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AND THEIR GEOMETRIZATION

EDWARD FRENKEL

Notes for the AMS Colloquium Lectures
at the Joint Mathematics Meetings in Boston, January 4–6, 2012

Abstract. The Langlands Program relates Galois representations and auto-
morphic representations of reductive algebraic groups. The trace formula is a
powerful tool in the study of this connection and the Langlands Functorial-

ity Conjecture. After giving an introduction to the Langlands Program and
its geometric version, which applies to curves over finite fields and over the
complex field, I give a survey of my recent joint work with Robert Langlands
and Ngô Bao Châu on a new approach to proving the Functoriality Conjecture
using the trace formulas, and on the geometrization of the trace formulas. In
particular, I discuss the connection of the latter to the categorification of the
Langlands correspondence.
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1. Introduction

The Langlands Program was initiated by Robert Langlands in the late 1960s in
order to connect number theory and harmonic analysis [L1]. In the last 40 years
a lot of progress has been made in proving the Langlands conjectures, but much
more remains to be done. We still do not know the underlying reasons for the deep
and mysterious connections suggested by these conjectures. But in the meantime,
these ideas have propagated to other areas of mathematics, such as geometry and
representation theory of infinite-dimensional Lie algebras, and even to quantum
physics, bringing a host of new ideas and insights. There is hope that expanding
the scope of the Langlands Program will eventually help us get the answers to the
big questions about the Langlands duality.

In this lecture I will give an overview of this subject and describe my recent joint
work with Robert Langlands and Ngô Bao Châu [FLN, FN] on the Functoriality
Principle and the geometrization of the trace formulas.
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The key objects in the Langlands Program are automorphic representations of
a reductive algebraic group G over a global field F , which is either a number field
or the field of rational functions on a smooth projective curve X over a finite field.
These are the constituents in the decomposition of the space L2(G(F )\G(AF ))
under the right action of G(AF ), where AF is the ring of adèles of F (see Section 2
for details). Let G and H be two reductive algebraic groups over F , and LG and
LH their Langlands dual groups as defined in [L1]. The Langlands Functoriality
Principle [L1] states that for each admissible homomorphism

LH → LG

there exists a transfer of automorphic representations, from those ofH(AF ) to those
of G(AF ), satisfying some natural properties. Functoriality has been established in
some cases, but is still unknown in general (see [Art1] for a survey).

In [FLN], following [L2, L3] (see also [L4, L5]), a strategy for proving functoriality
was proposed. In the space of automorphic functions on G(F )\G(AF ), we construct
a family of integral operators Kd,ρ, where d is a positive integer and ρ is a finite-
dimensional representation of LG, which for sufficiently large d project onto the
automorphic representations of G(AF ) that come by functoriality from automorphic
representations of certain groups H determined by ρ. We then apply the Arthur–
Selberg trace formula

(1.1) TrKd,ρ =

∫
Kd,ρ(x, x) dx,

where Kd,ρ(x, y) is the kernel of Kd,ρ, a function on the square of G(F )\G(AF ).
The left-hand, spectral, side of (1.1) may be written as the sum over irreducible
automorphic representations π of G(AF ):

(1.2)
∑
π

mπ Tr(Kd,ρ, π),

where mπ is the multiplicity of π in the space of L2 functions on G(F )\G(AF ))
(here we ignore the continuous part of the spectrum). The right-hand, orbital, side
of (1.1) may be written as a sum over the conjugacy classes γ in G(F ):

(1.3)
∑

γ∈G(F )/ conj.

aγOγ(Kd,ρ),

where Oγ(Kd,ρ) is an “orbital integral”: an integral over the conjugacy class of γ
in G(AF ) (see Section 4.4).

The idea is to analyze the orbital side of the trace formula and compare the
corresponding orbital integrals of the group G to those of the groups H. This way
one hopes to connect the spectral sides of the trace formulas for G and H and hence
prove functoriality. In [FLN, FN] we related this to the geometric and categorical
forms of the Langlands correspondence and made the first steps in developing the
geometric methods for analyzing these orbital integrals in the case of the function
field of a curve X over a finite field Fq.

By a geometrization of the trace formula (1.1) we understand representing each
side as the trace of the Frobenius automorphism on a vector space equipped with
an action of Gal(Fq/Fq) (the Galois group of the finite field Fq, over which our
curve X is defined).

Such a reformulation is useful because, first of all, unlike mere numbers, these
vector spaces may well carry additional structures that could help us understand
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the connections we are looking for. For example, in B. C. Ngô’s beautiful recent
proof of the fundamental lemma [N2], he used the étale cohomologies of certain
moduli spaces (the fibers of the so-called Hitchin map). Ngô showed that these
cohomologies carry natural actions of finite groups, and he used these actions to
isolate the “right” pieces of these cohomologies and to prove their isomorphisms for
different groups. The equality of the traces of the Frobenius on these vector spaces
then yields the fundamental lemma.

The second reason why geometrization is useful is that we expect that, unlike
the corresponding numbers, these vector spaces would also make sense for curves
defined over C, so that we would obtain a version of the trace formula for complex
curves.

As the first step in the program of geometrization of trace formulas, we showed
in [FN] that the kernels Kd,ρ constructed in [FLN] may be obtained using the
Grothendieck faisceaux-fonctions dictionary from perverse sheaves Kd,ρ on a certain
algebraic stack over the square of BunG, the moduli stack of G-bundles onX. Hence
the right-hand side of the trace formula (1.1) may indeed be written as the trace
of the Frobenius on the étale cohomology of the restriction of Kd,ρ to the diagonal
in BunG ×BunG. This may be further rewritten as the cohomology of a sheaf
defined on the moduli stack of “G-pairs”, which is closely related to the Hitchin
moduli stack of Higgs bundles on X (see [FN] and Section 5.6). Thus, we obtain a
geometrization of the orbital side of the trace formula (1.1).

The idea then is to use the geometry of these moduli stacks to prove the desired
identities of orbital integrals for G and H by establishing isomorphisms between
the corresponding cohomologies. As we mentioned above, a geometric approach
of this kind turned out to be very successful in B. C. Ngô’s recent proof of the
fundamental lemma [N2]. The elegant argument of [N2] takes advantage of the
decomposition of the cohomology of the fibers of the Hitchin map under the action
of finite groups. In our case, the decomposition of the cohomology we are looking
for does not seem to be due to an action of a group. Hence we have to look for other
methods. Some conjectures in this direction were formulated in [FN]; we discuss
them in Section 5.10.

The moduli stacks and the sheaves on them that appear in this picture have
natural analogues for curves over C, and hence the geometrization allows us to
include complex curves into consideration. We can then use the methods of complex
algebraic geometry (some of which have no obvious analogues over a finite field) to
tackle the questions of functoriality that we are interested in.

Thus, the geometrization of the right-hand (orbital) side (1.3) of (1.1) is the
cohomology of a sheaf on the moduli stack of G-pairs. In [FN] we also looked for
a geometrization of the left-hand (spectral) side of (1.1), trying to interpret the
sum (1.2) as the Lefschetz trace formula for the trace of the Frobenius on the étale
cohomology of an �-adic sheaf. It is not obvious how to do this, because the set of
the π’s appearing in (1.2) is not the set of points of a moduli space (or stack) in
any obvious way.

However, according to the Langlands correspondence [L1], reviewed in Section 2,
the L-packets of irreducible (tempered) automorphic representations of G(AF ) are
supposed to be parametrized by the homomorphisms

σ : W (F ) → LG,
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where W (F ) is the Weil group of the function field F and LG is the Langlands dual
group to G. Therefore, assuming the Langlands correspondence, we may rewrite
the sum (1.2) as a sum over such σ. Unfortunately, if k, the field of definition of our
curve X, is a finite field, there is no reasonable algebraic stack whose k-points are
the equivalence classes of homomorphisms σ. But if k = C, such a stack exists! If
we restrict ourselves to the unramified σ, then we can use the algebraic stack LocLG

of flat LG-bundles on X. Hence, we can pose the following question: Define a sheaf
on this stack such that its cohomology (representing the left-hand side of (1.1) in
the complex case) is isomorphic to the cohomology representing the right-hand side
of (1.1). This isomorphism would then be a geometrization of the trace formula
(1.1).

The idea of Ngô and myself [FN] is that the answer may be obtained in the
framework of a categorical form of the geometric Langlands correspondence, which
we review below. It is a conjectural equivalence between derived categories of O-
modules on the moduli stack LocLG and D-modules on the moduli stack BunG
of G-bundles on X. Such an equivalence has been proved in the abelian case by
G. Laumon [Lau2] and M. Rothstein [R], and in the non-abelian case it has been
suggested as a conjectural guiding principle by A. Beilinson and V. Drinfeld (see,
e.g., [F1, VLaf, LafL] for an exposition). This categorical version of the geometric
Langlands correspondence also appears naturally in the S-duality picture developed
by A. Kapustin and E. Witten [KW] (see [F2] for an exposition).

At the level of objects, the categorical Langlands correspondence assigns to the
skyscraper O-module supported at a given flat LG-bundle E on X a Hecke eigen-
sheaf on BunG with “eigenvalue” E. But an equivalence of categories also gives
us non-trivial information about morphisms; namely, the Hom’s between the ob-
jects corresponding to each other on the two sides should be isomorphic. The idea
of [FN], which we review below, is that for suitable objects the isomorphism of
their Hom’s yields the sought-after geometric trace formula. This led us to propose
in [FN] a conjectural geometrization of the trace formula (1.1) in this framework,
which we review in Section 6.

In deriving this geometric trace formula, we work with the Hom’s in the cat-
egories of sheaves on the squares of BunG and LocLG, because this is where the
kernels of our functors “live”.

We also obtained in [FN] an analogous statement in the categories of sheaves
on the stacks BunG and LocLG themselves. The result is a geometrization of the
relative trace formula, also known as the Kuznetsov trace formula, see, e.g., [J].
This formula has some favorable features compared to the usual trace formula (for
example, only tempered automorphic representations, and only one representation
from each L-packet—the “generic” one—are expected to contribute). But there is
a price: in the sum (1.2) appears a weighting factor, the reciprocal of the value
of the L-function of π in the adjoint representation at s = 1. The insertion of
this factor in this context has been considered previously in [S] and [Ve] for the
group GL2. Ngô and I showed in [FN] (see Section 6.4) that this factor also has a
natural geometric interpretation, as coming from the Atiyah–Bott–Lefschetz fixed
point formula.

The geometric trace formulas proposed by Ngô and myself in [FN] are still in a
preliminary form, because several important issues need to be worked out. Nev-
ertheless, we believe that they contain interesting features and even in this rough
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form might provide a useful framework for a better geometric understanding of the
trace formula as well as the geometric Langlands correspondence.

These notes are organized as follows. We start with a brief introduction to the
classical Langlands correspondence in Section 2 and its geometric and categorical
forms in Section 3. In Section 4 we survey the trace formula and its applications to
the functoriality of automorphic representations, following [FLN]. In Section 5 we
describe, following [FN], the geometrization of the orbital side of the trace formula
in terms of the cohomology of certain sheaves on the moduli stacks which are group-
like analogues of the Hitchin moduli stacks of Higgs bundles. The geometrization
of the spectral side of the trace formula is discussed in Section 6, and the relative
trace formula and its geometrization in Section 7. Here we follow closely [FN].

2. The classical Langlands Program

The Langlands correspondence, in its original form, manifests a deep connection
between number theory and representation theory. In particular, it relates subtle
number theoretic data (such as the numbers of points of a mod p reduction of an
elliptic curve defined by a cubic equation with integer coefficients) to more easily
discernible data related to automorphic forms (such as the coefficients in the Fourier
series expansion of a modular form on the upper half-plane). In this section we give
an outline this correspondence.

2.1. The case of GLn. Let Q be the field of rational numbers. Denote by Q

its algebraic closure, the field of algebraic numbers, obtained by adjoining to Q

the roots of all polynomial equations in one variable with coefficients in Q. The
arithmetic questions about algebraic numbers may be expressed as questions about
the Galois group Gal(Q/Q) of all field automorphisms of Q.

A marvelous insight of Robert Langlands was to conjecture [L1] that there exists
a connection between n-dimensional representations of Gal(Q/Q) and irreducible
representations of the group GLn(AQ) which occur in the space of L2 functions on
the quotient GLn(Q)\GLn(AQ).

Here AQ is the restricted product of all completions of Q: the field Qp p-adic
numbers, where p runs over all primes, and the field R of real numbers. Elements
of AQ are infinite collections

((xp)p prime, x∞),

where for all but finitely many primes p we have xp ∈ Zp ⊂ Qp, the ring of p-
adic integers. (This is the meaning of the word “restricted” used above.) We have
a diagonal embedding Q ↪→ AQ, and hence an embedding of groups GLn(Q) ↪→
GLn(AQ).

Under the right action of GLn(AQ) on L2(GLn(Q)\GLn(AQ)), we have a de-
composition into irreducible representations appearing both discretely and contin-
uously:

L2(GLn(Q)\GLn(AQ)) =
⊕

π
⊕

continuous spectrum .

The irreducible representations π appearing in the discrete spectrum, as well as
the suitably defined constituents of the continuous spectrum (we are not going to
give the precise definition) are called automorphic representations. The theory of
Eisenstein series reduces the study of automorphic representations to the study of
those occurring in the discrete spectrum.
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Schematically, the Langlands correspondence for GLn may be formulated as a
correspondence between the equivalence classes of the following data.

(2.1)
n-dimensional representations

of Gal(Q/Q)
−→ irreducible automorphic

representations of GLn(AQ)

The Langlands correspondence is very useful for understanding deep questions
in number theory. First of all, according to the “Tannakian philosophy”, one can
reconstruct a group from the category of its finite-dimensional representations,
equipped with the structure of the tensor product. Describing the equivalence
classes of n-dimensional representations of the Galois group may be viewed as a
first step towards understanding its structure.

Technical point. In order to describe the tensor category of representations of
Gal(Q/Q), one needs to do much more: one has to consider the categories of auto-
morphic representations of GLn(AQ) for all n at once and define various functors
between them corresponding to taking the direct sums and tensor products of Ga-
lois representations. This is closely related to the functoriality of automorphic
representations that we discuss in Section 4 below.

Second, there are many interesting representations of Galois groups arising in
“nature”. Indeed, the group Gal(Q/Q) acts on the geometric invariants (such as
the étale cohomologies) of an algebraic variety defined over Q. For example, if we
take an elliptic curve E over Q, then we will obtain a representation of Gal(Q/Q)
on its first étale cohomology, which is a two-dimensional vector space (much like
the first cohomology of an elliptic curve defined over C).

Under the Langlands correspondence (2.1), some important invariants attached
to Galois representations and automorphic representations have to to match. These
are the so-called Frobenius eigenvalues for the former and the Hecke eigenvalues for
the latter. They are attached to all but finitely many primes. We will discuss the
latter in more detail in Section 3.5, and for the former, see [F1, Section 1.5]. �

2.2. Examples. The correspondence (2.1) is well understood for n = 1. This is the
abelian case. Indeed, one-dimensional representations of any group factor through
its maximal abelian quotient. In the case of Gal(Q/Q), the maximal abelian quo-
tient is the Galois group of the maximal abelian extension of Q. According to the
Kronecker–Weber theorem, this is the field obtained by adjoining to Q all roots
of unity. One derives from this description that the corresponding Galois group is
isomorphic to the group of connected components of

GL1(Q)\GL1(AQ) = Q×\A×
Q .

This is what (2.1) boils down to for n = 1. The Abelian Class Field Theory gives
a similar adelic description of the maximal abelian quotient of the Galois group
Gal(F/F ), where F is a general number field (see, e.g., [F1], Section 1.2, for more
details).

Suppose next that n = 2. Let σ come from the first étale cohomology of the
smooth elliptic curve E defined by the equation

(2.2) y2 = x3 + ax+ b,

where a, b ∈ Z are such that the discriminant is non-zero, 4a3 + 27b2 �= 0. The
representation σ contains a lot of important information about the curve E. The
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corresponding Frobenius eigenvalues encode, for each prime p not dividing the dis-
criminant, the number of points of the reduction of E modulo p, #E(Fp). This is
simply the number of solutions of the equation (2.2) mod p plus one, corresponding
to the point at infinity (our E is a projective curve).

According to the Langlands correspondence, σ should correspond to a cuspidal
automorphic representation π of GL2(AQ). To make things more concrete, we
assign to this automorphic representation in a standard way (see, e.g., [F1], Section
1.6) a modular cusp form

f(q) =
∞∑

n=1

anq
n

on the upper half-plane {τ ∈ C | Im τ > 0}, where q = e2πiτ . The matching
of the Frobenius and Hecke eigenvalues under the Langlands correspondence now
becomes the statement of the Shimura–Taniyama–Weil conjecture (now a theorem
[W, TW, BCDT]): for each E as above there exist a modular cusp form fE(q) with
a1 = 1 and

(2.3) ap = p+ 1−#E(Fp)

for all primes p not dividing the discriminant of E (and also, amn = aman for all
relatively prime m and n).

This is a stunning result: the modular form fE serves as a generating function
of the numbers of points of E mod p for almost all p.

It implies, according to a result of K. Ribet, Fermat’s Last Theorem.
One obtains similar statements by analyzing from the point of view of the Lang-

lands correspondence the Galois representations coming from other algebraic va-
rieties, or more general motives. This shows the great power of the Langlands
correspondence: it translates difficult questions in number theory to questions in
harmonic analysis.

2.3. Function fields. The correspondence (2.1) is not a bijection. But it becomes
a bijection if we replace Q (or a more general number field) in (2.1) by a function
field.

Let X be a smooth projective connected curve over a finite field k = Fq. The
field Fq(X) of (Fq-valued) rational functions on X is called the function field of X.

For example, suppose that X = P1. Then Fq(X) is just the field of rational
functions in one variable. Its elements are fractions P (t)/Q(t), where P (t) and
Q(t) �= 0 are polynomials over Fq without common factors, with their usual opera-
tions of addition and multiplication.

It turns out that there are many similarities between function fields and number
fields. For example, let’s look at the completions of the function field Fq(P

1).
Consider the field Fq((t)) of formal Laurent power series in the variable t. An
element of this completion is a series of the form

∑
n≥N ant

n, where N ∈ Z and

each an is an element of Fq. Elements of Fq(P
1) are rational functions P (t)/Q(t),

and such a rational function can be expanded in an obvious way in a formal power
series in t. This defines an embedding of fields Fq(P

1) ↪→ Fq((t)), which makes
Fq((t)) into a completion of Fq(P

1), with respect to a standard norm.
Observe that the field Fp((t)) looks very much like the field Qp of p-adic numbers.

Likewise, the field Fq((t)), where q = pn, looks like a degree n extension of Qp.
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The completion Fp((t)) corresponds to the maximal ideal in the ring Fq[t] gen-
erated by A(t) = t (note that Fq[t] ⊂ Fq(P

1) may be thought of as the analogue
of Z ⊂ Q). Other completions of Fq(P

1) correspond to other maximal ideals in
Fq[t], which are generated by irreducible monic polynomials A(t). (Those are the
analogues of the ideals (p) in Z generated by the prime numbers p.) There is also
a completion corresponding to the point ∞ ∈ P1, which is isomorphic to Fq((t

−1)).
If the polynomial A(t) has degree m, then the corresponding residue field is

isomorphic to Fqm , and the corresponding completion is isomorphic to Fqm((t̃)),

where t̃ is the uniformizer, t̃ = A(t). One can think of t̃ as the local coordinate
near the Fqm -point corresponding to A(t), just like t − a is the local coordinate
near the Fq-point a of A1. The difference with the number field case is that all of
these completions are non-archimedian; there are no analogues of the archimedian
completions R or C that we have in the case of number fields.

For a general curve X, completions of Fq(X) are also labeled by its closed points
(forming the set denoted by |X|), and the completion corresponding to a point x
with residue field Fqn is isomorphic to Fqn((tx)), where tx is the local coordinate near
x on X. The subring Fqm [[tx]] consisting of the formal Taylor series (no negative
powers of tx) will be denoted by Ox.

2.4. The Langlands correspondence. Let F be the function field of a curve X
over Fq. The ring AF of adèles of F is by definition the restricted product of the
fields Fx, where x runs over the set of all closed points of X:

AF =
∏

x∈|X|

′ Fx.

The word “restricted” (reflected by the prime in the above product) means that
we consider only the collections (fx)x∈X of elements of Fx in which fx ∈ Ox for all
but finitely many x. The ring AF contains the field F , which is embedded into AF

diagonally, by taking the expansions of rational functions on X at all points. One
defines automorphic representations of GLn(AF ) as constituents of the space of L2

functions on the quotient GLn(F )\GLn(AF ) defined as in the number field case.
The objects that will appear on the right-hand side of the Langlands corre-

spondence are the so-called tempered automorphic representations. These are the
representations for which the Ramanujan hypothesis is expected to hold (hence
they are sometimes called Ramanujan representations). This means that each of
the conjugacy classes νx in the complex group GLn (or LG in general) encoding the
Hecke eigenvalues of π (see Section 3.5 below) is unitary. For G = GLn it is known
that all cuspidal automorphic representations are tempered.

Now let F be the separable closure of F . We have the Galois group Gal(F/F )
and a natural homomorphism

(2.4) Gal((F/F ) → Gal(Fq/Fq),

due to the fact that Fq is the subfield of scalars in F . Now, Gal(Fq/Fq) is isomorphic
to the pro-finite completion of Z,

Ẑ = lim
←−

Z/NZ = lim
←−

Gal(FqN /Fq).

The preimage of Z ⊂ Ẑ in Gal((F/F ) under the homomorphism (2.4) is called the
Weil group of F and is denoted by W (F ).
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On the left-hand side of the Langlands correspondence we take the equivalence
classes n-dimensional representations of the Weil group W (F ).

The function field analogue of the Langlands correspondence (2.1) is then given
by the following diagram.

(2.5)
n-dimensional

representations of W (F )
←→ irreducible tempered automorphic

representations of GLn(AF )

σ ←→ π

Under the correspondence the Frobenius eigenvalues of σ should match the Hecke
eigenvalues of π.

This correspondence has been proved by V. Drinfeld [D1, D2] for n = 2 and by
L. Lafforgue [LLaf] for n > 2.

Technical point. The representations of W (F ) appearing on the left-hand side of
(2.5) should be continuous with respect to the Krull topology on W (F ). However,
continuous complex representations necessarily factor through a finite group. In
order to obtain a large enough class of such representations, we should consider the
so-called �-adic representations, defined not over C, but over a finite extension of
the field Q� of �-adic numbers, where � is a prime that does not divide q. Frobe-
nius eigenvalues will then be �-adic numbers, and to match them with the Hecke
eigenvalues, which are complex numbers, we need to choose once and for all an
isomorphism of C and Q� as abstract fields (extending the identification of their
subfield Q). But it follows from the theorem of Drinfeld and Lafforgue that actually
they all belong to Q, so this isomorphism is never used, and the left-hand side of
(2.5) is independent of �. For more on this, see, e.g., [F1, Section 2.2]. �

2.5. Langlands dual group. An important insight of Langlands [L1] was that
the correspondence (2.5) may be generalized by replacing the group GLn on the
right-hand side by an arbitrary connected reductive algebraic group G over the field
F . This necessitates introducing the so-called Langlands dual group.

The simplest case to consider is that of a reductive group G that is defined over
the finite field of scalars k = Fq and is split over k. This means that it contains
a maximal torus that is split (isomorphic to the direct product of copies of the
multiplicative group) over k. In these notes we will consider slightly more general
groups of the following kind: G is a group scheme over X which contains a Borel
subgroup scheme B also defined over X, and there exists an étale cover X ′ → X
such that the pull-back of G to X ′ (resp., B) is isomorphic to the constant group
scheme X ′ ×G, where G is a split reductive group over k (resp., X ′ × B, where B

is a Borel subgroup of G).
For example, let G be the multiplicative group Gm = GL1. Let X ′ → X be an

étale double cover of X. The group Z2 = {±1} acts fiberwise on X ′ and on Gm by
the formula x → x±1. Define H as the following group scheme over X:

H = X ′ ×
Z2

Gm.

This is an example of a twisted torus. Its pull-back to X ′ is isomorphic to X ′×Gm.
We can now talk about the group over any subscheme of X. For example, we have
the groupH(F ) of sections of H over the generic point of X, SpecF , the local group
for each x ∈ |X|, which is the group of sections of H over the formal punctured disc
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D×
x = SpecFx, its subgroup of sections over the formal disc Dx = SpecOx. The

adelic group is now the restricted product of the local groups for all x ∈ |X|, etc.
Likewise, in general we have a group scheme

G = X ′ ×
Γ
G,

where Γ is the group of deck transformations of X ′, acting on G.
Let T be a maximal split torus in G. We associate to it two lattices: the

weight lattice X∗(T) of homomorphisms T → Gm and the coweight lattice X∗(T) of
homomorphisms Gm → T. They contain the sets of roots Δ ⊂ X∗(T) and coroots
Δ∨ ⊂ X∗(T) of G, respectively. The quadruple (X∗(T), X∗(T),Δ,Δ∨) is called the
root data for G. It determines the split group G up to an isomorphism.

The action of the group Γ on G gives rise to its action on the root data.
Let us now exchange the lattices of weights and coweights and the sets of roots

and coroots. Then we obtain the root data

(X∗(T), X
∗(T),Δ∨,Δ)

of another reductive algebraic group over C (or any other algebraically closed field,
like Q�) which is denoted by Ǧ. The action of Γ on the root data gives rise to its
action on Ǧ. We then define the Langlands dual group of G as

LG = Γ� Ǧ.

Note that Γ is a finite quotient of the Galois group Gal(F/F ).
For example, if G is a twisted torus described above, then LG = Z2�Gm, where

Z2 acts on Gm by the formula x �→ x±1.
There is a variant of the above definition in which Γ is replaced by Gal(F/F )

(acting on the right factor through the surjective homomorphism Gal(F/F ) → Γ)
or by the Weil group W (F ). The definition may be generalized to an arbitrary
reductive group G over F .

Now the conjectural Langlands correspondence (2.5) takes the following form.

(2.6)
homomorphisms
W (F ) → LG

←→ irreducible tempered automorphic
representations of G(AF )

Note that if G = GLn, then
LG is also GLn, and so the homomorphisms W (F ) →

LG appearing on the left-hand side are the same as n-dimensional representations
of W (F ).

Technical point. We should consider here �-adic homomorphisms, as in the case
of GLn. Also, to a homomorphism W (F ) → LG in general corresponds not a single
irreducible automorphic representation of G(AF ), but a set of such representations,
called an L-packet. �

Under the correspondence (2.6), the same kind of compatibility between the
Hecke and Frobenius eigenvalues should hold as in the case of GLn. The key point
here (which comes from Langlands’ interpretation [L1] of the description of the
spherical Hecke algebra for general reductive groups due to Satake) is that the
Hecke eigenvalues of automorphic representations may be interpreted as conjugacy
classes in the Langlands dual group LG (see Section 3.5 below and [F1, Section 5.2],
for more details).

For G = GLn the Frobenius eigenvalues completely determine σ and the Hecke
eigenvalues completely determine an irreducible automorphic representation π. All
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automorphic representations occur with multiplicity 1 in L2(G(F )\G(AF )). For
general groups, this is not so. There may be several inequivalent homomorphisms
σ : W (F ) → LG (with the same collection of Frobenius eigenvalues), all corre-
sponding to the same π (or the same L-packet). In this case the multiplicity of π
is expected to be greater than 1.

3. The geometric Langlands correspondence

Now we wish to reformulate the Langlands correspondence in such a way that it
would make sense not only for curves defined over a finite field, but also for curves
over the complex field.

Thus, we need to find geometric analogues of the notions of Galois representa-
tions and automorphic representations.

3.1. LG-bundles with flat connection. The former is fairly easy. Let X be a
curve over a field k and F = k(X) the field of rational functions on X. If Y → X is
a covering of X, then the field k(Y ) of rational functions on Y is an extension of the
field F = k(X) of rational functions on X, and the Galois group Gal(k(Y )/k(X))
may be viewed as the group of deck transformations of the cover. If our cover is
unramified, then this group is isomorphic to a quotient of the (arithmetic) funda-
mental group of X. For a cover ramified at points x1, . . . , xn, it is isomorphic to a
quotient of the (arithmetic) fundamental group of X\{x1, . . . , xn}. From now on
we will focus on the unramified case. This means that we replace Gal(F/F ) by its
maximal unramified quotient, which is isomorphic to the (arithmetic) fundamental
group of X. Its geometric analogue, for X defined over C, is π1(X, x), with respect
to a reference point x ∈ X.

The choice of a reference point could be a subtle issue in general. However,
since these groups are isomorphic to each other for different choices of the reference
point, we obtain canonical bijections between the sets of equivalence classes of
homomorpisms from these groups to LG, which is what we are interested in here.
Henceforth we will suppress the reference point in our notation and write simply
π1(X).

Thus, the geometric counterpart of a (unramified) homomorphism Gal(F/F ) →
LG is a homomorphism π1(X) → LG. If we replace Gal(F/F ) by the Weil group
W (F ), then we should replace π1(X) by a similarly defined subgroup.

Let X be a smooth projective connected algebraic curve defined over C. Let G
be a complex reductive algebraic group and LG its Langlands dual group. Then
homomorphisms π1(X) → LG may be described in differential geometric terms as
(smooth) principal LG-bundles onX with a flat connection. Indeed, the monodromy
of the flat connection gives rise to a homomorphism π1(X) → LG, and this gives rise
to an equivalence of the appropriate categories and a bijection of the corresponding
sets of equivalence classes.

Let E be a smooth principal LG-bundle on X. A flat connection on E has two
components. The (0, 1) component, with respect to the complex structure on X,
defines holomorphic structure on E, and the (1, 0) component defines a holomorphic
connection ∇. Thus, a principal LG-bundle with a flat connection on X is the same
as a pair (E,∇), where E is a holomorphic (equivalently, algebraic) principal LG-
bundle on X and ∇ is a holomorphic (equivalently, algebraic) connection on E.
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Thus, for complex curves the objects on the left-hand side of the Langlands corre-
spondence (2.6) should be the equivalence classes of flat (holomorphic or algebraic)
LG-bundles (E,∇).

3.2. Sheaves on BunG. We consider next the right-hand side of (2.6). Here the
answer is not quite as obvious. We sketch it briefly referring the reader to [F1,
Section 3], for more details.

Recall that automorphic representations of G(AF ) (where F is a function field of
a curve X defined over Fq) are realized in functions on the quotient G(F )\G(AF ).
Let us restrict ourselves to those irreducible automorphic representations that cor-
respond to unramified homomorphisms W (F ) → LG. It is known that they contain
a one-dimensional subspace stable under the subgroup G(OF ) ⊂ G(AF ), where

OF =
∏

x∈|X|
Ox.

These representations are also called unramified. Any vector in the G(OF )-stable
line in such a representation π gives rise to a function on the double quotient

(3.1) G(F )\G(AF )/G(OF ).

This function, which is called the spherical function, contains all information about
π, because the right translates by g ∈ G(AF ) of this function pulled back to
G(F )\G(AF ) span π.

Now, a key observation, due to André Weil, is that in the case of G = GLn this
double quotient is precisely the set of isomorphism classes of rank n bundles on our
curve X. This statement is true if the curve X is defined over a finite field or the
complex field.

For a general reductive group G this double quotient is the set of isomorphism
classes of principal G-bundles on X if X is over C. This is true in Zariski, étale, or
analytic topology.

If X is defined over a finite field, the situation is more subtle.1 Then the double
quotient (3.1) is the set of equivalence classes of principal G-bundles in Zariski
topology as well as Nisnevich topology [Ni1, Ni2]. In the étale topology, this is true
only if the group

Ker1(F,G) = Ker(H1(F,G) →
∏

x∈|X|
H1(Fx, G))

is trivial. In this case, it is sometimes said that G “satisfies the Hasse principle”.
This holds, for example, in the case that G is semi-simple and split over Fq; see [Ha]
and [BeDh, Corollary 4.2]. Otherwise, the set of equivalence classes of principal
G-bundles in the étale topology (equivalently, the fppf topology) is a union over
ξ ∈ Ker1(F,G) of double quotients like (3.1) in which G(F ) is replaced by its form
corresponding to ξ.

From now on we will assume for simplicity that the Hasse principle holds for G.
Then the geometric analogues of unramified automorphic representations should
be some geometric objects that “live” on some kind of moduli space of principal
G-bundles on X.

1 I thank Yevsey Nisnevich for a discussion of this issue.
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If G = GL1, the Picard variety is an algebraic variety that serves as the moduli
space of principal G-bundles on X, which are the same as line bundles on X in this
case.

Unfortunately, for a non-abelian group G there is no algebraic variety whose set
of k-points is the set of isomorphism classes of principal G-bundles on X (where
k is the field of definition of X). The reason is that G-bundles have groups of
automorphisms, which vary from bundle to bundle (in the case of GL1-bundles,
the group of automorphisms is the same for all bundles; it is the multiplicative
group acting by rescalings). However, there is an algebraic stack that parametrizes
principal G-bundles on X. It is denoted by BunG. It is not an algebraic variety,
but it looks locally like the quotient of an algebraic variety by the action of an
algebraic group. These actions are not free, and therefore the quotient is no longer
an algebraic variety. However, the structure of the quotient allows us to define
familiar objects on it. For instance, a coherent sheaf on the quotient stack Y/H of
this kind is nothing but an H-equivariant coherent sheaf on Y . It turns out that
this is good enough for our purposes.

In the classical story, when X is defined over Fq, an unramified automorphic rep-
resentation may be replaced by a non-zero spherical function (which is unique up to
a scalar) on the above double quotient which is the set of Fq-points of BunG. Hence
in the geometric theory we need to find geometric analogues of these functions.

According to Grothendieck’s philosophy, the “correct” geometric counterpart of
the notion of a function on the set of Fq-points of V is the notion of an �-adic sheaf
on V . We will not attempt to give a precise definition here, referring the reader to
[M, FK]. Let us just say that the simplest example of an �-adic sheaf is an �-adic
local system, which is, roughly speaking, a compatible system of locally constant
Z/�nZ-sheaves on V for n ≥ 1 (in the étale topology).

The important property of the notion of an �-adic sheaf F on V is that for any
morphism f : V ′ → V from another variety V ′ to V the group of symmetries of this
morphism will act on the pull-back of F to V ′. In particular, let x be an Fq-point of

V and x the Fq-point corresponding to an inclusion Fq ↪→ Fq. Then the pull-back of
F with respect to the composition x → x → V is a sheaf on x, which is nothing but
the fiber Fx of F at x, which is a Q�-vector space. But the Galois group Gal(Fq/Fq)
is the symmetry of the map x → x, and therefore it acts on Fx.

Let Frx be the (geometric) Frobenius element, which is the inverse of the au-
tomorphism y �→ yq of Fq. It is a generator of Gal(Fq/Fq) and hence acts on Fx.
Taking the trace of Frx on Fx, we obtain a number Tr(Frx,Fx), which we will also
denote by Tr(Frx,Fx).

Hence we obtain a function on the set of Fq-points of V . One assigns similarly
a function to a complex of �-adic sheaves, by taking the alternating sums of the
traces of Frx on the stalk cohomologies of K at x. The resulting map intertwines the
natural operations on complexes of sheaves with natural operations on functions
(see [Lau1, Section 1.2]). For example, pull-back of a sheaf corresponds to the pull-
back of a function, and push-forward of a sheaf with compact support corresponds
to the fiberwise integration of a function.

Thus, because of the existence of the Frobenius automorphism in the Galois
group Gal(Fq/Fq) (which is the group of symmetries of an Fq-point), we can pass
from �-adic sheaves to functions on any algebraic variety over Fq. This suggests
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that the proper geometrization of the notion of a function in this setting is the
notion of �-adic sheaf.

The naive abelian category of �-adic sheaves is not a good choice for various
reasons; for instance, it is not stable under the Verdier duality. The correct choice
turns out to be another abelian category of the so-called perverse sheaves. These
are actually complexes of �-adic sheaves on V satisfying certain special properties.
Examples are �-adic local systems on a smooth variety V , placed in cohomological
degree equal to − dimV . General perverse sheaves are glued from such local systems
defined on the strata of a particular stratification of V by locally closed subvarieties.

Experience shows that many “interesting” functions on the set V (Fq) of points
of an algebraic variety V over Fq come from perverse sheaves K on V . Hence it is
natural to expect that unramified automorphic functions on

G(F )\G(AF )/G(OF ),

which is the set of Fq-points of BunG, come from perverse sheaves on BunG.
The concept of perverse sheaves makes perfect sense for varieties over C as well,

and this allows us to formulate the geometric Langlands conjecture when X (and
hence Bunn) is defined over C. And over the field of complex numbers there is one
more reformulation that we can make; namely, we can pass from perverse sheaves
to D-modules.

Recall (see, e.g., [KS, GM]) that a D-module on a smooth algebraic variety Z is
a sheaf of modules over the sheaf DZ of differential operators on Z. An example
of a D-module is the sheaf of sections of a flat vector bundle on Z. The sheaf of
functions on Z acts on sections by multiplication, so it is an OZ -module. But the
flat connection also allows us to act on sections by vector fields on Z. This gives rise
to an action of the sheaf DZ , because it is generated by vector fields and functions.
Thus, we obtain the structure of a D-module.

In our case, BunG is not a variety, but an algebraic stack. The suitable (derived)
category of D-modules on it has been defined in [BD].

D-modules on BunG will be the objects that we will consider as the replacements
for the unramified spherical functions in the complex case.

3.3. Hecke functors: examples. There is more: an unramified spherical func-
tion attached to an unramified automorphic representation has a special property;
it is an eigenfunction of the Hecke operators. These are integral operators that
are cousins of the classical Hecke operators one studies in the theory of modular
forms. The eigenvalues of these operators are precisely what we referred to earlier
as Hecke eigenvalues. For a general automorphic representation, these are defined
for all but finitely many closed points of X. But for the unramified automorphic
representations they are defined for all points. In this case the Hecke operators
may be defined as integral operators acting on the space of functions on the set of
Fq-points of BunG, if the curve X is defined over Fq.

The D-modules on BunG we are looking for, in the case that X is defined over
C, should reflect this Hecke property.

The analogues of the Hecke operators are now the so-called Hecke functors acting
on the derived category of D-modules on BunG. They are labeled by pairs (x, V ),
where x ∈ X and V is a finite-dimensional representation of the dual group LG,
and are defined using certain modifications of G-bundles.



16 EDWARD FRENKEL

Before giving the general definition, consider two examples. First, consider the
abelian case with G = GL1 (thus, we have G(C) = C×). In this case BunG may be
replaced by the Picard variety Pic which parametrizes line bundles on X. Given a
point x ∈ X, consider the map p′x : Pic → Pic sending a line bundle L to L(x) (the
line bundle whose sections are sections of L which are allowed to have a pole of
order 1 at x). By definition, the Hecke functor H1,x corresponding to x and 1 ∈ Z

(which we identify with the set of one-dimensional representations of LG = GL1) is
given by the formula

H1,x(F) = p′x
∗(F).

Next, consider the case of G = GLn and V = Vω̌1
, the defining n-dimensional

representation of LG = GLn. In this case BunGLn
is the moduli stack Bunn of

rank n bundles on X. There is an obvious analogue of the map sending a rank n
bundle M to M(x). But then the degree of the bundle jumps by n. It is possible
to increase it by 1, but we need to choose a line � in the fiber of M at x. We
then define a new rank n bundle M′ by saying that its sections are the sections
of M having a pole of order 1 at x, but the polar part has to belong to �. Then
degM′ = degM + 1. However, we now have a Pn−1 worth of modifications of
M corresponding to different choices of the line �. The Hecke functor HVω̌1,x

is
obtained by integrating over all of them.

More precisely, let Hω̌1,x be the moduli stack of pairs (M,M′) as above. It
defines a correspondence over Bunn ×Bunn:

(3.2)

Hω̌1,x

px

↙
p′
x

↘
Bunn Bunn .

By definition,

(3.3) Hω̌1,x(F) = px∗ p′x
∗(F).

3.4. Hecke functors: general definition. For irreducible representations ρμ of
LG with general dominant integral highest weights μ, there is an analogous corre-
spondence in which the role of the projective space Pn−1 is played by the Schubert
variety in the affine Grassmannian of G corresponding to μ.

We explain this in the split case (so that G = G and LG = Ǧ). First, observe that
if we have two G-bundles E,E′ on the (formal) disc Spec k[[t]] which are identified
over the punctured disc Spec k((t)), we obtain a point in the double quotient

G[[t]]\G((t))/G[[t]],

or, equivalently, a G[[t]]-orbit in the affine Grassmannian

Gr = G((t))/G[[t]],

which is an ind-scheme over k [BD, MV]. These orbits are called Schubert cells,
and they are labeled by elements μ the set X+ of dominant weights of the maximal
torus in the dual group LG. We denote the orbit corresponding to μ by Grμ. We
will write inv(E,E′) = μ if the pair (E,E′) belongs to Grμ. Note that Grμ′ is

contained in the closure Grμ of Grμ if and only if μ ≥ μ′.
Following Beilinson and Drinfeld [BD], we introduce theHecke stackH = H(X,G)

that classifies quadruples

(x,E,E′, φ),
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where x ∈ X, E,E′ ∈ BunG and φ is an isomorphism

E|X−{x} 
 E′|X−{x}.

We have two natural morphisms p, p′ : H → BunG sending such a quadruple to
E or E′ and the morphism s : H → X. Since BunG is an algebraic stack, so is
H(X,G). However, if we fix E′, then we obtain an ind-scheme over X, which is
called the Beilinson–Drinfeld Grassmannian (see [BD, MV]).

Let H′(X,G) be the stack classifying the quadruples

(x,E,E′, φ),

where x ∈ X, E ∈ BunG, E
′ is a G-bundle on the disc Dx around the point x, and

φ is an isomorphism

E|D×
x

 E′|D×

x
,

where D×
x is the punctured disc around x. We have a natural morphism

H(X,G) → H′(X,G)

(restricting E′ to Dx and φ to D×
x ), which is in fact an isomorphism, according to

a strong version of a theorem of Beauville–Laszlo [BL] given in [BD, Section 2.3.7].
Therefore we obtain that a morphism

s× p : H(X,G) → X × BunG

sending the above quadruple to (x,E) is a locally trivial fibration with fibers iso-
morphic to the affine Grassmannian Gr = G((t))/G[[t]].

For every dominant integral weight μ ∈ X+, we define the closed substack Hμ

of H(X,G) by imposing the inequality

(3.4) invx(E,E′) ≤ μ.

It is a scheme over X × BunG with fibers isomorphic to Grμ.
Recall the geometric Satake correspondence [MV], which is an equivalence of

tensor categories between the category of finite-dimensional representations of LG
and the category of G[[t]]-equivariant perverse sheaves on Gr (see [F1, Sects. 5.4–
5.6], for an exposition). It sends the irreducible finite-dimensional representation
ρ = ρμ of LG to the irreducible perverse sheaf IC(Grμ) supported on Grμ.

Let Kρ by the perverse sheaf on H(X,G), supported on Hμ, which is constant

along X × BunG with the fibers isomorphic to IC(Grμ).
We now define the Hecke functor Hρ = Hμ as the integral transform correspond-

ing to the kernel Kρ (see [BD]):

Hρ(F) = (s× p)∗(p
′∗(F)⊗Kρ).

For x ∈ |X|, let Hx be the fiber of H over x, and let px, p
′
x : Hx → BunG be the

corresponding morphisms. Denote by Kρ,x the restriction of Kρ to Hx. Define the
functor Hρ,x by the formula

Hρ,x(F) = px∗(p
′
x
∗(F)⊗Kρ,x).

If X is defined over Fq, then one can show that the function corresponding to the
sheaf Kρ,x via the Grothendieck dictionary is the kernel Kρ,x of the Hecke operator
corresponding to ρ and x (see [F1, Section 5.4]). Therefore the functor Hρ,x is a
geometric analogue of the Hecke operator Hρ,x.
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3.5. Hecke eigensheaves. Let E be a flat LG-bundle on X. Then

ρE = E ×
LG

ρ

is a flat vector bundle on X, hence a D-module on X. The following definition is
due to [BD].

Definition 1. A sheaf F on BunG is called a Hecke eigensheaf with the eigenvalue
E if for any representation ρ of LG we have an isomorphism

(3.5) Hρ(F) 
 ρE � F,

and these isomorphisms are compatible for different ρ with respect to the structures
of tensor categories on both sides.

By base change, it follows from the above identity that for every x ∈ X, we have
an isomorphism

(3.6) Hρ,x(F) 
 ρ⊗ F.

If our curve X is defined over Fq, we can pass from a Hecke eigensheaf F on
BunG to a function f on G(F )\G(AF )/G(OF ). Then this function will be an
eigenfunction of the Hecke operators Hρ,x:

(3.7) Hρ,x(f) = hρ,xf.

According to the Satake isomorphism (see, e.g., [F1, Section 5.4]), the map

[ρ] �→ Hρ,x,

where ρ runs over all finite-dimensional representations of LG, defines an isomor-
phism between the representation ring Rep LG of LG and the spherical Hecke algebra
generated by Hρ,x. Hence the collection of eigenvalues {hρ,x} defines a point in the
spectrum of Rep LG, that is, a semi-simple conjugacy class νx in LG.

If the (unramified) automorphic representation π generated by the spherical
function f corresponds to a homomorphism σ : W (F ) → LG under the Langlands
correspondence (2.6), then νx = σ(Frx), where Frx is the Frobenius conjugacy class
associated to x (see [F1, Section 2.2]). In other words, in this case

(3.8) hρ,x = Tr(σ(Frx), ρ)

(up to a power of q). A general automorphic representation π would be ramified
at finitely many points x ∈ |X|. Then this condition would only be satisfied away
from those points. This is the precise meaning of the matching between the Hecke
and Frobenius eigenvalues that we mentioned above.

3.6. Geometric Langlands correspondence. Now we can state the geometric
Langlands correspondence as the following diagram.

(3.9)
flat

LG-bundles on X
−→ Hecke eigensheaves

on BunG

E −→ FE

This correspondence has been constructed in many cases. For G = GLn the
Hecke eigensheaves corresponding to irreducible E have been constructed in [FGV2,
G], building on the work of P. Deligne for n = 1 (explained in [Lau3] and [F1]), V.
Drinfeld [D1] for n = 2, and G. Laumon [Lau3] (this construction works for curves
defined both over Fq or C).
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For any split simple algebraic group G and X defined over C, the Hecke eigen-
sheaves have been constructed in a different way by A. Beilinson and V. Drinfeld
[BD] in the case that E has an additional structure of an oper (this means that
E belongs to a certain half-dimensional locus in LocLG). It is interesting that this
construction is closely related to the 2D Conformal Field Theory and representation
theory of affine Kac–Moody algebras of critical level. For more on this, see [F1,
Part III].

3.7. Categorical version. Looking at the correspondence (3.9), we notice that
there is an essential asymmetry between the two sides. On the left we have flat
LG-bundles, which are points of a moduli stack LocLG of flat LG-bundles (or local
systems) on X. But on the right we have Hecke eigensheaves, which are objects of
a category; namely, the category of D-modules on BunG. Beilinson and Drinfeld
have suggested how to formulate it in a more symmetrical way.

The idea is to replace a point E ∈ LocLG by an object of another category;
namely, the skyscraper sheaf OE at E viewed as an object of the category of coher-
ent O-modules on LocLG. A much stronger, categorical, version of the geometric
Langlands correspondence is then a conjectural equivalence of derived categories.2

(3.10)
derived category of
O-modules on LocLG

←→ derived category of
D-modules on BunG

This equivalence should send the skyscraper sheaf OE on LocLG supported at E to
the Hecke eigensheaf FE . If this were true, it would mean that Hecke eigensheaves
provide a good “basis” in the category of D-modules on BunG, so we would obtain
a kind of spectral decomposition of the derived category of D-modules on BunG,
like in the Fourier transform. (Recall that under the Fourier transform on the real
line, the delta-functions δx, analogues of OE, go to the exponential functions eitx,
analogues of FE.)

This equivalence has been proved by G. Laumon [Lau2] and M. Rothstein [R]
in the abelian case, when G = GL1 (or a more general torus). They showed that
in this case this is nothing but a version of the Fourier–Mukai transform. Thus,
the categorical Langlands correspondence may be viewed as a kind of non-abelian
Fourier–Mukai transform (see [F1, Section 4.4]).

In the non-abelian case, this has not yet been made into a precise conjecture
in the literature.3 Nevertheless, the diagram (3.10) gives us a valuable guiding
principle to the geometric Langlands correspondence. In particular, it gives us a
natural explanation as to why the skyscraper sheaves on LocLG should correspond
to Hecke eigensheaves.

The point is that on the category of O-modules on LocLG we also have a collection
of functors WV , parametrized by the same data as the Hecke functors HV . We
will call them the Wilson functors (because of the close connection between them
and the Wilson line operators in 4D gauge theory). These functors act from the

2 It is expected (see [FW, Section 10]) that there is in fact a Z2-gerbe of such equivalences.
This gerbe is trivial, but not canonically trivialized. One gets a particular trivialization of this
gerbe, and hence a particular equivalence, for each choice of the square root of the canonical line
bundle KX on X.

3After I presented these Colloquium Lectures, the paper [AG] appeared in which a precise
formulation of this conjecture was proposed.
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category of O-modules on LocLG to the category of sheaves on X × LocLG, which
are D-modules along X and O-modules along LocLG.

To define them, observe that we have a tautological LG-bundle T on X ×LocLG,
whose restriction to X ×E, where E = (E,∇), is E. Moreover, ∇ gives us a partial
connection on T along X. For a representation V of LG, let TV be the associated
vector bundle on X × LocLG, with a connection along X.

Let p2 : X × LocLG → LocLG be the projection onto the second factor. By
definition,

(3.11) WV (F) = TV ⊗ p∗2(F)

(note that by construction TV carries a connection along X and so the right-hand
side really is a D-module along X).

Now, the conjectural equivalence (3.10) should be compatible with the Wil-
son/Hecke functors in the sense that

(3.12) C(WV ) 
 HV , V ∈ Rep LG,

where C denotes this equivalence (from left to right).
In particular, observe that the skyscraper sheaf OE at E ∈ LocLG is obviously an

eigensheaf of the Wilson functors:

WV (OE) = VE � OE.

Indeed, tensoring a skyscraper sheaf with a vector bundle is the same as tensoring
it with the fiber of this vector bundle at the point of support of this skyscraper
sheaf. Therefore (3.12) implies that FE = C(OE) must satisfy the Hecke property
(3.5). In other words, FE should be a Hecke eigensheaf on BunG with eigenvalue
E. Thus, we obtain a natural explanation of the Hecke property of FE: it follows
from the compatibility of the categorical Langlands correspondence (3.10) with the
Wilson/Hecke functors.

Thus, the conjectural equivalence (3.10) gives us a natural and convenient frame-
work for the geometric Langlands correspondence.

The equivalence (3.10) also arises in the study of S-duality of the maximally 4D
supersymmetric gauge theories with the gauge groups being the compact forms of
G and LG. As shown by Kapustin and Witten [KW] (see [F2] for an exposition),
the S-duality of boundary conditions in these theories yields an equivalence closely
related to (3.10), in which the category of D-modules on BunG is replaced by the
category of A-branes on the cotangent bundle of BunG.

4. Langlands functoriality and trace formula

The Langlands correspondence (2.6) is subtle, because it involves objects from
two different worlds: automorphic representations and Galois representations. How-
ever, there is a closely related correspondence that may be formulated entirely in
the world of automorphic representations.

4.1. The Langlands Functoriality Principle. Let G and H be two reductive
algebraic groups over the function field F of smooth projective curve X over a finite
field, and assume that G is quasi-split (that is, contains a Borel subgroup defined
over F ). Let LG and LH be their Langlands dual groups and

a : LH → LG
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a homomorphism between them that induces the identity on the Galois parts. Such
homomorphisms are called admissible.

Given a homomorphism σ : W (F ) → LH, we obtain a homomorphism a ◦ σ :
W (F ) → LG, and hence a natural map of sets of equivalence classes

homomorphisms
W (F ) → LH

↓

homomorphisms
W (F ) → LG

Taking into account the Langlands correspondence (2.6) for the group G and the
one for H, we conclude that to each L-packet of tempered automorphic represen-
tations of H(AF ) should correspond an L-packet of automorphic representations of
G(AF ). In fact, there should be a map

(4.1)

L-packets of automorphic
representations of H(AF )

↓

L-packets of automorphic
representations of G(AF )

It is called the Langlands Functoriality or transfer of automorphic representa-
tions.

The existence of such a map is non-trivial and surprising, because even though we
have a homomorphism of dual groups a : LH → LG, there is a priori no connection
between the groups G and H.

These transfers should have the following associativity property: if M is another
reductive group and we have a chain of homomorphisms:

LM → LH → LG,

then the two transfers of automorphic representations from M(AF ) to G(AF ), one
obtained as the composition of the transfers from M(AF ) to H(AF ) and from
H(AF ) to G(AF ), and the other obtained directly from the composition LM → LG,
should coincide.

In addition, we require that under the transfer the Hecke eigenvalues of automor-
phic representations should match, in the following sense. Recall from Section 3.5
that the eigenvalues of the Hecke operators assign to an automorphic representation
of G(AF ) a collection of conjugacy classes (νx), for all but finitely many x ∈ |X|, in
the Langlands dual group LG. It is known that for all automorphic representations
πj of G(AF ) that belong to a given L-packet {πj} these conjugacy classes are the
same.

Now, let {πH
i } be an L-packet of automorphic representations of H(AF ) and

(νHx ) the collection of LH-conjugacy classes assigned to it. Let {πG
j } be the L-

packet of automorphic representations which is the transfer of {πH
i } under (4.1),
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and (νGx ) the collection of LG-conjugacy classes assigned to it. Then they should
be defined for the same x ∈ |X| as the νHx , and for each of these x ∈ |X| we must
have

νGx = a(νHx ).

Functoriality has been established in some cases, but is unknown in general (see
[Art1] for a survey).

4.2. Geometric functoriality. Given a homomorphism LH → LG, we obtain a
natural morphism of algebraic stacks LocLH → LocLG and hence a natural functor
(direct image) from the category of O-modules on LocLH to that on LocLG. Hence,
in view of the categorical Langlands correspondence (3.10), we should also have a
functor from the derived category of D-modules on BunH to that on BunG, making
the following diagram commutative.

O-modules on LocLH −−−−→ D-modules on BunH⏐⏐
 ⏐⏐

O-modules on LocLG −−−−→ D-modules on BunG

The right vertical arrow is the geometric functoriality functor. Examples have
been constructed in [Ly1, Ly2] (see also [LafL]) using a geometric version of the
theta-correspondence. In [FW] the geometric functoriality for endoscopic groups
was analyzed using the Mirror Symmetry approach to the geometric Langlands
correspondence (in this setting the category of D-modules on BunG is replaced by
the category of A-branes on the cotangent bundle of BunG).

4.3. Non-tempered representations. In [L2, L3] Langlands proposed a strategy
for proving the Functoriality Conjecture, which is based on the use of the trace
formula. This was further developed in [FLN] and [L4]. In order to explain this,
we need to discuss first the non-tempered representations and a modified version of
the functoriality transfer. Then, in the next subsection, we will introduce the trace
formula, and in Sections 4.5–4.10 we will explain the strategy of [FLN] to use the
trace formula to prove the Functoriality Conjecture.

Recall that according to the Langlands correspondence (formula (2.6)), the L-
packets of tempered automorphic representations are supposed to be parametrized
by the equivalence classes of homomorphisms W (F ) → LG. According to the con-
jectures of Arthur, for general automorphic representations of G(AF ) the homo-
morphisms W (F ) → LG should be replaced by the Arthur parameters: equivalence
classes of homomorphisms

(4.2) σ : SL2 ×W (F ) → LG

that induce the canonical map W (F ) → Gal(F/F ) → Γ.
If an irreducible automorphic representation π is tempered, then σ|SL2 is trivial.

Those σ for which σ|SL2
is non-trivial, correspond to non-tempered automorphic

representations.
If an automorphic representation

π =
⊗
x∈|X|

′ πx
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of the adelic group G(AF ) has the Arthur parameter σ, then for all closed points
x ∈ |X| where πx is unramified the restriction σ|W (F ) is also unramified and the

conjugacy class νx in LG corresponding to πx is the conjugacy class of

(4.3) σ

((
q1/2 0
0 q−1/2

)
× Frx

)
∈ LG.

Let σ be an Arthur parameter. We attach to it two subgroups of LG: λG = λGσ

which is the centralizer of the image of SL2 in LG under σ, and λH = λHσ is the
Zariski closure of the image of W (F ) in λGσ under σ.

Technical point. The group λH may not be a Langlands dual group, but the
image of an admissible homomorphism LH → LG (so that we have a surjection
LH → λH). As explained on [L2, Sections 1.4 and 1.7], we may enlarge λH by a
central torus to get a Langlands dual group LH. In what follows we will ignore this
issue. �

The idea of Langlands [L2] (see also [FLN, L5]) is to assign (bypassing Arthur
parameters) to each irreducible automorphic representations π of G(AF ) (more
precisely, an L-packet) directly the data of

(4.4) φ : SL2 × LH → λH ↪→ LG

and a tempered irreducible automorphic representation πH (or an L-packet) of the
group H(AF ) whose dual group is LH, which Langlands calls hadronic. Note that
the same π might correspond to several inequivalent homomorphisms φ, but this is
expected to be related to the multiplicity of π in the space of automorphic functions.

From this point of view, π should be thought of as a transfer of πH with respect
to φ, so we obtain a more convenient notion of transfer for non-tempered repre-
sentations which explicitly involves Arthur’s group SL2 (note that it is different
from the transfer discussed in Section 4.1). According to formula (4.3), under this
transfer the Hecke eigenvalues (νHx ) of πH and (νx) of π should be matched by the
formula

(4.5) νx = φ

((
q1/2 0
0 q−1/2

)
× νHx

)
.

Thus, we obtain a conjectural description of the equivalence classes of automor-
phic representations of all reductive groups G in terms of the pairs (φ, πH), where
πH is hadronic, and φ is a homomorphism (4.4). In [L2, FLN] (see also [L4, L5]) a
strategy for proving it using the trace formula was suggested. We discuss it next.

4.4. Trace formula. Let f be a smooth compactly supported function on G(AF ).
We choose a Haar measure on G(AF ) normalized so that the volume of the fixed
maximal compact subgroup

G(OF ) =
∏

x∈|X|
G(Ox)

is equal to 1. Denote by Kf the operator on the space of automorphic functions
on G(F )\G(AF ) acting by the formula

(Kf · ψ)(x) =
∫

G(A)

ψ(xy)f(y)dy.

Thus, we “average” the right action of y ∈ G(AF ) with the “weight” f(y).
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We rewrite Kf as an integral operator corresponding to the kernel

(4.6) Kf (x, y) =
∑

a∈G(F )

f(x−1ay),

acting as follows:

(Kf · ψ)(x) =
∫

G(F )\G(A)

Kf (x, y)ψ(y)dy.

The Arthur–Selberg trace formula for K reads, formally,

(4.7) TrKf =

∫
G(F )\G(A)

Kf (x, x)dx.

This is correct if G(F )\G(AF ) is compact, in which case there is no continuous
spectrum; otherwise, some important modifications need to be made. We will not
discuss this here, referring the reader to [Art2] and references therein.

The left-hand side of this formula, called the spectral side, may be rewritten as
follows (we ignore the continuous spectrum):

(4.8)
∑
π

mπ Tr(Kf , π),

where the sum is over the irreducible automorphic representations π of G(AF ) and
mπ is the multiplicity of π in the space of automorphic functions.

The right-hand side of (4.7) may be rewritten as (see [Art2], Section 1)

(4.9)
∑

γ∈G(F )/ conj.

aγOγ(f),

where γ runs over the set of conjugacy classes in G(F ), Oγ(f) is the global orbital
integral defined by the formula

Oγ(f) =

∫
Gγ(AF )\G(AF )

f(g−1γg)dg,

and

aγ = vol(Gγ(F )\Gγ(AF )).

Here Gγ(F ) (resp., Gγ(AF )) denotes the stabilizer of γ in G(F ) (resp., G(AF )).
The sum (4.9) is usually called the geometric side of the trace formula, but we

will call it the orbital side, because by its geometrization we will understand its
representation as the trace of the Frobenius on a vector space.

Thus, the trace formula (4.7) takes the form

(4.10)
∑
π

mπ Tr(Kf , π) =
∑

γ∈G(F )/ conj.

aγOγ(f).

We want to use this formula to establish the functoriality transfer (4.1). The
idea is to find enough relations between TrKf and TrKfH for a sufficiently large
class of functions f on G(AF ) and a suitable map

f �→ fH ,
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where fH is a function on H(AF ). Though the formula (4.10) for a single function
f does not necessarily pin down a particular irreducible representation π—the left-
hand side of (4.10) is a sum over those—if we have at our disposal formulas for the
trace TrKf for a sufficiently large class of functions f , then we can separate different
irreducible representations. So if we can prove enough relations between TrKf

and TrKfH , then we can often derive the existence of an irreducible automorphic
representation π of G(AF ) whose Hecke eigenvalues match those of an irreducible
automorphic representation πH of H(AF ) (or, in general, L-packets of those).

In order to find these relations between the traces, we look for relations between
the global orbital integrals Oγ(f) and OγH (fH) appearing on the right-hand side
of (4.10) for G(AF ) and H(AF ), respectively. This should eventually be reduced
to proving relations between local orbital integrals of the local factors fx and fH

x

of f =
⊗

x fx and fH =
⊗

x f
H
x , respectively. Thus, everything should boil down

to a problem in local harmonic analysis. This is the basic strategy used to prove
the Functoriality Conjecture.

This strategy has been successfully employed in a number of cases. Perhaps, the
most famous (and historically one of the first) examples is the Jacquet–Langlands
theory [JL]. Here G = GL2 and H is the multiplicative group of a quaternion
algebra over F , which is an inner form of G. Thus, LG = LH = GL2, and we
take the identity as the homomorphism a between them. Jacquet and Langlands
give a very explicit construction of the transfer of functions and conjugacy classes
under which the orbital integrals for the two groups are equal. This, together
with the strong multiplicity one theorem for GL2 (which says that the collection of
conjugacy classes (νx) at almost all points x ∈ |X| uniquely determine an irreducible
automorphic representation of GL2(AF )), allows them to prove the existence of the
transfer πH �→ π satisfying the above properties.

Technical point. Labesse and Langlands have shown in [LL] that the same strat-
egy fails already in the case of G = SL2. It turns out that for general groups
one needs first to “stabilize” the trace formula. Roughly speaking, this allows us
to write the orbital side in terms of the products, over x ∈ |X|, of local stable
orbital integrals. Here “stable” refers to “stable conjugacy class” in G(Fx), the
union of the conjugacy classes in G(Fx) that are conjugate to each other over the
algebraic closure of Fx (if G = GLn, each stable conjugacy class consists of one
conjugacy class, but for other groups it may consist of several conjugacy classes).
Stable orbital integrals for different groups may then be compared. Fortunately,
the stabilization of trace formulas has now been achieved thanks to Ngô’s recent
proof of the fundamental lemma [N2] and other important results.

One of the benefits of the stabilization of the trace formula is that it leads to the
proof of the Functoriality Conjecture for the so-called endoscopic groups (at least,
those of classical types). These are the the groups H whose Langlands dual groups
LH are, roughly speaking, the centralizers of semi-simple elements in LG (see, e.g.,
[N2] for a precise definition). �

4.5. Strategy. In [FLN], following [L2, L3] (see also [L4, L5, FN]), the following
strategy for proving functoriality has been proposed.

Suppose we had at our disposal an explicitly defined family of integral operators
{Kfi} on the space of automorphic functions on G(F )\G(AF ) which annihilate all
automorphic representations of G(AF ) that do not come by transfer from automor-
phic representations of H(AF ). Then we will be able to isolate in L2(G(F )\G(AF ))
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those representations that come by functoriality from automorphic representations
of H(AF ). Hence we may compare the traces of these operators with the traces of
some operators {KfH

i
} acting on L2(H(F )\H(AF )) using the corresponding orbital

integrals.
While it is not known how to do this literally for any given pair of groups G and

H, operators with a similar property have indeed been constructed in [L2, FLN].
In what follows we will describe a class of such operators, denoted by Kd,ρ,

defined in [FLN], restricting ourselves for simplicity to unramified automorphic
representations (for the general case, see [FLN]). In this case f is a finite linear
combination of functions of the form

⊗
x fx, where each fx is in the spherical

Hecke algebra of G(Fx) (with respect to G(Ox)), and fx = 1 for all but finitely
many x ∈ |X|.

The operators Kd,ρ depend on a positive integer d and an irreducible represen-
tation ρ of LG and are expected to have the following property: for sufficiently
large d, the representations of G(AF ) that contribute to the trace of Kd,ρ are those
coming by functoriality from the groups H satisfying the following.

Property (G, ρ): The pull-back a∗(ρ) of ρ to LH under the homomorphism a :
LH → LG has non-zero invariant vectors.

This suggests a path to proving functoriality: we need to express the right-hand
side of the trace formula for Kd,ρ as the sum of orbital integrals and compare these
orbital integrals for G and the groups H satisfying property (G, ρ).

We will now give a simple example of a group satisfying this property and then
define the operators Kd,ρ. Then we will compute the eigenvalues of these operators
on the Hecke eigenfunctions in Section 4.8. Using this computation, we will derive
the crucial Lemma 1 which shows that for large enough d the operator Kd,ρ anni-
hilates the Hecke eigenfunctions that do not come by functoriality from the groups
H satisfying property (G, ρ).

4.6. Example. What are the possible groups H with the (G, ρ) property? Con-
sider the case of G = GL2, then LG = GL2 as well. Let ρ = ρ1, the defining
two-dimensional representation of GL2. We are interested in the reductive sub-
groups LH that stabilize proper non-zero subspaces of ρ. In this case this subspace
has to be a line in the two-dimensional vector space. The group LH is then a one-
dimensional torus. This is not a very interesting example, because functoriality for
tori is established via the Eisenstein series.

Let us now consider the three-dimensional representation ρ2 = Sym2(ρ1). If we
choose a basis {v1, v2} of ρ1, then ρ2 has the basis

{v1 ⊗ v1, v1 ⊗ v2 + v2 ⊗ v1, v2 ⊗ v2}.

Then in addition to the one-dimensional torus stabilizing the vector v1⊗v1, we will
have another group with the (GL2, ρ2) property, O2 = Z2 � GL1, stabilizing the
line spanned by the second vector. This group consists of the matrices(

x 0
0 x−1

)
,

(
x 0
0 x−1

)(
0 1
1 0

)
.

It is the Langlands dual group of the twisted tori described in Section 2.5. Hence
the corresponding groups H are the twisted tori in this case.
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4.7. Definition of Kd,ρ. Let X be defined over k = Fq. Assume for simplicity
that G is split over k (a more general case is considered in [FN]). Recall the Hecke
operator Hρ,x, x ∈ |X|, ρ ∈ Rep LG, and its kernel Kρ,x, which is a function on
BunG(k)× BunG(k).

We define the kernel Kd,ρ for d ≥ 1 on BunG(k)× BunG(k).
For d = 1 it is simply the sum of Kρ,x over all x ∈ X(k):

K1,ρ =
∑

x∈|X|
Kρ,x.

For d = 2, we want to define the symmetric square of K1,ρ. In other words,
we sum over the degree two effective divisors D—these are the k-points in the
symmetric square X(2) = X2/S2 of our curve X. There are three types of such
divisors: D = (x) + (y), where x, y ∈ X(k), x �= y—to which we assign Kρ,xKρ,y;
D = (x), where x ∈ X(Fq2)—we assign Kρ,x; and D = 2(x)—then naively we could
assign K2

ρ,x = Kρ⊗2,x, but since we want the symmetric product, we assign instead
Kρ(2),x, where

ρ(2) = Sym2(ρ).

Similarly, for d > 2 we set

(4.11) Kd,ρ =
∑

D∈X(d)(k)

∏
i

Kρ(ni),xi
, D =

∑
i

ni[xi],

where
ρ(n) = Symn(ρ).

Let Kd,ρ be the integral operator on functions on BunG(k) corresponding to the
kernel Kd,ρ. Thus,

(4.12) Kd,ρ =
∑

D∈X(d)(k)

∏
i

Hρ(ni),xi
, D =

∑
i

ni[xi].

4.8. Eigenvalues of Kd,ρ. Now let fσ be a Hecke eigenfunction on BunG(k) with
respect to an unramified homomorphism σ : W (F ) → LG. Recall from formulas
(3.7) and (3.8) that

HV,x · fσ = Tr(σ(Frx), V ) fσ

for any finite-dimensional representation V of LG.
Therefore we find from formula (4.12) that

(4.13) Kd,ρ · fσ = ld,ρfσ,

where

(4.14) ld,ρ =
∑

D∈X(d)(k)

∏
i

Tr(σ(Frxi
), ρ(ni)), D =

∑
i

ni[xi].

Consider the generating function of these eigenvalues:

(4.15) L(σ, ρ, t) =
∑
d≥0

ld,ρt
d =

∏
x∈|X|

det(1− tdeg(x)σ(Frx), ρ)
−1.

If we substitute t = q−s, we obtain the L-function L(σ, ρ, q−s) attached to σ and
ρ. Thus, formula (4.13) implies that the eigenvalues of Kd,ρ are the coefficients of
this L-function:

(4.16) Kd,ρ · fσ =
(
q−ds-coefficient of L(σ, ρ, q−s)

)
fσ.
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Lemma 1. Suppose that the spaces of invariants and coinvariants of the represen-
tation ρ ◦ σ of the Weil group W (F ) are equal to 0. Then the corresponding Hecke
eigenfunction fσ satisfies

(4.17) Kd,ρ · fσ = 0, d > 2(g − 1) dim ρ,

where g is the genus of X.
The same statement holds if fσ is a Hecke eigenfunction corresponding to an

Arthur parameter σ : SL2×W (F ) → LG and the spaces of invariants and coinvari-
ants of the representation ρ ◦ σ|W (F ) of the Weil group W (F ) are equal to 0.

Corollary 2. Let λHσ be the Zariski closure of the image of W (F ) in λGσ under
σ. Then Kd,ρ annihilates fσ for d > 2(g − 1) dim ρ unless the restriction of ρ to
λH has non-zero invariants or coinvariants.

We expect that the representation ρ ◦ σ is semi-simple, and hence its invariants
and coinvariants are isomorphic. We will assume that this is the case in what
follows.

4.9. Proof of Lemma 1. In order to prove the lemma, we recall the Grothendieck–
Lefschetz formula for the L-function.

Suppose we are given an unramified n-dimensional �-adic representation ofW (F ).
We attach to it an �-adic locally constant sheaf (local system) L on X.

Let X(d) = Xd/Sd be the dth symmetric power of X. This is a smooth algebraic
variety defined over k, whose k-points are effective divisors on X of degree d. We
define a sheaf on X(d), denoted by L(d) and called the dth symmetric power of L,
as follows:

(4.18) L(d) =
(
πd
∗(L

�d)
)S(d)

,

where πd : Xd → X(d) is the natural projection. The stalks of L(d) are easy to
describe: they are tensor products of symmetric powers of the stalks of L. The
stalk Ld,D at a divisor D =

∑
i ni[xi] is

L
(d)
D =

⊗
i

Sni(Lxi
),

where Sni(Lxi
) is the ni-th symmetric power of the vector space Lxi

. In particular,
the dimensions of the stalks are not the same, unless n = 1. (In the case when n = 1,
the sheaf L(d) is in fact a rank 1 local system on X(d).) For all n, L(d) is actually a
perverse sheaf on X(d) (up to cohomological shift), which is irreducible if and only
if L is irreducible.

Now observe that

(4.19) Tr(FrD,L
(d)
D ) =

∏
i

Tr(σ(Frxi
), ρ(ni)), D =

∑
i

ni[xi],

where FrD is the Frobenius automorphism corresponding to the k-point D of X(d)

and LD is the stalk of Ld at D.
By the Lefschetz trace formula (see, e.g., [M, FK]), the trace of the Frobenius

on the étale cohomology of an �-adic sheaf is equal to the sum of the traces on the
stalks at the Fq-points:

(4.20) Tr(Fr, H•(X(d),L(d))) =
∑

D∈X(d)(Fq)

Tr(FrD,L
(d)
D ),
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By formula (4.19), the right-hand side of (4.20) is ld,ρ given by formula (4.14),
and also the q−ds-coefficient of the L-function L(σ, ρdef , q

−s) of the representation
σ : W (F ) → GLn associated to L and the defining n-dimensional representation
ρdef of GLn.

Let us compute the cohomology ofX(d) with coefficients in L(d). By the Künneth
formula, we have

H•(X(d),L(d)) =
(
H•(Xd,L�d)

)Sd

=
(
H•(X,L)⊗d

)Sd
,

where the action of the symmetric group Sd on the cohomology is as follows: it acts
by the ordinary transpositions on the even cohomology and by signed transpositions
on the odd cohomology. Thus, we find that

(4.21) H•(X(d),L(d))

=
⊕

d0+d1+d2=d

Sd0(H0(X,L))⊗ Λd1(H1(X,L))⊗ Sd2(H2(X,L)).

The cohomological grading is computed according to the rule that d0 does not
contribute to cohomological degree, d1 contributes d1, and d2 contributes 2d2. In
addition, we have to take into account the cohomological grading on L.

Formulas (4.20) and (4.21) give us the following expression for the generating
function of the right-hand side of (4.20):

(4.22)
∑
d≥0

td
∑

D∈X(d)(Fq)

Tr(FrD,LD)

=
det(1− tFr, H1(X,L))

det(1− tFr, H0(X,L)) det(1− tFr, H2(X,L))
.

This is the Grothendieck–Lefschetz formula for the L-function L(σ, ρdef , t).
Now let Lρ◦σ be the �-adic local system corresponding to the representation ρ◦σ

of W (F ). Then the trace of the Frobenius on the right-hand side of (4.21) gives us
the eigenvalue ld,ρ of Kd,ρ on fσ.

If ρ ◦ σ has zero spaces of invariants and coinvariants, then

H0(X,Lρ◦σ) = H2(X,Lρ◦σ) = 0

and dimH1(X,Lρ◦σ) = (2g − 2) dim ρ (since it is then equal to the Euler charac-
teristic of the constant local system of rank dim ρ on X). Hence we obtain that

H•(X(d),L
(d)
ρ◦σ) 
 Λd(H1(X,Lρ◦σ)),

and the L-function L(σ, ρ, q−s) is a polynomial in q−s of degree 2(g − 1) dim ρ.
Lemma 1 then follows from formula (4.16).

4.10. Decomposition of the trace formula. The goal of the program outlined
in [FLN] (see also [L2, L4, L5]) is to use the trace formula to prove the existence of
the functoriality transfers corresponding to the homomorphisms φ given by formula
(4.4) in Section 4.3. The basic idea is to apply the trace formula to the operators
Kd,ρ and use Lemma 1. Here is a more precise description.

As the first step, we need to remove from the trace formula the contributions
of the non-tempered representations (those correspond to the transfer associated
to the homomorphisms φ whose restriction to SL2 is non-trivial), because these
terms dominate the trace formula (see the calculation below). Then we want to use
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Lemma 1 to isolate in the trace of Kd,ρ with d > (2g − 2) dim ρ the terms corre-
sponding to the automorphic representations of G(AF ) that come by functoriality
from the groups H satisfying the (G, ρ) property.

Recall from Section 4.3 that to each Arthur parameter σ we attach the group
λH = λHσ which is the Zariski closure of the image of W (F ) in λGσ under σ.
According to Lemma 1 and Corollary 2, for large enough d the operator Kd,ρ acts
non-trivially only on those automorphic representations of G(AF ) which correspond
to σ such that ρ ◦ σ has non-zero invariants. This happens if and only if the
restriction of ρ to λHσ has non-zero invariants; in other words, if and only if λH
satisfies property (G, ρ).

Thus, assuming that Arthur’s conjectures are true, we obtain that the trace of
Kd,ρ decomposes as a double sum: first, over different homomorphisms

ϕ : SL2 → LG,

and second, for a given ϕ, over the subgroups λH of the centralizer λGϕ of ϕ having
non-zero invariants in ρ,

(4.23) TrKd,ρ =
∑
ϕ

∑
λH⊂λGϕ

Φϕ,λH .

Here Φϕ,λH is the trace over the automorphic representations of G(AF ) which come
from the transfer of tempered (hadronic) representations of H(AF ) with respect to
homomorphisms φ, given by (4.4), such that φ|SL2 = ϕ.

A precise formula for these eigenvalues of Kd,ρ is complicated in general, but we
can compute its asymptotics as d → ∞.

Suppose first that ϕ is trivial, so we are dealing with the tempered representa-
tions. If we divide Kd,ρ by qd, then the asymptotics will be very simple:

(4.24) q−d(TrKd,ρ)temp ∼
∑

λH⊂LG

∑
σ′:W (F )→λH

Nσ

(
d+mσ(ρ)− 1
mσ(ρ)− 1

)
,

where Nσ is the multiplicity of automorphic representations in the corresponding
L-packet.

Indeed, the highest power of q comes from the highest cohomology, which in this
case is

H2d(X(d),L
(d)
ρ◦σ) = Symd(H2(X, ρ ◦ σ))

(d0 = 0, d1 = 0, and d2 = d in the notation of formula (4.21)). We have

dimH2(X, ρ ◦ σ) = mσ(ρ),

the multiplicity of the trivial representation in ρ ◦ σ (we are assuming here again
that this trivial representation splits off as a direct summand in ρ ◦ σ), and

(4.25) dimSymd(H2(X,Lρ◦σ)) =

(
d+mσ(ρ)− 1
mσ(ρ)− 1

)
.

Thus, as a function of qd, the eigenvalues of q−dKd,ρ on the tempered represen-
tations grow as O(1) when d → ∞.

For the non-tempered representations corresponding to non-trivial ϕ : SL2 → LG,
they grow as a higher power of qd. For instance, the eigenvalue of q−dKd,ρ corre-
sponding to the trivial representation of G(AF ) (for which ϕ is a principal embed-
ding) grows as O(qd(ρ,μ)), where μ is the highest weight of ρ (see the calculation
in Section 5.2 below). In general, it grows as O(qda), where 2a is the maximal



LANGLANDS PROGRAM, TRACE FORMULAS, AND THEIR GEOMETRIZATION 31

possible highest weight of the image of SL2 ⊂ LG under ϕ acting on ρ. Thus, we
see that the asymptotics of the non-tempered representations dominates that of
tempered representations. This is why we wish to remove the contribution of the
non-tempered representations first.

Note that if ϕ is non-trivial, then the rank of λGϕ is less than that of LG. As
explained in [FLN], we would like to use induction on the rank of LG to isolate and
get rid of the terms in (4.23) with non-trivial ϕ. In [FLN] it was shown how to
isolate the contribution of the trivial representation of G(AF ) for which ϕ is the
principal embedding (it is, along with all other one-dimensional representations of
G(AF ), the most non-tempered).

If we can do the same with other non-tempered contributions, then we will be
left with the terms Φtriv,λH in (4.23) corresponding to the tempered representations
of G(AF ). Denote their sum by (TrKd,ρ)temp. We try to decompose it as a sum
over λH:

(4.26) (TrKd,ρ)temp =
∑

λH⊂LG

(TrKH
d,ρH

)temp.

Here the sum should be over all possible λH ⊂ LG such that λH has non-zero
invariant vectors in ρ, and KH

d,ρH
is the operator corresponding to ρH = ρ|λH for

the group H(AF ) (note that different groups H may correspond to the same λH).
The ultimate goal is to prove formula (4.26) by comparing the orbital sides of

the trace formula for the operators Kd,ρ and KH
d,ρH

. Of course, for any given ρ, the

right-hand side of formula (4.26) will contain contributions from different groups
H. However, because we have two parameters, ρ and d (sufficiently large), we
expect to be able to separate the contributions of different groups by taking linear
combinations of these formulas with different ρ and d. In the case of G = GL2, this
is explained in [L2].

There are many subtleties involved in formulas (4.23) and (4.26). As we men-
tioned above, λH may not be itself a Langlands dual group, but it can be enlarged
to one. There may exist more than one conjugacy class of λH assigned to a given
automorphic representation; this is expected to be related to the multiplicities of
automorphic representations. Also, comparisons of trace formulas should always
be understood as comparisons of their stabilized versions. Therefore the traces in
(4.26) should be replaced by the corresponding stable traces

The upshot is that we want to establish formula (4.26) by proving identities
between the corresponding orbital integrals. In the case of G = SL2 the first steps
have been made in [L4], to which we refer the reader for more details.

One powerful tool that we hope to employ is the geometrization of these orbital
integrals. We discuss this in the next section.

5. Geometrization of the orbital part of the trace formula

Our goal is to construct, in the case that the curve X is defined over a finite field
Fq, a vector space with a natural action of Gal(Fq/Fq) such that the trace of the
Frobenius automorphism is equal to the right-hand side of the trace formula (4.10).
We hope that this construction will help us to prove the decompositions (4.23) and
(4.26) on the orbital side of the trace formula. Another important aspect of the
construction is that this vector space will be defined in such a way that it will also
make sense if the curve X is over C. In this section we outline this construction



32 EDWARD FRENKEL

following [FN]. (We will discuss the geometrization of the spectral side of the trace
formula in Section 6.)

This section is organized as follows. In Section 5.1 we describe the geometric
analogues of the Arthur parameters. These are certain complexes of local systems
on the curve X. Then in Section 5.2 we construct the sheaf Kd,ρ such that the
corresponding function is the kernel Kd,ρ from the previous section. We define the
corresponding functorKd,ρ acting on the category of sheaves on BunG in Section 5.3.
In order to geometrize the orbital part of the trace formula, we need to restrict
Kd,ρ to the diagonal and take the cohomology. This is explained in Section 5.4.
We interpret the resulting vector space as the cohomology of a certain moduli stack
defined in Sections 5.5–5.6 which we call the moduli of G-pairs. We compare it to
the Hitchin moduli stack in Section 5.7 and define an analogue of the Hitchin map
in Section 5.8. Most of this is taken from [FN]. In Section 5.9 we discuss in detail
the example of G = GL2. Finally, we present some of the conjectures of [FN] in
Section 5.10.

5.1. Geometric Arthur parameters. First, we discuss geometric analogues of
the Arthur parameters (in the unramified case).

Let ρ be a representation of LG on a finite-dimensional vector space V . Then
we obtain a representation ρ ◦ σ of SL2 × W (F ) on V . The standard torus of
SL2 ⊂ SL2 ×W (F ) defines a Z-grading on ρ ◦ σ:

ρ ◦ σ =
⊕
i∈Z

(ρ ◦ σ)i,

where each ρ ◦ σi is a continuous representation of W (F ). Assume that each of
them is unramified. Then it gives rise to an �-adic local system L(ρ◦σ)i on X. Now
we define Lρ◦σ to be the following complex of local systems on X with the trivial
differential:

Lρ◦σ =
⊕
i∈Z

L(ρ◦σ)i [−i].

We generalize the notion of Hecke eigensheaf by allowing its eigenvalue to be an
Arthur parameter σ, as in (4.2), by saying that we have a collection of isomorphisms

(5.1) Hρ(F) 
 Lρ◦σ � F,

for ρ ∈ Rep LG, compatible with respect to the structures of tensor categories on
both sides.

As an example, consider the constant sheaf on BunG, F0 = Q�|BunG. This is the
geometric analogue of the trivial representation of G(AF . Assume that G is split,
and let ρ = ρμ ⊗ ρ0, where ρμ is the irreducible representation of highest weight
μ, ρ0 is the trivial representation of Γ. In this case Kρ = Kμ is the intersection
cohomology complex of Hμ shifted by − dim(X × BunG).

Let us apply the Hecke functor Hμ,x to F0. For any G-principal bundle E, the
fiber of p−1(E) ∩Hx is isomorphic to Grx, once we have chosen a trivialization of
E on the formal disc Dx. Thus the fiber of Hρ,x(F0) at E is isomorphic to

Hρ,x(F)E = H•(Grμ, IC(Grμ)).

This isomorphism does not depend on the choice of the trivialization of E on Dx,
so we obtain that

Hρ,x(F0) 
 H•(Grμ, IC(Grμ))⊗ F0.
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By the geometric Satake correspondence [MV],

H•(Grμ, IC(Grμ)) 
 ρgrμ ,

a complex of vector spaces, which is isomorphic to the representation ρμ with the
cohomological grading corresponding to the principal grading on ρμ. One can show
that as we vary x, the eigenvalue of the Hecke functor Hρ is the complex ρgrμ ⊗L0,
where L0 is the trivial local system on X. In other words, it is the local system
Lρ◦σ0

as defined above, where σ0 : W (F ) × SL2 → LG is trivial on W (F ) and is
the principal embedding on SL2. We conclude that the constant sheaf on BunG is
a Hecke eigensheaf with the eigenvalue σ0. This is in agreement with the fact that
σ0 is the Arthur parameter of the trivial automorphic representation of G(AF ).

For example, if ρμ is the defining representation of GLn, then the correspond-
ing Schubert variety is Pn−1, and we obtain its cohomology shifted by (n − 1)/2,
because the intersection cohomology sheaf IC(Grμ) is the constant sheaf placed in
cohomological degree −(n− 1), that is

H•(Grμ, IC(Grμ)) = θ(n−1)/2 ⊕ θ(n−3)/2 ⊕ · · · ⊕ θ−(n−1)/2,

where θ1/2 = Q�[−1](−1/2). This agrees with the fact that the principal grading
takes values (n− 1)/2, . . . ,−(n− 1)/2 on the defining representation of GLn, and
each of the corresponding homogeneous components is one dimensional.

5.2. The sheaf Kd,ρ. Next, we define a geometric analogue of the operator Kd,ρ.
Recall that Kd,ρ is defined as the integral operator with the kernel Kd,ρ given by
formula (4.11). It is a function on the set of Fq-points of the moduli stack BunG
of G-bundles on X. Hence, according to the Grothendieck philosophy, we need to
replace Kd,ρ by an �-adic sheaf Kd,ρ on BunG ×BunG, whose trace of Frobenius
function is Kd,ρ. We then define Kd,ρ as the corresponding integral transform
functor acting on the derived category of �-adic sheaves on BunG. The construction
of this sheaf will work also if X is defined over C, in which case Kd,ρ will be a functor
on the derived category of D-modules on BunG.

Since Kd,ρ is built from the kernels Kρ(n),x of the Hecke operators according to
formula (4.11), we need to perform the same construction with the sheaves Kρ(n),x

defined in Section 3.4, which are the geometric counterparts of the Kρ(n),x.
Introduce the algebraic stack Hd over the field k (which is either a finite field or

C) that classifies the data

(5.2) (D,E,E′, φ),

where

(5.3) D =

r∑
i=1

ni[xi]

is an effective divisor on our curve X of degree d (equivalently, a point of X(d)), E
and E′ are two principal G-bundles on X, and φ is an isomorphism between them
over X − supp(D).

Let Hd,μ be the closed substack of Hd that classifies the quadruples (5.2) as
above, satisfying the condition invxi

(E,E′) ≤ niμ.
Consider the morphism

Hd,μ → X(d) × BunG
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sending the quadruple (5.2) to (D,E). Its fiber over a fixed D =
∑

i ni[xi] and
E ∈ BunG is isomorphic to the product

(5.4)

r∏
i=1

Gr[niμi].

Our sheaf Kd,ρ on Hd,μ will have the property that its restriction to these fibers
are isomorphic to

(5.5) �d
i=1 ICρ(ni) ,

where Gr[niμi] is the perverse sheaf on Gr[niμi] corresponding to the representation

ρ(ni) (the ni-th symmetric power of ρ) under the geometric Satake.
The precise definition of Kd,ρ is given in [FN], and here we give a less formal,

but more conceptual, construction.
We will use the following result from the Appendix of [FGV2] that generalizes

the geometric Satake correspondence to the case of moving points.

For any partition d = (d1, . . . , dk) of d, consider the open subset
◦
Xd of X(d1) ×

· · · × X(dk) consisting of k–tuples of divisors (D1, . . . , Dk), such that suppDi ∩
suppDj = ∅, if i �= j. Denote the map

◦
Xd → X(d) by pd. We introduce an abelian

category Ad as follows. The objects of Ad are perverse sheaves F on X(d) equipped
with a LG-action, together with the following extra structure: for each partition
d, the sheaf p∗d(F) should carry an action of k copies of LG, compatible with the
original LG-action on F with respect to the diagonal embedding LG → (LG)×k. For
different partitions, these actions should be compatible in the obvious sense. In
addition, it is required that whenever di = dj , i �= j, the action of the ith and jth
copies of LG on p∗d(F) should be intertwined by the corresponding natural Z2-action

on
◦
Xd.
The claim of [FGV2] is that the category Ad is equivalent to a certain category of

perverse sheaves on Hd. For instance, if d = 1, then the constant sheaf on X(1) = X
with the stalk ρ = ρμ, a finite-dimensional representation of LG, goes to a perverse
sheaf on H1, whose restriction to each fiber of the projection H1 → X × BunG
(which is isomorphic to Gr) is the perverse sheaf ICμ.

More generally, for each representation ρ of LG we have an object ρ(d) of the

category Ad defined as follows:

ρ(d) =
(
πd
∗(ρ

�d)
)Sd

,

where ρ is the constant sheaf on X with the stalk ρ, πd : Xd → X(d) is the natural
projection, and Sd is the symmetric group on d letters. It is easy to see that
it carries the structures from the above definition. Moreover, it is an irreducible
object of the category Ad if ρ is irreducible. Note that the stalk of ρ(d) at the

divisor D ⊂ X(d) is the tensor product⊗
i

ρ(ni),

where ρ(n) denotes the nth symmetric power of ρ.
Now, define the sheaf Kd,μ as the irreducible perverse sheaf on Hd corresponding

to ρ(d). Then its restriction to the fiber at (D,M) ∈ X(d) × BunG for general D



LANGLANDS PROGRAM, TRACE FORMULAS, AND THEIR GEOMETRIZATION 35

is given by formula (5.5), and so the trace of Frobenius function corresponding to
Kd,μ is the function Kd,μ given by formula (4.11).

Note that the highest weights of the irreducible representations in the decompo-

sition of ρ(n) are less than or equal to nμ, and so the sheaf IC(n)
μ is supported in

Grnμ. Therefore Kd,μ is supported on the closed substack Hd,μ introduced above.

5.3. The functor Kd,ρ. We now have a morphism

Hd → X(d) × BunG ×BunG

and a perverse sheaf Kd,ρ on Hd attached to any finite-dimensional representation
ρ of LG. Let us denote by pd and p′d the two projections Hd → BunG mapping the
quadruple (5.2) to E and E′. We use the sheaf Kd,ρ to define an integral transform
functor Kd,ρ on the derived category D(BunG) of �-adic sheaves on BunG by the
formula

(5.6) Kd,ρ(F) = pd!(p
′
d
∗(F)⊗Kd,ρ).

Now we compute the eigenvalues of the functors Kd,ρ on Fσ. The following
result, which is the geometrization of formulas (4.14) and (4.19) for the eigenvalues
of Kd,ρ on fσ, is [FLN, Lemma 2.6].

Lemma 3. If F = Fσ is a Hecke eigensheaf with eigenvalue σ, then for every
representation ρ of LG and every positive integer d we have

(5.7) Kd,ρ(Fσ) = H•(X(d),L
(d)
ρ◦σ)⊗ Fσ.

Taking the trace of the Frobenius on the right-hand side of formula (5.7), we
obtain the eigenvalues of Kd,ρ on the Hecke eigenfunctions fσ corresponding to
both tempered and non-tempered automorphic representations.

As an example, we compute the action of Kd,ρ on the constant sheaf on BunG:

Kd,ρμ
(Q�) 
 H•(X(d),L

(d)
ρμ◦σ0)⊗Q�,

where ρμ ◦ σ0 is the complex described in Section 5.1.
At the level of functions, we are multiplying the constant function on BunG(Fq)

(corresponding to the trivial representation of G(AF )) by

(5.8) Tr(Fr, H•(X(d),L
(d)
ρμ◦σ0)) =

∏
i∈P (ρμ)

ζ(s− i)dim ρμ,i ,

where P (ρμ) is the set of possible values of the principal grading on ρμ and ρμ,i is
the corresponding subspace of ρμ.

For example, if ρμ is the defining representation of GLn, then formula (5.8) reads

(5.9)

n−1∏
k=0

ζ(s+ k − (n− 1)/2).

5.4. Geometrization of the orbital side. Now we are ready to construct a
geometrization of the orbital side of the trace formula.

Let us form the Cartesian square

(5.10)

Md
ΔH−−−−→ Hd⏐⏐
pΔ

⏐⏐
p

BunG
Δ−−−−→ BunG ×BunG,
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where Δ is the diagonal morphism. Thus, Md is the fiber product of X(d) ×BunG
and Hd with respect to the two morphisms to X(d) × BunG ×BunG.

Let K = Kd,ρ be a sheaf introduced in Section 5.2 and K = Kd,ρ the correspond-
ing functor on the derived category D(BunG) of sheaves on BunG. The following
discussion is applicable to more general functors that are compositions of Kd,ρ and
Hecke functors Hρi,xi

at finitely many points xi ∈ |X| and their kernels (see [FN]).
Let

K = p∗(K)

(note that p is proper over the support of K). This is a sheaf on BunG ×BunG
which is the kernel of the functor K. Let K be the corresponding function on
BunG(k)× BunG(k).

Recall that

BunG(k) = G(F )\G(AF )/G(OF ).

The right-hand side of (1.1) may be rewritten as

(5.11)
∑

P∈BunG(k)

1

|Aut(V )|K(P, P ).

Using the Lefschetz formula for algebraic stacks developed by K. Behrend [Be]
(see also [BeDh]), we find that, formally, the alternating sum of the traces of the
arithmetic Frobenius on the graded vector space

(5.12) H•(BunG,Δ
!(K)) = H•(BunG,Δ

!p∗(K))

is equal (up to a power of q) to the sum (5.11). Therefore the vector space

H•(BunG,Δ
!p∗(K)) is a geometrization of the orbital (right-hand) side of the trace

formula (1.1).
By base change,

(5.13) H•(BunG,Δ
!p∗(K)) = H•(BunG,pΔ∗Δ

!
H(K)) = H•(Md,Δ

!
H(K)).

We will use the space

(5.14) H•(Md,Δ
!
H(K))

as the geometrization of the orbital side.
Here is another way to express it: Let D be the Verdier duality on Hd,μ. It

follows from the construction and the fact that D(IC(Hμ)) 
 IC(Hμ) that

(5.15) D(Kd,ρ) 
 Kd,ρ[2(d+ dimBunG)](d+ dimBunG).

Therefore, up to a shift and Tate twist, the last space in (5.13) is isomorphic to

(5.16) H•(Md,D(Δ
∗
H(K))) 
 H•

c (Md,Δ
∗
H(K))∗,

where H•
c (Z,F) is understood as f!(F), where f : Z → pt. Here we use the results

of Y. Laszlo and M. Olsson [LO] on the six operations on �-adic sheaves on algebraic
stacks and formula (5.15).

If X is a curve over C, then the vector space (5.14) still makes sense if we
consider K as an object of either the derived category of constructible sheaves or
of D-modules on BunG.
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5.5. The moduli stack of G-pairs. We now give a description of the stack Md

that is reminiscent and closely related to the Hitchin moduli stack of Higgs bundles
on the curve X [H1]. We will also conjecture that Δ!

H(Kd,ρ) is a pure perverse
sheaf on Md.

Recall that the sheaf Kd,ρ is supported on the substack Hd,μ of H. Let Md,μ be

the fiber product of X(d) × BunG and Hd,μ with respect to the two morphisms to

X(d) × BunG ×BunG. In other words, we replace Hd by Hd,μ in the upper-right
corner of the diagram (5.10). The sheaf Δ!

H(Kd,ρ) is supported on Md,μ ⊂ Md,
and hence the vector space (5.14) is equal to

(5.17) H•(Md,μ,Δ
!
H(Kd,ρ)).

In this section we show, following closely [FN], that the stack Md,μ has a different
interpretation as a moduli stack of objects that are closely related to Higgs bundles.
More precisely, we will have to define “group-like” versions of Higgs bundles (we call
them G-pairs). The moduli spaces of (stable) Higgs bundles has been introduced by
Hitchin [H1] (in characteristic 0) and the corresponding stack (in characteristic p)
has been used in [N2] in the proof of the fundamental lemma. In addition, there is
an analogue Ad,μ of the Hitchin base and a morphism hd,μ : Md,μ → Ad,μ analogous
to the Hitchin map. We hope that this Higgs bundle-like realization of Md,μ and
the morphism hd,μ can be used to derive the decompositions (4.23) and (4.26). In
the next few sections we discuss this in more detail.

5.6. Definition of the moduli stack. Let us assume that G is split over X and
μ is a fixed dominant coweight. The groupoid Md,μ(k) classifies the triples

(D,E, ϕ),

where D =
∑

i ni[xi] ∈ X(d) is an effective divisor of degree d, E is a principal
G-bundle on a curve X, and ϕ is a section of the adjoint group bundle

Ad(E) = E ×
G
G

(with G acting on the right G by the adjoint action) on X− supp(D), which satisfies
the local conditions

(5.18) invxi
(ϕ) ≤ niμ

at D. Since we have defined Hd,μ as the image of Hd
μ in Hd, it is not immediately

clear how to make sense of these local conditions over an arbitrary base (instead of
Spec(k)). There is in fact a functorial description of Hd,μ and of Md,μ that we will
now explain.

We will assume that G is semi-simple and simply-connected. The general case is
not much more difficult. Let ω1, . . . , ωr denote the fundamental weights of G and

ρωi
: G → GL(Vωi

)

the Weyl modules of highest weight ωi. Using the natural action of G on End(Vωi
),

we can attach to any G-principal bundle E on X the vector bundle

(5.19) Endωi
(E) = E ×

G
End(Vωi

).

The section ϕ of Ad(E) on X− supp(D) induces a section Endωi
(ϕ) of the vector

bundle Endωi
(E) on X− supp(D). The local conditions (5.18) are equivalent to the
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property that for all i, Endωi
(ϕ) may be extended to a section

ϕi ∈ Endωi
(E)⊗OX

OX(〈μ, ωi〉D).

Though the ϕi determine ϕ, we will keep ϕ in the notation for convenience.
Thus, we obtain a provisional functorial description of Md,μ as the stack classi-

fying the data

(5.20) (D,E, ϕ, ϕi)

with D ∈ X(d), E ∈ BunG, ϕ is a section of Ad(E) on X− supp(D), and ϕi are
sections of Endωi

(E)⊗OX
OX(〈μ, ωi〉D) over X such that

ϕi|X− supp(D) = Endωi
(ϕ).

Sometimes it will be more convenient to package the data (ϕ, ϕi) as a single
object ϕ̃ which has values in the closure of

(tiρωi
(g))ri=1 ⊂

r∏
i=1

End(Vωi
).

where g ∈ G and t1, . . . , tr ∈ Gm are invertible scalars. This way Vinberg’s semi-
group [Vi] makes its appearance naturally in the description of Md,μ.

5.7. Comparison with the Hitchin moduli stack. It is instructive to note
that the stack Md,μ is very similar to the moduli stacks of Higgs bundles (defined
originally by Hitchin [H1] and considered, in particular, in [N1, N2]). The latter
stack—we will denote it by ND—also depends on the choice of an effective divisor

D =
∑
i

ni[xi]

on X and classifies pairs (E, φ), where E is again a G-principal bundle on X and
φ is a section of the adjoint vector bundle

ad(E) = E ×
G
g

(here g = Lie(G)) defined on X− supp(D), which is allowed to have a pole of order
at most ni at xi. In other words,

φ ∈ H0(X, ad(E)⊗ OX(D)).

This φ is usually referred to as a Higgs field.
In both cases, we have a section which is regular almost everywhere, but at some

(fixed, for now) points of the curve these sections are allowed to have singularities
which are controlled by a divisor. In the first case we have a section ϕ of adjoint
group bundle Ad(E), and the divisor is D · μ, considered as an effective divisor
with values in the lattice of integral weights of LG. In the second case we have
a section φ of the adjoint Lie algebra bundle ad(E), and the divisor is just the
ordinary effective divisor.

An important tool in the study of the moduli stack ND is the Hitchin map [H2]
from ND to an affine space

AD 

⊕
i

H0(X,OX((mi + 1)D),

where the mi’s are the exponents of G. It is obtained by, roughly speaking, picking
the coefficients of the characteristic polynomial of the Higgs field φ (this is exactly
so in the case of GLn. but one constructs an obvious analogue of this morphism
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for a general reductive group G, using invariant polynomials on its Lie algebra). A
point a ∈ AE then records a stable conjugacy class in g(F ), where F is the function
field, and the number of points in the fiber over a is related to the corresponding
orbital integrals in the Lie algebra setting (see [N1, N2]).

More precisely, AD is the space of section of the bundle

t/W ×
Gm

OX(D)×

obtained by twisting t/W = Spec(k[t]W ), equipped with the Gm-action inherited
from t, by the Gm-torsor OX(D)× on X attached to the line bundle OX(D). Re-
call that k[t/W ] is a polynomial algebra with homogeneous generators of degrees
d1 + 1, . . . , dr + 1.

5.8. Analogue of the Hitchin map for G-pairs. In our present setting, we will
have to replace t/W by T/W . Recall that we are under the assumption that G is
semi-simple and simply connected. First, recall the isomorphism of algebras

k[G]G = k[T ]W = k[T/W ].

It then follows from [Bou, Th. VI.3.1 and Ex. 1] that k[G]G is a polynomial algebra
generated by the functions

g �→ tr(ρωi
(g)),

where ω1, . . . , ωr are the fundamental weights of G.
For a fixed divisor D, the analogue of the Hitchin map for Md,μ(D) (the fiber of

Md,μ over D) is the following map:

(5.21) Md,μ(D) →
r⊕

i=1

H0(X,OX(〈μ, ωi〉D))

defined by attaching to (D,E, ϕ, ϕi) the collection of traces

tr(ϕi) ∈ H0(X,OX(〈μ, ωi〉D)).

By letting D vary in X(d), we obtain a fibration

hd,μ : Md,μ → Ad,μ

where Ad,μ is a vector bundle over X(d) with the fiber
⊕r

i=1 H
0(X,OX(〈μ, ωi〉D))

over an effective divisor D ∈ X(d).
The morphism hd,μ : Md,μ → Ad,μ is very similar to the Hitchin fibration.
Recall that according to Section 5.4, the cohomology of Md,μ with coefficients in

Δ!(Kd,ρ) is a geometrization of the orbital side of the trace formula (1.1). This side
of the trace formula may be written as a sum (4.9) of orbital integrals. To obtain
a geometrization of an individual orbital integral appearing in this sum, we need to
take the cohomology of the restriction of Δ!(Kd,ρ) to the corresponding fiber of the
map hd,μ (see [FN, Section 4.3]). Thus, the picture is very similar to that described
in [N2] in the Lie algebra case.

In [FLN] we considered the trace formula in the general ramified setting. As in
the above discussion, we obtained a useful interpretation of the stable conjugacy
classes in G(F ) as F -points of the Hitchin base described above (in [FLN] we called
it the Steinberg–Hitchin base). In particular, if the group G is simply connected,
this base has the structure of a vector space over F . The orbital side of the trace
formula may therefore be written as the sum over points of this vector space, and we
can apply the Poisson summation formula to it (actually, in order to do this we need
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to overcome several technical problems). We used this to isolate the contribution
of the trivial representation to the trace formula, which appears as the contribution
of the point 0 in the dual sum (see [FLN]). The question now is how to separate
the contributions of other non-tempered automorphic representations of G(AF ).

5.9. Example of GL2. Let us specialize now to the case when G = GL2 and
μ = (2, 0). Here we need to make one adjustment of the general setup; namely,
instead of

GL2(F )\GL2(AF /GL2(OF ),

which is a union of infinitely many components (hence non-compact), we will con-
sider a compact quotient

GL2(F )aZ\GL2(A)/GL2(O),

where a is an element in the center Z(AF ). We choose as a the element equal to
1 at all x ∈ X, except for a fixed point that we denote by ∞. We set a equal to a
uniformizer t∞ at ∞. Thus, we do not allow ramification at ∞, but rather restrict
ourselves to automorphic representations on which this a acts trivially, in order to
make sure that our integrals converge.

Since we now identify the rank-two bundle M with M(k[∞]) for all k ∈ Z, which
is an operation shifting the degree of the bundle by an even integer 2k, this stack has
two connected components, corresponding to the degree of the bundle M modulo
2.

We denote them by H
Δ,0
d,μ,∞ and H

Δ,1
d,μ,∞. Let us focus on the first one and set

μ = (2, 0) (so that ρ is the symmetric square of the defining vector representation).

This HΔ,0
d,(2,0),∞ is the moduli stack of the following data:

(D,M, s : M ↪→ M(d[∞])),

where D is an effective divisor on X of degree d,

(5.22) D =

�∑
i=1

ni[xi],

M is a rank-two vector bundle on X of degree 0, and s is an injective map such
that

M(d[∞])/s(M) 

⊕
i

Txi
,

where the Txi
are torsion sheaves supported at xi. For instance, if all points in D

have multiplicity 1, that is, ni = 1 for all i, then Txi
= O2xi

or Oxi
⊕ Oxi

. But if
ni > 1, then it splits in one of the following ways:

Txi
= Okixi

⊕ O(2ni−ki)xi
, ki = 0, . . . , ni

(these correspond to the strata in the affine Grassmannian which lie in the closure
of Grniμ).

What are the allowed values of b1, b2? By construction, b2 is a section of
OX(2d[∞]), whose divisor of zeros is 2D.

Lemma 4. Any such section b2 of OX(2d[∞]) has the form b2 = η2, where η is
a non-zero section of L ⊗ OX(d[∞]), where L is a square root of the trivial line
bundle (that is, L⊗2 
 OX) having the divisor of zeros equal to D.
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Proof. Consider the equation y2 = b2, where y is a section of OX(d[∞]). We
interpret the solution as a curve in the total space of the line bundle OX(d[∞]) over
X, which is a ramified double cover C of X, with the divisor of ramification equal
to D (indeed, away from the points of D the value of b2 is non-zero, hence there
are two solutions for y, but at the points of D we have b2 = 0, so there is only
one solution y = 0). Moreover, near each point xi in D (see formula (5.22)) this
curve C is given by the equation y2 = t2ni , and hence has two branches. Thus, the

normalization of C is an unramified double cover C̃ of X. It gives rise to a square
root L of OX .4

Clearly, the pull-back of L to C̃ is canonically trivialized. Therefore a section of
L⊗ OX(d[∞]) over X is the same thing as a section of the pull-back of OX(d[∞])

to C̃ which is anti-invariant under the natural involution τ : C̃ → C̃. But y gives

us just such a section (indeed, it assigns to each point c of C̃ a vector in the fiber of
OX(d[∞]) over the image of c in X—namely, the image of c in C, which is viewed

as a point in the total space of OX(d[∞]); if there are two points c1, c2 in C̃ lying
over the same point of X, then these vectors are obviously opposite to each other).
Hence we obtain a section η of L⊗ OX(d[∞]) over X. It follows that η2 = b2. �

For each square root L of the trivial line bundle on X, consider the map

H0(X,L⊗ OX(d[∞]))× → H0(X,O(2d[∞]))

sending

η �→ η2.

Denote the image by BL. It is isomorphic to the quotient of H0(X,L⊗OX(d[∞]))×

by the involution acting as η �→ −η.
We conclude that b2 could be any point in⊔

L

BL ⊂ H0(X,O(2d[∞])).

Thus, we have described the possible values of b2, which is the determinant of γ.
This is a subset in a vector space, which has components labeled by L, which we
view as points of order two in Jac(Fq). We denote the set of such points by Jac2
and its subset corresponding to non-trivial L by Jac×2 .

What about b1, which is the trace of γ? It is easy to see that b1 may take an

arbitrary value in H0(X,OX(d[∞])). Thus, we find that the image of HΔ,0
d,(2,0),∞ in

H0(X,OX(d[∞]))⊕H0(X,OX(2d[∞]))

under the map

γ �→ (tr γ, det γ) = (b1, b2)

is equal to

(5.23) H0(X,OX(d[∞]))×
( ⊔

L∈Jac2

BL

)
.

In other words, any γ that has trace and determinant of this form corresponds to

a point of HΔ,0
d,(2,0),∞.

4Namely, we interpret ˜C as a principal Z2 = {±1}-bundle over X, and take the line bundle
associated to the non-trivial one-dimensional representation of Z2.
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What does the fiber Fb1,b2 look like? Using the theory of Hitchin fibrations, we
describe it as follows: consider the characteristic polynomial of γ:

(5.24) z2 − b1z + b2 = 0.

This equation defines a curve X̃b1,b2 in the total space of the line bundle OX(d[∞])
overX, which is called the spectral curve associated to b1, b2. If this curve is smooth,

then the fiber Fb1,b2 is just the Jacobian of X̃b1,b2 . What is the rank-two bundle M

corresponding to a point of the Jacobian of X̃b1,b2? This point is a line bundle on

X̃b1,b2 . Take its push-forward to X. This is our M. It comes equipped with a map
s : M → M(d[∞]) whose trace and determinant are b1 and b2, respectively. The
claim is that any point in Fb1,b2 may be obtained this way, as a push-forward of a

line bundle on X̃b1,b2 .

If X̃b1,b2 is singular, then Fb1,b2 is the compactification of the Jacobian of X̃b1,b2

known as the moduli space of torsion sheaves on X̃b1,b2 of generic rank one. It

contains the Jacobian of X̃b1,b2 as an open dense subset.

5.10. General case. In [FN], we outlined the geometric properties of the Hitchin
fibration (used in [N2] to prove the fundamental lemma) that can be carried over
to our new situation.

Our goal is to understand the cohomology (5.17). According to formula (5.15),
up to a shift and Tate twist, it is isomorphic to the dual of the cohomology with
compact support of Δ∗

H(Kd,ρ). The following conjecture seems to be necessary
to have a chance to approach this cohomology using known methods (such as the
decomposition theorem and Ngô’s theorem about push-forwards of perverse sheaves
[N2], which he used in the proof of the fundamental lemma). It probably tells
us something important about the geometric trace formula and the categorical
Langlands correspondence (the subjects discussed in Section 6), but it is not clear
to me yet what it is.

Conjecture 5 ([FN]). The restriction to the diagonal Δ∗
H(Kd,ρ) is a pure perverse

sheaf.

Assume that G is semi-simple. As in [CL], there exists a open substack Mst
d,μ

of Md,μ that is proper over Ad,μ. This open substack depends on the choice of a
stability condition. However, its cohomology should be independent of this choice.
Moreover, there exists an open subset Aani

d,μ of Ad,μ whose k̄-points are the pairs

(D, b) such that as an element of (T/W )(F ⊗k k̄), b corresponds to a regular semi-
simple and anisotropic conjugacy class in G(F ⊗k k̄). The preimage Mani

d,μ of Aani
d,μ is

contained in Mst
d,μ for all stability conditions. In particular, the morphism Mani

d,μ →
Aani

d,μ is proper.

To compute the cohomology with compact support of Δ∗
H(Kd,ρ), we consider

the sheaf (hst
d,μ)!Δ

∗
H(Kd,ρ) = (hst

d,μ)∗Δ
∗
H(Kd,ρ) on Ast

d,μ (recall that hst
d,μ is proper).

By Deligne’s purity theorem, Conjecture 5 implies that (hst
d,μ)∗Δ

∗
H(Kd,ρ) is a pure

complex. Hence, geometrically, it is isomorphic to a direct sum of shifted simple
perverse sheaves.

In [FN], Ngô and I presented some conjectures describing the structure of
(hst

d,μ)∗Δ
∗
H(Kd,ρ), both in the general case and in the specific example of G = SL2

and H a twisted torus.
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6. The geometric trace formula

In Section 5.4 we have interpreted geometrically the right-hand side of the trace
formula (1.1). Now we turn to the left-hand (spectral) side. We will follow closely
the exposition of [FN]. We begin by rewriting the spectral side as a sum over the
homomorphisms WF × SL2 → LG in Section 6.1. It is tempting to interpret this
sum using the Lefschetz fixed point formula. After explaining the difficulties in
doing so directly in Section 6.2, we try a different approach in Section 6.3. Namely,
we use the categorical Langlands correspondence of Section 3.10 to construct a
vector space that should be isomorphic to the vector space of Section 5.4 that
we proposed as the geometrization of the orbital side of the trace formula. This
gives us the sought-after geometrization of the spectral side, and we declare the
conjectural isomorphism between the two (implied by the categorical Langlands
correspondence) as the geometric trace formula. In Section 6.4 we give an heuristic
explanation why this vector space should indeed be viewed as the geometrization
of the spectral side.

6.1. The left-hand side of the trace formula. We will assume that G is
split. As we discussed in Section 4.10, the L-packets of (unramified) irreducible
automorphic representations should correspond to (unramified) homomorphisms
WF × SL2 → LG. Assuming this conjecture and ignoring for the moment the
contribution of the continuous spectrum, we may write the left-hand side of (4.7)
as

(6.1) TrK =
∑
σ

mσNσ,

where σ runs over the unramified homomorphisms WF × SL2 → LG, mσ is the
multiplicity of the irreducible automorphic representation unramified with respect
to G(OF ) in the L-packet corresponding to σ, and Nσ is the eigenvalue of the
operator K on an unramified automorphic function fσ on BunG(Fq) corresponding
to a spherical vector in the representation

K · fσ = Nσfσ.

Thus, recalling (5.11), the trace formula (4.7) becomes

(6.2)
∑

σ:WF×SL2→LG

mσNσ =
∑

P∈BunG(Fq)

1

|Aut(V )|K(P, P ).

Consider, for example, the case of K = Hρ,x, the Hecke operator corresponding
to a representation ρ of LG and x ∈ |X|. Then, according to formula (4.3),

(6.3) Nσ = Tr

(
σ

((
q
1/2
x 0

0 q
−1/2
x

)
× Frx

)
, ρ

)
.

The K are generated by the Hecke operators Hρ,x. Therefore the eigenvalue Nσ for
such an operator K is expressed in terms of the traces of σ(Frx) on representations
of LG.

6.2. Lefschetz fixed point formula interpretation. It is tempting to try to
interpret the left-hand side of (6.2) as coming from the Lefschetz trace formula for
the trace of the Frobenius on the cohomology of an �-adic sheaf on a moduli stack,
whose set of k-points is the set of σ’s. Unfortunately, such a stack does not exist if
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k is a finite field Fq (or its algebraic closure). On the other hand, if X is over C,
then there is an algebraic stack LocLG of (de Rham) LG-local systems on X, that is,
LG-bundles on X with flat connection. But in this case there is no Frobenius acting
on the cohomology whose trace would yield the desired number (the left-hand side
of (6.2)). Nevertheless, we will define a certain vector space (when X is over C),
which we will declare to be a geometrization of the left-hand side of (6.2) (we will
give an heuristic explanation for this in Section 6.4). We will then conjecture that
this space is isomorphic to (5.14)—this will be the statement of the geometric trace
formula that we propose in this paper.

Let us first consider the simplest case of the Hecke operator K = Hρ,x. In this
case the eigenvalue Nσ is given by formula (6.3), which is essentially the trace of
the Frobenius of x on the vector space which is the stalk of the local system on X
corresponding to σ and ρ. These vector spaces are fibers of a natural vector bundle
on X × LocLG (when X is defined over C).

Indeed, we have a tautological LG-bundle T on X × LocLG, whose restriction to
X × σ is the LG-bundle on X underlying σ ∈ LocLG. For a representation ρ of LG,
let Tρ be the associated vector bundle on X × LocLG. It then has a partial flat
connection along X. Further, for each point x ∈ |X|, we denote by Tx and Tρ,x the
restrictions of T and Tρ, respectively, to x× LocLG.

It is tempting to say that the geometrization of the left-hand side of (6.2) in the
case K = Hρ,x is the cohomology

H•(LocLG,Tρ,x).

However, this would only make sense if the vector bundle Tρ,x carried a flat con-
nection (i.e., a D-module structure) and this cohomology was understood as the
de Rham cohomology (which is the analogue of the étale cohomology of an �-adic
sheaf that we now wish to imitate when X is defined over C).

Unfortunately, Tρ,x does not carry any natural connection. Hence we search
for another approach. Somewhat surprisingly, it is provided by the categorical
Langlands correspondence of Section 3.7.

6.3. Geometrization of the spectral side of the trace formula. The cate-
gorical Langlands correspondence (3.10) should yield important information not
only at the level of objects, but also at the level of morphisms. In particular, if we
denote the equivalence going from left to right in the above diagram by C, then we
obtain the isomorphisms

(6.4) RHomD(LocLG)(F1,F2) 
 RHomD(BunG)(C(F1), C(F2))

and

(6.5) RHom(F1,F2) 
 RHom(C(F1), C(F2)),

where F1 and F2 are arbitrary two functors acting on the category D(LocLG). We
will use the latter to produce the geometric trace formula.

Recall also the Wilson functors Wρ,x from Section 3.7 and the compatibility
(3.12) between the Wilson and Hecke functors under C.

We now construct a functor Wd,ρ on the category of O-modules on LocLG from
the Wilson functors in the same way as we build the functor Kd,ρ from the
Hecke functors. Informally speaking, it is the integral over all effective divisors
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D =
∑

i ni[xi] ∈ X(d) of
∏

i Wρ(ni),xi
. The precise definition is given in [FN,

Section 5.3]. We have

Wd,ρ(F) = Fd,ρ ⊗ p∗2(F),

where Fd,ρ is a certain O-module on LocLG explicitly defined in terms of the tauto-
logical vector bundles Tρ(n),x, and p2 is the projection X × LocLG → LocLG.

The functor Wρ may also be written as the integral transform functor corre-
sponding to the O-module Δ∗(Fd,ρ) on LocLG ×LocLG, where Δ is the diagonal
embedding of LocLG:

F �→ q∗(q
′∗(F)⊗Δ∗(Fd,ρ))),

where q and q′ are the projections onto X×LocLG (the first factor) and LocLG (the
second factor), respectively.

Consider now the isomorphism (6.5) in the case F1 = Id and F2 = Wd,ρ. It
follows from the construction of the functors Wd,ρ and Hd,ρ and formula (3.12).
Hence (6.5) gives us an isomorphism

RHom(Id,Wd,ρ) 
 RHom(Id,Kd,ρ).

We should also have an isomorphism of the RHoms’s of the kernels defining these
functors. On the right-hand side this is the RHom

RHom(Δ!(C),Kd,ρ),

where C is the constant sheaf on BunG and Kd,ρ = p∗(Kd,ρ) (see Section 5.4) in
the derived category of D-modules on BunG ×BunG.

On the left-hand side of the categorical Langlands correspondence, the kernel cor-
responding to Wd,ρ is just Δ∗(Fd,ρ), supported on the diagonal in LocLG ×LocLG.

Thus, we find that the categorical version of the geometric Langlands correspon-
dence should yield the isomorphism,

(6.6) RHom(Δ∗(O),Δ∗(Fd,ρ)) 
 RHom(Δ!(C),Kd,ρ).

By adjunction, the right-hand side of (6.6) is isomorphic to

H•(BunG,Δ
!K) = H•(BunG,Δ

!p∗(K)) = H•(Md,Δ
!
H(Kd,ρ))

(see formula (5.13)). The last space is the vector space (5.14) that we proposed as
a geometrization of the orbital side of the trace formula!

Hence the left-hand side of (6.6) should be the sought-after geometrization of
the spectral side of the trace formula. Let us rewrite it using adjunction as follows:

RHom(Δ∗Δ∗(O),Fd,ρ).

Then we obtain the following isomorphism, which we conjecture as a geometric
trace formula.

Conjecture 6. There is an isomorphism of vector spaces,

(6.7) RHom(Δ∗Δ∗(O),Fd,ρ) 
 H•(BunG,Δ
!(Kd,ρ)).

Thus, starting with the categorical Langlands correspondence, we have arrived
at what we propose as a geometrization of the trace formula.

We have a similar conjecture for more general functors K which are compositions
of Kd,ρ and Hecke functors at finitely many points of X (see [FN]).
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6.4. Connection to the Atiyah–Bott–Lefschetz fixed point formula. In
[FN] we gave the following heuristic explanation why we should think of the space
(6.7) as a geometrization of the sum appearing on the left-hand side of (6.2).

Let F be a coherent sheaf on LocLG built from the vector bundles Tρ,x, x ∈ |X|
(like Fd,ρ constructed below). We would like to interpret taking the trace of the
Frobenius on the (coherent!) cohomology H•(LocLG,F) as the sum over points σ of
LocLG, which we think of as the fixed points of the Frobenius automorphism acting
on a moduli of homomorphisms

π1(X ⊗
k
k) → LG.

Recall the Atiyah–Bott–Lefshetz fixed point formula5 [AB] (see also [Il, §6]). Let
M be a smooth proper scheme, V a vector bundle on M , and V the coherent sheaf
of sections of V . Let u be an automorphism acting on M with isolated fixed points,
and suppose that we have an isomorphism γ : u∗(V) 
 V. Then

(6.8) Tr(γ,H•(M,V)) =
∑

p∈Mu

Tr(γ,Vp)

det(1− γ, T ∗
pM)

,

where

Mu = Γu ×
M×M

Δ

is the set of fixed points of u, the fiber product of the graph Γu of u and the diagonal
Δ in M ×M , which we assume to be transversal to each other (as always, the left-
hand side of (6.8) stands for the alternating sum of traces on the cohomologies).

Now, if we take the cohomology not of V, but of the tensor product V⊗Ω•(M),
where Ω•(M) = Λ•(T ∗(M)) is the graded space of differential forms, then the
determinants in the denominators on the right-hand side of formula (6.8) will get
canceled, and we will obtain the following formula:

(6.9) Tr(γ,H•(M,V⊗ Ω•(M))) =
∑

p∈Mu

Tr(γ,Vp).

We would like to apply formula (6.9) in our situation. However, LocLG is not
a scheme, but an algebraic stack (unless LG is a torus), so we need an analogue
of (6.9) for algebraic stacks (and more generally, for derived algebraic stacks, since
LocLG is not smooth as an ordinary stack).

Let M be as above and Δ : M ↪→ M2 the diagonal embedding. Observe that

(6.10) Δ∗Δ∗(V) 
 V⊗ Ω•(M),

and hence we can rewrite (6.9) as follows:

(6.11) Tr(γ,H•(M,Δ∗Δ∗(V))) =
∑

p∈Mu

Tr(γ,Vp).

Now we propose formula (6.11) as a conjectural generalization of the Atiyah–
Bott–Lefschetz fixed point formula to the case that M is a smooth algebraic stack,
and more generally, smooth derived algebraic stack (provided that both sides are
well defined). We may also allow here V to be a perfect complex (as in [Il]).

5It is a great pleasure to do this here, because all of them were AMS Colloquium Lecturers in
the past.
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Even more generally, we drop the assumption that u has fixed points (or that
the graph Γu of u and the diagonal Δ are transversal) and conjecture the following
general fixed point formula of Atiyah–Bott type for (derived) algebraic stacks.

Conjecture 7.

(6.12) Tr(γ,H•(M,Δ∗Δ∗(V))) = Tr(γ,H•(Mu, i∗u(V))),

where Mu=Γu ×
M×M

Δ is the fixed locus of u, in the derived sense, and iu : Mu→M .

It is possible that Conjecture 7 may be proved using the methods of [BFN, BN].6

We want to apply (6.11) to the left-hand side of (6.7), which is

RHom(Δ∗Δ∗(O),F),

where F = Fd,ρ. This is not exactly in the form of the left-hand side of (6.11), but
it is very close. Indeed, if M is a smooth scheme, then

RHom(Δ∗Δ∗(O),F) 
 F ⊗ Λ•(TM),

so we obtain the exterior algebra of the tangent bundle instead of the exterior
algebra of the cotangent bundle. In our setting, we want γ to be the Frobenius,
and so a fixed point is a homomorphism π1(X) → LG. The tangent space to σ (in
the derived sense) should then be identified with the cohomology H•(X, ad ◦σ)[1],
and the cotangent space with its dual. Hence the trace of the Frobenius on the
exterior algebra of the tangent space at σ is the L-function L(σ, ad, s) evaluated
at s = 0. Poincaré duality implies that the trace of the Frobenius on the exterior
algebra of the cotangent space at σ is

L(σ, ad, 1) = q−dGL(σ, ad, 0),

so the ratio between the traces on the exterior algebras of the tangent and cotangent
bundles at the fixed points results in an overall factor which is a power of q (which
is due to our choice of conventions).

Hence, by following this argument and switching from C to Fq, we obtain (up to
a power of q) the trace formula (6.2) from the isomorphism (6.7).

The isomorphism (6.7) is still tentative, because there are some unresolved issues
in the definition of the two sides (see [FN] for more detail). Nevertheless, we hope
that further study of (6.7) will help us to gain useful insights into the trace formula
and functoriality. I refer the reader to [FN], where in particular the abelian example
is worked out and possible applications are discussed in the general case.

7. Relative geometric trace formula

In the previous section we discussed a geometrization of the trace formula (1.1).
It appears in the framework of the categorical Langlands correspondence as the
statement that the RHom’s of kernels of certain natural functors are isomorphic.
These kernels are sheaves on algebraic stacks over the squares BunG ×BunG and
LocLG ×LocLG.

It is natural to ask what kind of statement we may obtain if we consider instead
the RHom’s of sheaves on the stacks BunG and LocLG themselves.

6After these notes were posted on the arXiv, we were informed by A. Polishchuk that our
conjecture could be proved using the methods of [P]. We thank Polishchuk for a useful discussion,
which helped us to correct an inaccuracy in formula (6.12).
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In this section we will show, following closely [FN], that this way we obtain
what may be viewed as a geometric analogue of the so-called relative trace formula.
On the spectral side of this formula we also have a sum like (6.1), but with one
important modification; namely, the eigenvalues Nσ are weighted with the factor
L(σ, ad, 1)−1. The insertion of this factor was originally suggested by Sarnak in
[S] and further studied by Venkatesh [Ve], for the group GL2 in the number field
context. The advantage of this formula is that the summation is expected to be
only over tempered representations and we remove the multiplicity factors mσ.

7.1. Relative trace formula. We recall the setup of the relative trace formula.
Let G be a split simple algebraic group over k = Fq. In order to state the relative

trace formula, we need to choose a non-degenerate character ofN(F )\N(AF ), where
N is a maximal unipotent subgroup ofG. A convenient way to define it is to consider
a twist of the group G. Let us pick a maximal torus T such that B = TN is a Borel
subgroup. If the maximal torus T admits the cocharacter ρ̌ : Gm → T equal to
half-sum of all positive roots (corresponding to B), then let K ρ̌

X be the T -bundle on

our curve X which is the pushout of the Gm-bundle K×
X (the canonical line bundle

on X without the zero section) under ρ̌. If ρ̌ is not a cocharacter of T , then its
square is, and hence this T -bundle is well defined for each choice of the square root

K
1/2
X of KX . We will make that choice once and for all.7

Now set

GK = K ρ̌
X ×

T
G, NK = K ρ̌

X ×
T
N,

where T acts via the adjoint action. For instance, if G = GLn, then GLK
n is the

group scheme of automorphism of the rank n bundle O ⊕KX ⊕ . . . ⊕K
⊗(n−1)
X on

X (rather than the trivial bundle O⊕n).
We have

(7.1) NK/[NK , NK ] = K
⊕

rank(G)
X .

Now let ψ : Fq → C× be an additive character, and define a character Ψ of NK(AF )
as follows

Ψ((ux)x∈|X|) =
∏

x∈|X|

rankG∏
i=1

ψ(Trkx/k Resx(ux,i)),

where ux,i ∈ KX(Fx) is the ith projection of ux ∈ NK(Fx) onto KX(Fx) via the
isomorphism (7.1). We denote by kx the residue field of x, which is a finite extension
of the ground field k = Fq.

By the residue formula, Ψ is trivial on the subgroup NK(F ) (this was the reason
why we introduced the twist). It is also trivial on NK(O).

In what follows, in order to simplify notation, we will denote GK and NK simply
by G and N .

Given an automorphic representation π of G(AF ), we have the Whittaker func-
tional W : π → C,

W (f) =

∫
N(F )\N(AF )

f(u)Ψ−1(u)du,

where du is the Haar measure on N(AF ) normalized so that the volume of N(OF )
is equal to 1.

7This choice is related to the ambiguity of the equivalence (3.10); see footnote 2 on page 19.
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We choose, for each unramified automorphic representation π, a non-zero G(OF )-
invariant function fπ ∈ π on G(F )\G(AF ).

Let K again be a kernel on the square of BunG(k) = G(F )\G(AF )/G(OF ) and
K the corresponding integral operator acting on unramified automorphic functions.
The simplest unramified version of the relative trace formula reads (here we restrict
the summation to cuspidal automorphic representations π)

(7.2)
∑
π

WΨ(fπ) WΨ(K · fπ)||fπ||−2

=

∫
N(F )\N(AF )

∫
N(F )\N(AF )

K(u1, u2)Ψ
−1(u1)Ψ(u2)du1du2

(see, e.g., [J]), where

||f ||2 =

∫
G(F )\G(AF )

|f(g)|2dg,

and dg denotes the invariant Haar measure normalized so that the volume of G(OF )
is equal to 1. Note that

||f ||2 = qdGL(G)||f ||2T ,
where ||f ||2T is the norm corresponding to the Tamagawa measure, dG =
(g − 1) dimG,

L(G) =
�∏

i=1

ζ(mi + 1),

where the mi are the exponents of G.
The following conjecture was communicated to us by B. Gross and A. Ichino.

In the case of G = SLn or PGLn, formula (7.3) follows from the Rankin–Selberg
convolution formulas (see [FN]). Other cases have been considered in [GP, Ic, IcIk].
For a general semi-simple groupG of adjoint type formula (7.3) has been conjectured
by A. Ichino and T. Ikeda assuming that π is square integrable. Note that if a
square-integrable representation is tempered, then it is expected to be cuspidal,
and that is why formula (7.3) is stated only for cuspidal representations.

Recall that an L-packet of automorphic representations is called generic if each
irreducible representation π =

⊗′
πx from this L-packet has the property that the

local L-packet of πx contains a generic representation (with respect to a particular
choice of non-degenerate character of N(Fx)).

Conjecture 8. Suppose that the L-packet corresponding to an unramified σ :
WF → LG is generic. Then it contains a unique, up to an isomorphism, irreducible
representation π such that WΨ(fπ) �= 0, with multiplicity mπ = 1. Moreover, if this
π is in addition cuspidal, then the following formula holds:

(7.3) |WΨ(fπ)|2||fπ||−2 = qdN−dGL(σ, ad, 1)−1|Sσ|−1,

where Sσ is the (finite) centralizer of the image of σ in LG,

dN = −(g − 1)(4〈ρ, ρ̌〉 − dimN)

(see formula (7.6)), and dG = (g − 1) dimG.
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Furthermore, we expect that if the L-packet corresponding to σ : WF×SL2 → LG
is non-generic, then

(7.4) L(σ, ad, 1)−1 = 0.

Ichino has explained to us that according to Arthur’s conjectures, square-integrable
non-tempered representations are non-generic.

Recall that we have K · fπ = Nσfπ. Therefore Conjecture 8 and formula (7.2)
give us the following:

(7.5) q−dG

∑
σ:WF→LG

Nσ · L(σ, ad, 1)−1|Sσ|−1

= q−dN

∫ ∫
K(u1, u2)Ψ

−1(u1)Ψ(u2)du1du2.

On the left-hand side we sum only over unramified σ, and only those of them
contribute for which the corresponding L-packet of automorphic representations π
is generic.

We expect that the left-hand side of formula (7.5) has the following properties:

(1) It does not include homomorphisms σ : SL2 × WF → LG which are non-
trivial on the Artur’s SL2.

(2) The multiplicity factor mσ of formula (6.2) disappears, because only one
irreducible representation from the L-packet corresponding to σ shows up
(with multiplicity one).

(3) Since Sσ is the group of automorphisms of σ, the factor |Sσ|−1 makes the
sum on the left-hand side (7.5) look like the Lefschetz fixed point formula
for stacks.

7.2. Geometric meaning: right-hand side. Now we discuss the geometric
meaning of formula (7.5), starting with the right-hand side. Let BunFT

N be the
moduli stack of B = BK bundles on X such that the corresponding T -bundle is
FT = K ρ̌

X . Note that

(7.6) dimBunFT

N = dN = −(g − 1)(4〈ρ, ρ̌〉 − dimN).

Let ev : BunFT

N → Ga be the map constructed in [FGV1].

For instance, if G = GL2, then BunFT

N classifies rank-two vector bundles V on
X which fit in the exact sequence

(7.7) 0 → K
1/2
X → V → K

−1/2
X → 0,

where K
1/2
X is a square root of KX which we have fixed. The map ev assigns to

such V its extension class in Ext(OX ,KX) = H1(X,KX) 
 Ga. For other groups
the construction is similar (see [FGV1]).

On Ga we have the Artin–Schreier sheaf Lψ associated to the additive character
ψ. We define the sheaf

Ψ̃ = ev∗(L|ψ)

on BunFT

N . Next, let p : BunFT

N → BunG be the natural morphism. Let

Ψ = p!(Ψ̃)[dN − dG]((dN − dG)/2).
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Then the right-hand side of (7.5) is equal to the trace of the Frobenius on the
vector space

(7.8) RHom(Ψ,Kd,ρ(Ψ)).

Here we use the fact that D ◦K 
 K ◦ D and D(Ψ̃) 
 ev∗(L|ψ−1)[2dN ](dN ).

7.3. Geometric meaning: left-hand side. As discussed above, we do not have
an algebraic stack parametrizing homomorphisms σ : WF → LG if our curve X is
defined over a finite field Fq. But such a stack exists when X is over C, though in
this case there is no Frobenius operator on the cohomology whose trace would yield
the desired number (the left-hand side of (7.5)). In this subsection we will define
a certain vector space (when X is over C) and conjecture that it is isomorphic to
the vector space (7.8) which is the geometrization of the right-hand side of (7.5)
(and which is well defined for X over both Fq and C). This will be our relative
geometric trace formula. In the next subsection we will show that this isomorphism
is a corollary of the categorical version of the geometric Langlands correspondence.

In order to define this vector space, we will use the coherent sheaf Fd,ρ on LocLG

introduced in Section 6.3. We propose that the geometrization of the left-hand side
of (7.5) in the case when K = Kd,ρ is the cohomology

(7.9) H•(LocLG,Fd,ρ).

The heuristic explanation for this proceeds along the lines of the explanation
given in the case of the ordinary trace formula in Section 6.4, using the Atiyah–
Bott–Lefschetz fixed point formula.8 We wish to apply it to the cohomology (7.9).
If LocLG were a smooth scheme, then we would have to multiply the number Nσ

which corresponds to the stalk of Fd,ρ at σ, by the factor

(7.10) det(1− Fr, T ∗
σ LocLG)

−1.

Recall that the tangent space to σ (in the derived sense) may be identified with the
cohomology H•(X, ad ◦σ)[1]. Using the Poincaré duality, we find that the factor
(7.10) is equal to

L(σ, ad, 1)−1.

Therefore, if we could apply the Lefschetz fixed point formula to the cohomology
(7.9) and write it as a sum over all σ : WF → LG, then the result would be the
left-hand side of (7.5) (up to a factor that is a power of q). (Note however that
since LocLG is not a scheme, but an algebraic stack, the weighting factor should
be more complicated for those σ which admit non-trivial automorphisms; see the
conjectural fixed point formula (6.12) in Section 6.4.)

This leads us to the following relative geometric trace formula (in the case of the
functor Kd,ρ).

Conjecture 9. We have the following isomorphism of vector spaces:

(7.11) H•(LocLG,Fd,ρ) 
 RHomBunG
(Ψ,Kd,ρ(Ψ)).

Now we explain how the isomorphism (7.11) fits in the framework of a categorical
version of the geometric Langlands correspondence.

8We note that applications of the Atiyah–Bott–Lefschetz fixed point formula in the context of
Galois representations have been previously considered by M. Kontsevich in [K].
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7.4. Interpretation from the point of view of the categorical Langlands
correspondence. We start by asking what is the D-module on BunG correspond-
ing to the structure sheaf O on LocLG under the categorical Langlands correspon-
dence of Section 3.7. The following answer was suggested by Drinfeld (see [VLaf]):
it is the sheaf Ψ that we have discussed above.

The rationale for this proposal is the following: We have

RHomLocLG
(O,Oσ) = C, ∀σ,

where Oσ is again the skyscraper sheaf supported at σ. Therefore, since C(Oσ) =
Fσ, we should have, according to (6.4),

RHomBunG(C(O),Fσ) = C, ∀σ.
According to the conjecture of [LafL], the sheaf Ψ has just this property:

RHomBunG(Ψ,Fσ)

is the one-dimensional vector space in cohomological degree 0 (if we use appropriate
normalization for Fσ).

This vector space should be viewed as a geometrization of the Fourier coefficient
of the automorphic function corresponding to Fσ.

This provides some justification for the assertion that9

(7.12) C(O) = Ψ.

Next, we rewrite (7.9) as

(7.13) RHomLocLG
(O,Wd,ρ(O)) .

Using the compatibility (3.12) of C with the Wilson/Hecke operators and formulas
(6.4) and (7.12), we obtain that (7.13) should be isomorphic to

(7.14) RHomBunG (Ψ,Kd,ρ(Ψ)) ,

which is the right-hand side of (7.11).
Thus, we obtain that the relative geometric trace formula (7.11) follows from the

categorical version of the geometric Langlands correspondence. We hope that this
formula may also be applied to the Functoriality Conjecture.
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oration on the papers [FLN, FN] which are reviewed in these notes.

The author also thanks Ivan Fesenko for his comments on a draft of this paper.

About the author

Edward Frenkel is professor of mathematics at University of California, Berke-
ley. He has written two books, most recently, Langlands Correspondence for Loop
Groups, and is now working on a third about the Langlands Program and Quantum
Field Theory. He was awarded the Hermann Weyl Prize in 2002. In recent years,
Frenkel turned to cinema and writing in order to convey the beauty of mathematics
to the wide audience. His book Love and Math will be published by Basic Books
in October 2013. In January 2012 he delivered the AMS Colloquium Lectures at
the Joint Mathematics Meetings in Boston. This article is based on these lectures.

9As explained in footnote 2 on page 19, C corresponds to a particular choice of K
1/2
X . Given

such a choice, C(O) should be the character sheaf Ψ associated to that K
1/2
X .



LANGLANDS PROGRAM, TRACE FORMULAS, AND THEIR GEOMETRIZATION 53

References

[AG] D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves, and the geometric
Langlands conjecture, Preprint arXiv:1201.6343.

[Art1] J. Arthur, The principle of functoriality, Bull. Amer. Math. Soc. 40 (2002) 39–53.
[Art2] J. Arthur, An Introduction to the trace formula, Clay Mathematics Proceedings 4, Amer-

ican Mathematical Society, Providence, RI, 2005.
[AB] M. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, I. Ann.

of Math. (2) 86 (1967) 374–407; and II. Ann. of Math. (2) 88 1968 451–491.
[BCDT] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves

over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001) 843–939.
[BL] A. Beauville and Y. Laszlo, Un lemme de descente, C.R. Acad. Sci. Paris, Sér. I Math.

320 (1995) 335–340.
[Be] K. Behrend, Derived l-adic categories for algebraic stacks, Mem. Amer. Math. Soc. 163

(2003), no. 774.
[BeDh] K. Behrend and A. Dhillon, Connected components of moduli stacks of torsors via Tam-

agawa numbers, Canad. J. Math. 61 (2009) 3–28.
[BFN] D. Ben-Zvi, J. Francis, and D. Nadler, Integral transforms and Drinfeld centers in derived

algebraic geometry, Preprint arXiv:0805.0157, to appear in Journal of AMS.
[BN] D. Ben-Zvi and D. Nadler, Loop spaces and connections, Preprint arXiv:1002.3636.
[BD] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke

eigensheaves, Preprint, available at www.math.uchicago.edu/∼mitya/langlands
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[N1] B.C. Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006) 399–453.
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[Ni2] Ye. Nisnevich, Espaces homogènes principaux rationnellement triviaux et arithmétique
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