Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Uniqueness properties of solutions to Schrödinger equations


Authors: L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega
Journal: Bull. Amer. Math. Soc. 49 (2012), 415-442
MSC (2010): Primary 35Q55
DOI: https://doi.org/10.1090/S0273-0979-2011-01368-4
Published electronically: December 28, 2011
MathSciNet review: 2917065
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. Aronszajn, A. Krzywicki, and J. Szarski, Unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Math. 4 (1962) 417-453. MR 0140031 (25:3455)
  • 2. S. Ben Farah, and K. Mokni, Uncertainty principles and the $ L^p-L^q$-version of Morgan's theorem on some groups, Russian J. Math. Physics 10 (2003) 245-260. MR 2012899 (2004h:43010)
  • 3. H. Berestycki, and P.-L. Lions, Nonlinear scalar field equations, Arch. Rational Mech. Anal. 82 (1983) 313-375. MR 695535 (84h:35054a)
  • 4. H. Berestycki, T. Gallouët, and O. Kavian, Équations de champs scalaires Euclidiens non linéaires dans de plan, C. R. Acad. Sci. Paris, Ser. I Math. 297 (1983) 307-310. MR 734575 (85e:35041)
  • 5. A. Bonami, and B. Demange, A survey on uncertainty principles related to quadratic forms, Collect. Math. Vol. Extra (2006) 1-36. MR 2264204 (2007g:42018)
  • 6. A. Bonami, B. Demange, and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2006) 23-55. MR 1993414 (2004f:42015)
  • 7. J. Bourgain, and C. E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimensions, Invent. Math. 161, 2 (2005) 1432-1297. MR 2180453 (2006k:82085)
  • 8. A. P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), 16-36. MR 0104925 (21:3675)
  • 9. T. Carleman, Sur un probléme d'unicité pour les systémes d' equations aux derivées partielles á deux variables indépendantes, Ark. Math. 26B, (1939) 1-9.
  • 10. S. Chanillo, Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 325-331. MR 2352052 (2008h:22010)
  • 11. M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, The Hardy uncertainty principle revisited, to appear in Indiana U. Math. J.
  • 12. M. Cowling, and J. F. Price, Generalizations of Heisenberg's inequality, Harmonic Analysis (Cortona, 1982) Lecture Notes in Math., 992 (1983), 443-449, Springer, Berlin. MR 729369 (86g:42002b)
  • 13. M. Cowling, and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984) 151-165. MR 728691 (86g:42002a)
  • 14. J. Cruz-Sanpedro, Unique continuation at infinity of solutions to Schrödinger equations with complex potentials, Proc. Roy. Soc. Edinburgh. 42 (1999) 143-153. MR 1669361 (99m:35038)
  • 15. H. Dong, and W. Staubach. Unique continuation for the Schrödinger equation with gradient vector potentials, Proc. AMS 135, 7 (2007) 2141-2149. MR 2299492 (2008e:35160)
  • 16. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, On uniqueness properties of solutions of Schrödinger equations, Comm. PDE. 31, 12 (2006) 1811-1823. MR 2273975 (2009a:35198)
  • 17. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, On uniqueness properties of solutions of the k-generalized KdV, J. of Funct. Anal. 244, 2 (2007) 504-535. MR 2297033 (2007k:35406)
  • 18. L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega, Decay at infinity of caloric functions within characteristic hyperplanes, Math. Res. Letters 13, 3 (2006) 441-453. MR 2231129 (2007e:35125)
  • 19. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Convexity of free solutions of Schrödinger equations with Gaussian decay, Math. Res. Lett. 15, 5 (2008) 957-971. MR 2443994 (2010m:35412)
  • 20. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. European Math. Soc. 10, 4 (2008) 883-907. MR 2443923 (2009g:35248)
  • 21. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Uncertainty principle of Morgan type and Schrödinger evolution, J. London Math. Soc. 81, (2011) 187-207. MR 2763951 (2012a:35262)
  • 22. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J. 155, (2010) 163-187. MR 2730375
  • 23. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Unique continuation for Schrödinger evolutions, with applications to profiles of concentration and traveling waves, Comm. Math. Phys. 305, (2011) 487-512. MR 2805469
  • 24. L. Escauriaza, G. Seregin, and V. Šverák, $ L^{3,\infty }$ solutions to the Navier-Stokes equations and backward uniqueness, Russ. Math. Surv. 58, (2003) 211-250. MR 1992563 (2004m:35204)
  • 25. L. Escauriaza, and S. Vessella, Optimal three cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients, Contemp. Math. 333, Inverse Problems Theory and Applications (2002) 79-87. MR 2032008 (2004k:35163)
  • 26. I. M. Gel'fand, and G. E. Shilov, Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy's problem, Uspehi Matem. Nauk 8, (1953), 3-54. MR 0061694 (15:867e)
  • 27. J. Hadamard, Le problóme de Cauchy et les équations aux derivées partielles linéaires hyperboliques, Hermann, Paris (1932)
  • 28. G. H. Hardy, A theorem concerning Fourier transforms, J. London Math. Soc. s1-8 (1933) 227-231.
  • 29. N. Hayashi, K. Nakamitsu, and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z. 192 (1986) 637-650. MR 847012 (88b:35175)
  • 30. N. Hayashi, K. Nakamitsu, and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal. 71 (1987) 218-245. MR 880978 (88e:35162)
  • 31. L. Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29, 2 (1991) 237-240. MR 1150375 (93b:42016)
  • 32. A. E. Ingham, A note on Fourier transforms J. London Math. Soc. s1-9 (1934) 29-32.
  • 33. A. D. Ionescu, and C. E. Kenig, $ L^p$-Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math. 193, 2 (2004) 193-239. MR 2134866 (2005m:35283)
  • 34. A. D. Ionescu, and C. E. Kenig, Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal. 232 (2006) 90-136. MR 2200168 (2007b:35300)
  • 35. V. Izakov Carleman type estimates in an anisotropic case and applications, J. Differential Eqs. 105 (1993) 217-238. MR 1240395 (94k:35070)
  • 36. C. E. Kenig, Some recent quantitative unique continuation theorem, Rendiconti Accademia Nazionale dell Scienze, vol. XXIX (2005) 231-242. MR 2305071 (2007m:35030)
  • 37. C. E. Kenig, Some recent applications of unique continuations, Contemp. Math. 439 (2007) 25-56. MR 2359019 (2009a:35016)
  • 38. C. E. Kenig, and F. Merle, Global well-posedness scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008) 147-212. MR 2461508 (2011a:35344)
  • 39. C. E. Kenig, G. Ponce, and L. Vega, On unique continuation for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 60 (2002) 1247-1262. MR 1980854 (2004g:35195)
  • 40. C. E. Kenig, G. Ponce, L. Vega, A theorem of Paley-Wiener type for Schrödinger evolutions, to appear.
  • 41. V. A. Kondratiev, and E. M. Landis, Qualitative properties of the solutions of a second-order nonlinear equation, Encyclopedia of Math. Sci. 32 (Partial Differential equations III) Springer-Verlag, Berlin, 1988. MR 973885
  • 42. K. M. Kwong, Uniqueness of positive solutions of $ \Delta u-u+u=0$ in $ \mathbb{R}^n$, Arch. Rational Mech. Anal. 105 (1989) 243-266. MR 969899 (90d:35015)
  • 43. E. M. Landis, and O. A. Oleinik, Generalized analyticity and certain properties, of solutions of elliptic and parabolic equations, that are connected with it, Uspehi Mat. Nauk 29 (1974), 190-206. MR 0402268 (53:6089)
  • 44. J. L. Lions, and B. Malgrange, Sur l'unicité rétrograde dans les problèmes mixtes paraboliques, Math. Scan. 8 (1960) 277-286. MR 0140855 (25:4269)
  • 45. V. Z. Meshkov, On the possible rate of decay at infinity of solutions of second-order partial differential equations, Math. USSR Sbornik 72 (1992), 343-361. MR 1110071 (92d:35032)
  • 46. G. W. Morgan, A note on Fourier transforms, J. London Math. Soc. 9 (1934), 187-192.
  • 47. C. Müller, On the behavior of the solution of the differential equation $ \Delta u=f(x,u)$ in the neighborhood of a point, Comm. Math. Pure Appl. 1 (1954), 505-515. MR 0062920 (16:42c)
  • 48. E. K. Naranayan and S. K. Ray, Beurling's theorem in $ \mathbb{R}^n$, preprint.
  • 49. T. Nguyen, On a question of Landis and Oleinik, Trans. Amer. Math. Soc. 362 (2010) 2875-2899 MR 2592940 (2011b:35186)
  • 50. R. Paley and N. Wiener, Fourier transform in the complex domain, Amer. Math. Soc Providence RI (1934). MR 1451142 (98a:01023)
  • 51. J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Eqs. 66 (1987), 118-139. MR 871574 (88a:35115)
  • 52. G. Seregin, A certain necessary condition of potential blow-up for Navier-Stokes equations, preprint, arXiv: 1104.3615 MR 2749374
  • 53. A. Sitaram, M. Sundari, and S. Thangavelu, Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), 135-151. MR 1350473 (96h:43002)
  • 54. W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. MR 0454365 (56:12616)
  • 55. S. Vessella, Three cylinder inequalities and unique continuation properties for parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 2, 107-120. MR 1949484 (2004j:35036)
  • 56. B. Y. Zhang, Unique continuation properties of the nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh. 127 (1997) 191-205. MR 1433092 (97j:35143)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 35Q55

Retrieve articles in all journals with MSC (2010): 35Q55


Additional Information

L. Escauriaza
Affiliation: UPV/EHU, Depto. de Matemáticas, Apto. 644, 48080 Bilbao, Spain
Email: luis.escauriaza@ehu.es

C. E. Kenig
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: cek@math.uchicago.edu

G. Ponce
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
Email: ponce@math.ucsb.edu

L. Vega
Affiliation: UPV/EHU, Depto. de Matemáticas, Apto. 644, 48080 Bilbao, Spain
Email: luis.vega@ehu.es

DOI: https://doi.org/10.1090/S0273-0979-2011-01368-4
Keywords: Schrödinger evolutions
Received by editor(s): September 16, 2011
Published electronically: December 28, 2011
Additional Notes: The first and fourth authors are supported by MEC grant, MTM2004-03029, the second and third authors by NSF grants DMS-0968472 and DMS-0800967, respectively
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society