Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Vishnu D. Sharma
Title: Quasilinear hyperbolic systems, compressible flows, and waves
Additional book information: Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 142. CRC Press, Boca Raton, FL, 2010, xiv + 268 pp., ISBN 978-1-4398-3690-3

References [Enhancements On Off] (What's this?)

  • [1] Stuart S. Antman, {Nonlinear problems of elasticity}, 2nd ed., Applied Mathematical Sciences, vol. 107, Springer, New York, 2005. MR 2132247 (2006e:74001)
  • [2] Sylvie Benzoni-Gavage and Denis Serre, {Multidimensional hyperbolic partial differential equations}, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2007. First-order systems and applications. MR 2284507 (2008k:35002)
  • [3] Alberto Bressan, {An ill posed Cauchy problem for a hyperbolic system in two space dimensions}, Rend. Sem. Mat. Univ. Padova {110} (2003), {103-117}. MR 2033003 (2005a:35186)
  • [4] R. Courant and K. O. Friedrichs, {Supersonic flow and shock waves}, Springer-Verlag, New York, 1976. Reprinting of the 1948 original; Applied Mathematical Sciences, Vol. 21. MR 0421279 (54 #9284)
  • [5] Demetrios Christodoulou, {The Euler equations of compressible fluid flow}, Bull. Amer. Math. Soc. (N.S.) {44} (2007), no. {4}, {581-602 (electronic)}. MR 2338367 (2009g:76126), 10.1090/S0273-0979-07-01181-0
  • [6] Constantine M. Dafermos, {Hyperbolic conservation laws in continuum physics}, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010. MR 2574377
  • [7] Camillo De Lellis, {Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system}, Duke Math. J. {127} (2005), no. {2}, {313-339}. MR 2130415 (2006j:35159), 10.1215/S0012-7094-04-12724-1
  • [8] Xia Xi Ding, Gui Qiang Chen, and Pei Zhu Luo, {Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics}, Comm. Math. Phys. {121} (1989), no. {1}, {63-84}. MR 985615 (90d:65168)
  • [9] Ronald J. DiPerna, {Convergence of the viscosity method for isentropic gas dynamics}, Comm. Math. Phys. {91} (1983), no. {1}, {1-30}. MR 719807 (85i:35118)
  • [10] James Glimm, {Solutions in the large for nonlinear hyperbolic systems of equations}, Comm. Pure Appl. Math. {18} (1965), {697-715}. MR 0194770 (33:2976)
  • [11] S. N. Kružkov, {First order quasilinear equations with several independent variables.}, Mat. Sb. (N.S.) {81 (123)} (1970), {228-255} (Russian). MR 0267257 (42:2159)
  • [12] Peter D. Lax, {Hyperbolic partial differential equations}, Courant Lecture Notes in Mathematics, vol. 14, New York University Courant Institute of Mathematical Sciences, New York, 2006. With an appendix by Cathleen S. Morawetz. MR 2273657 (2007h:35002)
  • [13] Pierre-Louis Lions, Benoît Perthame, and Panagiotis E. Souganidis, {Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates}, Comm. Pure Appl. Math. {49} (1996), no. {6}, {599-638}. MR 1383202 (97e:35107)
  • [14] A. Majda, {Compressible fluid flow and systems of conservation laws in several space variables}, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308 (85e:35077)
  • [15] Ralph Menikoff and Bradley J. Plohr, {The Riemann problem for fluid flow of real materials}, Rev. Modern Phys. {61} (1989), no. {1}, {75-130}. MR 977944 (90a:35142), 10.1103/RevModPhys.61.75
  • [16] François Murat, {Compacité par compensation}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) {5} (1978), no. {3}, {489-507} (French). MR 506997 (80h:46043a)
  • [17] Benoît Perthame, {Kinetic formulation of conservation laws}, Oxford Lecture Series in Mathematics and its Applications, vol. 21, Oxford University Press, Oxford, 2002. MR 2064166 (2005d:35005)
  • [18] Jeffrey Rauch, {BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one}, Comm. Math. Phys. {106} (1986), no. {3}, {481-484}. MR 859822 (87m:35139)
  • [19] B. L. Roždestvenskiĭ and N. N. Janenko, {Systems of quasilinear equations and their applications to gas dynamics}, Translations of Mathematical Monographs, vol. 55, American Mathematical Society, Providence, RI, 1983. Translated from the second Russian edition by J. R. Schulenberger. MR 694243 (85f:35127)
  • [20] Joel Smoller, {Shock waves and reaction-diffusion equations}, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779 (95g:35002)
  • [21] Eitan Tadmor, Jian-Guo Liu, and Athanasios Tzavaras (eds.), {Hyperbolic problems: theory, numerics and applications}, Proceedings of Symposia in Applied Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2009. Plenary and invited talks. MR 2640499 (2010k:35006)
  • [22] L. Tartar, {Compensated compactness and applications to partial differential equations}, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass., 1979, pp. 136-212. MR 584398 (81m:35014)
  • [23] Blake Temple and Robin Young, {A paradigm for time-periodic sound wave propagation in the compressible Euler equations}, Methods Appl. Anal. {16} (2009), no. {3}, {341-363}. MR 2650801
  • [24] G. B. Whitham, {Linear and nonlinear waves}, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original; A Wiley-Interscience Publication. MR 1699025 (2000c:35001)

Review Information:

Reviewer: Helge Kristian Jenssen
Affiliation: Penn State University
Journal: Bull. Amer. Math. Soc. 49 (2012), 591-596
MSC (2000): Primary 35-02; Secondary 35L65, 35L72, 35L77, 35Q30, 76L05, 76N10, 76N15
Published electronically: September 13, 2011
Review copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society