, 75-122. MR 2372148 (2009h:46121)
  • 69. M. Junge and J. Parcet, Maurey's factorization theory for operator spaces, Math. Ann. 347 (2010), no. 2, 299-338. MR 2606939
  • 70. M. Junge and J. Parcet, Mixed-norm inequalities and operator space $ L_p$ embedding theory, Mem. Amer. Math. Soc. 203 (2010), no. 953, vi+155 pp. MR 2589944 (2011d:46130)
  • 71. M. Junge and G. Pisier, Bilinear forms on exact operator spaces and $ B(H)\otimes B(H)$, Geom. Funct. Anal. 5 (1995), no. 2, 329-363. MR 1334870 (96i:46071)
  • 72. M. Junge, and Q. Xu, Representation of certain homogeneous Hilbertian operator spaces and applications, Invent. Math. 179 (2010), no. 1, 75-118, MR 2563760 (2011d:47047)
  • 73. R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II, Advanced Theory, Corrected reprint of the 1986 original. Graduate Studies in Mathematics, 16, American Mathematical Society, Providence, RI, 1997. MR 1468230 (98f:46001b)
  • 74. J.P. Kahane, Some random series of functions, Second edition, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985. MR 833073 (87m:60119)
  • 75. S. Kaijser and A.M. Sinclair, Projective tensor products of $ C^*$-algebras, Math. Scand. 55 (1984), no. 2, 161-187. MR 787195 (86m:46053)
  • 76. N.J. Kalton, Rademacher series and decoupling, New York J. Math. 11 (2005), 563-595 (electronic). MR 2188256 (2007b:60010)
  • 77. B. Kashin and S. Szarek, The Knaster problem and the geometry of high-dimensional cubes, C.R. Math. Acad. Sci. Paris 336 (2003), 931-936. MR 1994597 (2005c:46017)
  • 78. B. Kashin and S. Szarek, On the Gram matrices of systems of uniformly bounded functions (Russian), Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ.Uravn., 237-243; translation in Proc. Steklov Inst. Math. 2003, no. 4 (243), 227-233. MR 2054436 (2004m:46028)
  • 79. L.A. Khalfin and B.S. Tsirelson, Quantum and quasiclassical analogs of Bell inequalities, Symposium on the Foundations of Modern Physics (Joensuu, 1985), 441-460, World Sci. Publishing, Singapore, 1985. MR 843870
  • 80. S. Khot and A. Naor, Sharp kernel clustering algorithms and their associated Grothendieck inequalities. In Proceedings of SODA'2010, pp. 664-683.
  • 81. G. Kindler, A. Naor and G. Schechtman, The UGC hardness threshold of the $ L_p$ Grothendieck problem, Math. Oper. Res. 35 (2010), no. 2, 267-283. MR 2674720 (2011d:90074)
  • 82. E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group $ C^*$-algebras, Invent. Math. 112 (1993), 449-489. MR 1218321 (94d:46058)
  • 83. S.V. Kislyakov, Linear and complex analysis problem book, Section 6.5, Lecture Notes in Math., 1043, Springer, Berlin, 1984. MR 734178 (85k:46001)
  • 84. S.V. Kislyakov, Absolutely summing operators on the disc algebra (Russian), Algebra i Analiz 3 (1991), no. 4, 1-77; translation in St. Petersburg Math. J. 3 (1992), 705-774. MR 1152601 (93b:47062)
  • 85. S.V. Kislyakov, Banach spaces and classical harmonic analysis, Handbook of the Geometry of Banach Spaces, Vol. I, 871-898, North-Holland, Amsterdam, 2001. MR 1863708 (2003d:46021)
  • 86. H. König, On the complex Grothendieck constant in the $ n$-dimensional case, Geometry of Banach Spaces (Strobl, 1989), 181-198, London Math. Soc. Lecture Note Ser., 158, Cambridge Univ. Press, Cambridge, 1990. MR 1110195 (92g:46011)
  • 87. H. König, On an extremal problem originating in questions of unconditional convergence, in Recent Progress in Multivariate Approximation, Conf. Bommerholz 2000, Birkhäuser, 185-192, 2001. MR 1877506 (2002m:41006)
  • 88. J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 1973-1974: Espaces $ L^{p}$, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 22 et 23, 22 pp. Centre de Math., École Polytech., Paris, 1974. MR 0440334 (55:13209)
  • 89. J.L. Krivine, Sur la constante de Grothendieck, C.R. Acad. Sci. Paris Ser. A 284 (1977), 445-446. MR 0428414 (55:1435)
  • 90. J.L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères, Adv. in Math. 31 (1979), 16-30. MR 521464 (80e:46015)
  • 91. S. Kwapień, On operators factorizable through $ L_p$ space, Bull. Soc. Math. France Mémoire 31-32 (1972), 215-225. MR 0397464 (53:1323)
  • 92. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. MR 1849347 (2003k:28019)
  • 93. D.H. Leung, Factoring operators through Hilbert space, Israel J. Math. 71 (1990), 225-227. MR 1088816 (91k:47036)
  • 94. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ {\mathcal L}^{p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37:6743)
  • 95. N. Linial and A. Shraibman, Lower bounds in communication complexity based on factorization norms, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 699-708, ACM, New York, 2007. MR 2402497 (2009f:68056)
  • 96. L. Lovász, Semidefinite programs and combinatorial optimization, Lecture Notes, Microsoft Research, Redmont, WA 98052
  • 97. F. Lust-Piquard, Inégalités de Khintchine dans $ C_p\;(1<p<\infty)$, (French) [Khinchine inequalities in $ C_p\;(1<p<\infty)$], C.R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 7, 289-292. MR 859804 (87j:47032)
  • 98. F. Lust-Piquard, A Grothendieck factorization theorem on $ 2$-convex Schatten spaces, Israel J. Math. 79 (1992), no. 2-3, 331-365. MR 1248923 (95e:47063)
  • 99. F. Lust-Piquard and G. Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), no. 2, 241-260. MR 1150376 (94b:46011)
  • 100. F. Lust-Piquard and Q. Xu, The little Grothendieck theorem and Khintchine inequalities for symmetric spaces of measurable operators, J. Funct. Anal. 244 (2007), no. 2, 488-503. MR 2297032 (2008d:46081)
  • 101. B. Maurey, Une nouvelle démonstration d'un théorème de Grothendieck, Séminaire Maurey-Schwartz Année 1972-1973: Espaces $ L\sp{p}$ et applications radonifiantes, Exp. No. 22, 7 pp. Centre de Math., École Polytech., Paris, 1973. MR 0399818 (53:3660)
  • 102. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $ L^{p}$, Astérisque, No. 11. Société Mathématique de France, Paris, 1974, ii+163 pp. MR 0344931 (49:9670)
  • 103. A. Megretski, Relaxations of quadratic programs in operator theory and system analysis (English summary), Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), 365-392, Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001. MR 1882703 (2003d:90069)
  • 104. A.R.C. Nemirovski and T. Terlaky, On maximization of quadratic form over intersection of ellipsoids with common center, Math. Programming 86 (1999), 463-473. MR 1733748 (2000m:90025)
  • 105. T. Oikhberg, Direct sums of operator spaces, J. London Math. Soc. 64 (2001), 144-160. MR 1840776 (2002c:46115)
  • 106. T. Oikhberg and G. Pisier, The ``maximal'' tensor product of operator spaces, Proc. Edinburgh Math. Soc. 42 (1999), 267-284. MR 1697398 (2000f:46076)
  • 107. A.M. Olevskiĭ, Fourier series with respect to general orthogonal systems, Springer-Verlag, New York-Heidelberg, 1975. MR 0470599 (57:10347)
  • 108. N. Ozawa, About the QWEP conjecture, Internat. J. Math. 15 (2004), no. 5, 501-530. MR 2072092 (2005b:46124)
  • 109. C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991), 425-440. MR 1135471 (93e:68027)
  • 110. V. Paulsen, Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2002. MR 1976867 (2004c:46118)
  • 111. V. Paulsen and M. Raghupathi, Representations of logmodular algebras, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2627-2640. MR 2763729
  • 112. A. Peralta, Little Grothendieck's theorem for real $ {\rm JB}^ *$-triples, Math. Z. 237 (2001), 531-545. MR 1845336 (2002e:46086)
  • 113. A. Peralta, New advances on the Grothendieck's inequality problem for bilinear forms on JB*-triples, Math. Inequal. Appl. 8 (2005), 7-21. MR 2137902 (2006d:46089)
  • 114. A. Peres, Quantum theory: concepts and methods, Fundamental Theories of Physics, 57, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1273135 (95e:81001)
  • 115. A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1978. MR 582655 (81j:47001)
  • 116. G. Pisier, Grothendieck's theorem for noncommutative $ C^*$-algebras, With an appendix on Grothendieck's constants, J. Funct. Anal. 29 (1978), no. 3, 397-415. MR 512252 (80j:47027)
  • 117. G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and Analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986. MR 864714 (88d:46032)
  • 118. G. Pisier, Factorization of operators through $ L_{p\infty}$ or $ L_{p1}$ and noncommutative generalizations, Math. Ann. 276 (1986), no. 1, 105-136. MR 863711 (88f:47013)
  • 119. G. Pisier, Factorization of linear operators and the geometry of Banach spaces, CBMS (Regional Conferences of the A.M.S.) no. 60 (1986), Reprinted with corrections 1987. MR 829919 (88a:47020)
  • 120. G. Pisier, The dual $ J^*$ of the James space has cotype $ 2$ and the Gordon-Lewis property, Math. Proc. Cambridge Philos. Soc. 103 (1988), 323-331. MR 923685 (89a:46041)
  • 121. G. Pisier, Multipliers and lacunary sets in non-amenable groups, Amer. J. Math. 117 (1995), no. 2, 337-376. MR 1323679 (96e:46078)
  • 122. G. Pisier, A simple proof of a theorem of Kirchberg and related results on $ C^*$-norms, J. Operator Theory 35 (1996), 317-335. MR 1401692 (98e:46076)
  • 123. G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103 pp. MR 1342022 (97a:46024)
  • 124. G. Pisier, Non-commutative vector valued $ L_p$-spaces and completely $ p$-summing maps, Astérisque No. 247 (1998), vi+131 pp. MR 1648908 (2000a:46108)
  • 125. G. Pisier, An inequality for $ p$-orthogonal sums in non-commutative $ {L_p}$, Illinois J. Math. 44 (2000), 901-923. MR 1804311 (2001k:46101)
  • 126. G. Pisier, Introduction to operator space theory, Cambridge University Press, Cambridge, 2003. MR 2006539 (2004k:46097)
  • 127. G. Pisier, Completely bounded maps into certain Hilbertian operator spaces, Int. Math. Res. Not. (2004), no. 74, 3983-4018. MR 2103799 (2005g:46114)
  • 128. G. Pisier, Remarks on the non-commutative Khintchine inequalities for $ 0<p<2$, J. Funct. Anal. 256 (2009), no. 12, 4128-4161 MR 2521922 (2010i:46096)
  • 129. G. Pisier and D. Shlyakhtenko, Grothendieck's theorem for operator spaces, Invent. Math. 150 (2002), no. 1, 185-217. MR 1930886 (2004k:46096)
  • 130. G. Pisier and Q. Xu, Non-commutative $ L^p$-spaces, Handbook of the Geometry of Banach Spaces, Vol. 2, 1459-1517, North-Holland, Amsterdam, 2003. MR 1999201 (2004i:46095)
  • 131. F. Rădulescu, A comparison between the max and min norms on $ C^*(F_n)\otimes C^*(F_n)$, J. Operator Theory 51 (2004), no. 2, 245-253. MR 2074180 (2005e:46102)
  • 132. F. Rădulescu, Combinatorial aspects of Connes's embedding conjecture and asymptotic distribution of traces of products of unitaries, Operator Theory 20, 197-205, Theta Ser. Adv. Math. 6, Theta, Bucharest, 2006.
  • 133. P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in STOC'08, 245-254, ACM, New York, 2008. MR 2582901
  • 134. P. Raghavendra and D. Steurer, Towards computing the Grothendieck constant. Proceedings of SODA. 2009, 525-534.
  • 135. N. Randrianantoanina, Embeddings of non-commutative $ L^p$-spaces into preduals of finite von Neumann algebras, Israel J. Math. 163 (2008), 1-27. MR 2391121 (2009b:46130)
  • 136. J.A. Reeds, A new lower bound on the real Grothendieck constant, unpublished note, 1991, available at http://www.dtc.umn.edu/reedsj/bound2.dvi.
  • 137. O. Regev, Bell violations through independent bases games, to appear (arXiv:1101.0576v2).
  • 138. O. Regev and B. Toner, Simulating quantum correlations with finite communication, SIAM J. Comput. 39 (2009/10), 1562-1580. MR 2580540 (2011e:68063)
  • 139. R. Rietz, A proof of the Grothendieck inequality, Israel J. Math. 19 (1974), 271-276. MR 0367628 (51:3870)
  • 140. H.P. Rosenthal, On subspaces of $ L^{p}$, Ann. of Math. (2) 97 (1973), 344-373. MR 0312222 (47:784)
  • 141. Z.J. Ruan, Subspaces of $ C^*$-algebras, J. Funct. Anal. 76 (1988), 217-230. MR 923053 (89h:46082)
  • 142. J. Sawa, The best constant in the Khintchine inequality for complex Steinhaus variables, the case $ p=1$, Studia Math. 81 (1985), 107-126. MR 818175 (87d:26024)
  • 143. R. Schatten, A theory of cross spaces, Princeton Univ. Press, 1950. MR 0036935 (12:186e)
  • 144. R. Schneider, Zonoids whose polars are zonoids, Proc. Amer. Math. Soc. 50 (1975), 365-368. MR 0470857 (57:10601)
  • 145. V.B. Scholz and R.F. Werner, Tsirelson's Problem, arXiv:0812.4305v1 [math-ph]
  • 146. A. Sinclair and R. Smith, Hochschild Cohomology of von Neumann Algebras, Cambridge University Press, Cambridge, 1995. MR 1336825 (96d:46094)
  • 147. S.U. Szarek, On the best constants in the Khinchine inequality, Studia Math. 58 (1976), 197-208. MR 0430667 (55:3672)
  • 148. M. Takesaki, Theory of Operator Algebras, I, II and III, Springer-Verlag, New-York, 2002-2003. MR 1873025 (2002m:46083); MR 1943006 (2004g:46079); MR 1943007 (2004g:46080)
  • 149. N. Tomczak-Jaegermann, On the Rademacher averages and the moduli of convexity and smoothness of the Schatten classes $ S_p$, Studia Math. 50 (1974), 163-182. MR 0355667 (50:8141)
  • 150. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-dimensional Operator Ideals, Longman, Wiley, New York, 1989. MR 993774 (90k:46039)
  • 151. A. Tonge, The complex Grothendieck inequality for $ 2\times 2$ matrices, Bull. Soc. Math. Grèce (N.S.) 27 (1986), 133-136. MR 935447 (89c:47028)
  • 152. J.A. Tropp, Column subset selection, matrix factorization, and eigenvalue optimization, (arXiv:0806.4404v1), 26 June 2008.
  • 153. B.S. Tsirelson, Quantum generalizations of Bell's inequality, Lett. Math. Phys. 4 (1980), no. 2, 93-100. MR 577178 (81e:81011)
  • 154. B.S. Tsirelson, Quantum analogues of Bell's inequalities. The case of two spatially divided domains (Russian), Problems of the Theory of Probability Distributions, IX, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 142 (1985), 174-194, 200. MR 788202 (86g:81009)
  • 155. B.S. Tsirelson, Some results and problems on quantum Bell-type inequalities, Hadronic J. Suppl. 8 (1993), no. 4, 329-345. MR 1254597
  • 156. B.S. Tsirelson, Bell inequalities and operator algebras, Problem 33, 6 July 2006, Open Problems in Quantum Information Theory, Institut für Mathematische Physik, TU Braunschweig, Germany.
  • 157. A.M. Vershik and B.S. Tsirelson, Formulation of Bell type problems, and ``noncommutative'' convex geometry, Representation Theory and Dynamical Systems, 95-114, Adv. Soviet Math. 9, Amer. Math. Soc., Providence, RI, 1992. MR 1166197 (93i:46130)
  • 158. D. Voiculescu, K. Dykema and A. Nica, Free random variables, Amer. Math. Soc., Providence, RI, 1992. MR 1217253 (94c:46133)
  • 159. S. Wassermann, On tensor products of certain group $ C^{*}$-algebras, J. Funct. Anal. 23 (1976), 239-254. MR 0425628 (54:13582)
  • 160. W. Wogen, On generators for von Neumann algebras, Bull. Amer. Math. Soc. 75 (1969), 95-99. MR 0236725 (38:5020)
  • 161. Q. Xu, Applications du théorème de factorisation pour des fonctions à valeurs opérateurs, Studia Math. 95 (1990), 273-292. MR 1060730 (91i:46077)
  • 162. Q. Xu, Operator-space Grothendieck inequalities for noncommutative $ L_p$-spaces, Duke Math. J. 131 (2006), 525-574. MR 2219250 (2007b:46101)
  • 163. Q. Xu, Embedding of $ C_q$ and $ R_q$ into noncommutative $ L_p$-spaces, $ 1\leq p<q\leq2$, Math. Ann. 335 (2006), 109-131. MR 2217686 (2007m:46095)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 46B28, 46L07, 46B85, 81P40

Retrieve articles in all journals with MSC (2010): 46B28, 46L07, 46B85, 81P40


Additional Information

Gilles Pisier
Affiliation: Texas A&M University, College Station, Texas 77843

DOI: https://doi.org/10.1090/S0273-0979-2011-01348-9
Received by editor(s): January 26, 2011
Received by editor(s) in revised form: March 31, 2011
Published electronically: August 12, 2011
Additional Notes: Partially supported by NSF grant 0503688
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society