Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Poincaré and the early history of 3-manifolds


Author: John Stillwell
Journal: Bull. Amer. Math. Soc. 49 (2012), 555-576
MSC (2010): Primary 57-03
DOI: https://doi.org/10.1090/S0273-0979-2012-01385-X
Published electronically: July 23, 2012
MathSciNet review: 2958930
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recent developments in the theory of 3-manifolds, centered around the Poincaré conjecture, use methods that were not envisioned by Poincaré and his contemporaries. Nevertheless, the main themes of 3-manifold topology originated in Poincaré's time. The purpose of this article is to reveal the origins of the subject by revisiting the world of the early topologists.


References [Enhancements On Off] (What's this?)

  • 1. Adyan, S. I. (1957).
    Unsolvability of some algorithmic problems in the theory of groups (Russian).
    Trudy Moskov. Mat. Obshch. 6, 231-298. MR 0095872 (20:2370)
  • 2. Alexander, J. W. (1915).
    A proof of the invariance of certain constants of analysis situs.
    Trans. Amer. Math. Soc. 16, 148-154. MR 1501007
  • 3. Alexander, J. W. (1919a).
    Note on Riemann spaces.
    Bull. Amer. Math. Soc. 26, 370-372. MR 1560318
  • 4. Alexander, J. W. (1919b).
    Note on two three-dimensional manifolds with the same group.
    Trans. Amer. Math. Soc. 20, 339-342. MR 1501131
  • 5. Alexander, J. W. (1924a).
    An example of a simply connected surface bounding a region which is not simply connected.
    Proceedings of the National Academy of Sciences 10, 8-10.
  • 6. Alexander, J. W. (1924b).
    On the subdivision of 3-space by a polyhedron.
    Proceedings of the National Academy of Sciences 10, 6-8.
  • 7. Alexander, J. W. (1928).
    Topological invariants of knots and links.
    Trans. Amer. Math. Soc. 30, 275-306. MR 1501429
  • 8. Alexander, J. W. and G. B. Briggs (1927).
    On types of knotted curves.
    Ann. Math. 28, 562-586.
  • 9. Appell, P. (1887).
    Quelques rémarques sur la théorie des potentiels multiforms.
    Math. Ann. 30, 155-156. MR 1510440
  • 10. Artin, E. (1926).
    Theorie der Zöpfe.
    Abh. math. Sem. Univ. Hamburg 4, 47-72.
  • 11. Betti, E. (1871).
    Sopra gli spazi di un numero qualunque di dimensioni.
    Annali di Matematica pura ed applicata 4, 140-158.
  • 12. Bianchi, L. (1898).
    Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti.
    Memorie di Matematica e di Fisica della Societa Italiana delle Scienze 11, 267-352.
    English translation by Robert Jantzen in General Relativity and Gravitation 33, (2001), pp. 2171-2253.
  • 13. Brauner, K. (1928).
    Zur Geometrie der Funktionen zweier komplexer Veränderliche.
    Abh. Math. Sem. Univ. Hamburg 6, 1-55.
  • 14. Brouwer, L. E. J. (1911).
    Beweis der Invarianz der Dimensionzahl.
    Math. Ann. 70, 161-165. MR 1511615
  • 15. Cairns, S. S. (1934).
    On the triangulation of regular loci.
    Ann. Math. 35, 579-587. MR 1503181
  • 16. Cayley, A. (1878).
    The theory of groups: Graphical representation.
    Amer. J. Math. 1, 174-176.
    In his Collected Mathematical Papers 10: 403-405. MR 1505159
  • 17. Church, A. (1936).
    An unsolvable problem of elementary number theory.
    American Journal of Mathematics 58, 345-363. MR 1507159
  • 18. Dehn, M. (1900).
    Über raumgleiche Polyeder.
    Gött. Nachr. 1900, 345-354..
  • 19. Dehn, M. (1907).
    Berichtigender Zusatz zu III AB3 Analysis situs.
    Jber. Deutsch. Math. Verein. 16, 573.
  • 20. Dehn, M. (1910).
    Über die Topologie des dreidimensional Raumes.
    Math. Ann. 69, 137-168.
    English translation in [24]. MR 1511580
  • 21. Dehn, M. (1911).
    Über unendliche diskontinuierliche Gruppen.
    Math. Ann. 71, 116-144.
    English translation in [24]. MR 1511645
  • 22. Dehn, M. (1912).
    Transformation der Kurven auf zweiseitigen Flächen.
    Math. Ann. 72, 413-421.
    English translation in [24]. MR 1511705
  • 23. Dehn, M. (1914).
    Die beiden Kleeblattschlingen.
    Math. Ann. 75, 402-413.
    English translation in [24]. MR 1511799
  • 24. Dehn, M. (1987).
    Papers on Group Theory and Topology.
    New York: Springer-Verlag.
    Translated from the German and with introductions and an appendix by John Stillwell, and with an appendix by Otto Schreier. MR 881797 (88d:01041)
  • 25. Dehn, M. and P. Heegaard (1907).
    Analysis situs.
    Enzyklopädie der Mathematischen Wissenschaften, vol. III AB3, 153-220, Teubner, Leipzig.
  • 26. Dyck, W. (1884).
    On the ``Analysis Situs'' of 3-dimensional spaces.
    Report of the Brit. Assoc. Adv. Sci., 648.
  • 27. Epple, M. (1999a).
    Die Entstehung der Knotentheorie.
    Braunschweig: Friedr. Vieweg & Sohn.
  • 28. Epple, M. (1999b).
    Geometric aspects in the development of knot theory.
    In History of Topology, pp. 301-357. Amsterdam: North-Holland. MR 1674917 (2000i:57001)
  • 29. Freedman, M. H. (1982).
    The topology of four-dimensional manifolds.
    J. Differential Geom. 17(3), 357-453. MR 679066 (84b:57006)
  • 30. Gordon, C. A. and J. Luecke (1989).
    Knots are determined by their complements.
    J. Amer. Math. Soc. 2, 371-415. MR 965210 (90a:57006a)
  • 31. Gordon, C. M. (1999).
    $ 3$-dimensional topology up to 1960.
    In History of topology, pp. 449-489. Amsterdam: North-Holland. MR 1674921 (2000h:57003)
  • 32. Guggenheimer, H. (1977).
    The Jordan curve theorem and an unpublished manuscript of Max Dehn.
    Archive for the History of the Exact Sciences 17, 193-200. MR 0532231 (58:27069)
  • 33. Haken, W. (1961).
    Theorie der Normalflächen.
    Acta Math. 105, 245-375. MR 0141106 (25:4519a)
  • 34. Heegaard, P. (1898).
    Forstudier til en topologisk Teori for de algebraiske Fladers sammenhœng.
    Dissertation, Copenhagen, 1898. Available at http://www.maths.ed.ac.uk/˜aar/papers/heegaardthesis.pdf. [35] is a French translation of this work.
  • 35. Heegaard, P. (1916).
    Sur l'analysis situs.
    Bull. Soc. Math. France, 161-242. MR 1504754
  • 36. Kneser, H. (1929).
    Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.
    Jber. Deutsch. Math. Verein. 38, 248-260.
  • 37. Lickorish, W. B. R. (1962).
    A representation of orientable combinatorial 3-manifolds.
    Ann. Math. 76, 531-540. MR 0151948 (27:1929)
  • 38. Markov, A. (1958).
    The insolubility of the problem of homeomorphy (Russian).
    Dokl. Akad. Nauk SSSR 121, 218-220. MR 0097793 (20:4260)
  • 39. McMullen, C. T. (2011).
    The evolution of geometric structures on 3-manifolds.
    Bull. Amer. Math. Soc. (N.S.) 48(2), 259-274. MR 2774092 (2012a:57024)
  • 40. Möbius, A. F. (1863).
    Theorie der Elementaren Verwandtschaft.
    Werke 2: 433-471.
  • 41. Moise, E. E. (1952).
    Affine structures in $ 3$-manifolds. V. The triangulation theorem and Hauptvermutung.
    Ann. Math. (2) 56, 96-114. MR 0048805 (14:72d)
  • 42. Neumann, C. (1865).
    Vorlesungen über Riemann's Theorie der Abelschen Integralen.
    Leipzig: Teubner.
  • 43. Noether, E. (1925).
    Ableitung der Elementarteilertheorie aus der Gruppentheorie.
    Jber. Deutsch. Math. Verein. 34, 104.
  • 44. Novikov, P. S. (1955).
    On the algorithmic unsolvability of the word problem in group theory (Russian).
    Dokl. Akad. Nauk SSSR Mat. Inst. Tr. 44.
    English translation in Amer. Math. Soc. Transl. ser. 2, 9, 1-122. MR 0092784 (19:1158b)
  • 45. Papakyriakopoulos, C. D. (1957).
    On Dehn's lemma and the asphericity of knots.
    Ann. Math. (2) 66, 1-26. MR 0090053 (19:761a)
  • 46. Poincaré, H. (1882).
    Théorie des groupes fuchsiens.
    Acta Math. 1, 1-62.
    In his Œuvres 2: 108-168. English translation in [52], 55-127. MR 1554574
  • 47. Poincaré, H. (1892).
    Sur l'analysis situs.
    Comptes rendus de l'Academie des Sciences 115, 633-636.
  • 48. Poincaré, H. (1895).
    Analysis situs.
    J. Éc. Polytech., ser. 2 1, 1-123.
  • 49. Poincaré, H. (1900).
    Second complément à l'analysis situs.
    Proc. London Math. Soc. 32, 277-308. MR 1576227
  • 50. Poincaré, H. (1902).
    Sur certaines surfaces algébriques; troisième complément à l'analysis situs.
    Bull. Soc. Math. France 30, 49-70. MR 1504408
  • 51. Poincaré, H. (1904).
    Cinquième complément à l'analysis situs.
    Rendiconti del Circolo matematico di Palermo 18, 45-110.
  • 52. Poincaré, H. (1985).
    Papers on Fuchsian Functions.
    New York: Springer-Verlag.
    Translated from the French and with an introduction by John Stillwell. MR 809181 (87d:01021)
  • 53. Poincaré, H. (2010).
    Papers on Topology, Volume 37 of History of Mathematics.
    Providence, RI: American Mathematical Society.
    Translated and with an introduction by John Stillwell. MR 2723194 (2011j:01017)
  • 54. Reidemeister, K. (1926).
    Knoten und Gruppen.
    Abh. math. Sem. Univ. Hamburg 5, 7-23.
  • 55. Reidemeister, K. (1932).
    Einführung in die kombinatorische Topologie.
    Braunschweig: Vieweg.
  • 56. Riemann, G. F. B. (1851).
    Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse.
    Werke, 2nd ed., 3-48.
  • 57. Rubinstein, J. H. (1995).
    An algorithm to recognize the $ 3$-sphere.
    In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Basel, pp. 601-611. Birkhäuser. MR 1403961 (97e:57011)
  • 58. Seifert, H. and W. Threlfall (1980).
    Seifert and Threlfall: a textbook of topology, Volume 89 of Pure and Applied Mathematics.
    New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].
    Translated from the German edition of 1934 by Michael A. Goldman, With a preface by Joan S. Birman, With ``Topology of $ 3$-dimensional fibered spaces'' by Seifert, Translated from the German by Wolfgang Heil. MR 575168 (82b:55001)
  • 59. Seifert, H. and C. Weber (1933).
    Die beiden Dodekaederräume.
    Math. Zeit. 37, 237-253. MR 1545392
  • 60. Sela, Z. (1995).
    The isomorphism problem for hyperbolic groups. I.
    Ann. Math. (2) 141(2), 217-283. MR 1324134 (96b:20049)
  • 61. Smith, H. J. S. (1861).
    On systems of linear indeterminate equations and congruences.
    Philosophical Transactions 111, 293-326.
    In his Collected Mathematical Papers, Vol. I, pp. 367-409.
  • 62. Sommerfeld, A. (1897).
    Über verzweigte Potential im Raum.
    Proc. Lond. Math. Soc. 28, 395-429.
  • 63. Stillwell, J. (1979).
    Letter to the Editor.
    Mathematical Intelligencer 1, 192. MR 547746 (81a:01027)
  • 64. Stillwell, J. (1993).
    Classical Topology and Combinatorial Group Theory (Second ed.).
    New York: Springer-Verlag. MR 1211642 (94a:57001)
  • 65. Tietze, H. (1908).
    Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten.
    Monatshefte für Mathematik und Physik 19, 1-118.
    English translation by John Stillwell at http://www.maths.ed.ac.uk/˜aar/haupt/Tietze1908.pdf. MR 1547755
  • 66. Turing, A. (1936).
    On computable numbers, with an application to the Entscheidungsproblem.
    Proc. Lond. Math. Soc., ser. 2 42, 230-265. MR 1577030
  • 67. Volkert, K. (1996).
    The early history of Poincaré's conjecture.
    pp. 241-250.
    In Henri Poincaré. Science and Philosophy, (ed. J.-L. Greffe, G. Heinzmann and K. Lorenz) 241-250. Akademie Verlag, Albert Blanchard. MR 1384995 (97e:01013)
  • 68. Volkert, K. (2002).
    Das Homöomorphieproblem, insbesondere der 3-Mannigfaltigkeiten in der Topologie 1892-1935.
    Philosophia Scientiae. Paris: Editions Kimé.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 57-03

Retrieve articles in all journals with MSC (2010): 57-03


Additional Information

John Stillwell
Affiliation: University of San Francisco, San Francisco, California; and Monash University, Melbourne, Australia

DOI: https://doi.org/10.1090/S0273-0979-2012-01385-X
Received by editor(s): June 9, 2012
Published electronically: July 23, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society