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COUNTING PROBLEMS IN APOLLONIAN PACKINGS

ELENA FUCHS

ABSTRACT. An Apollonian circle packing is a classical construction which
is made by repeatedly inscribing circles into the triangular interstices in a
Descartes configuration of four mutually tangent circles. Remarkably, if the
original four circles have integer curvature, all of the circles in the packing will
have integer curvature, making the packings of interest from a number theo-
retic point of view. Many of the natural arithmetic problems have required
new and sophisticated tools to solve them. The reason for this difficulty is that
the study of Apollonian packings reduces to the study of a subgroup of GL4(Z)
that is thin in a sense that we describe in this article, and arithmetic prob-
lems involving thin groups have only recently become approachable in broad
generality. In this article, we report on what is currently known about Apollo-
nian packings in which all circles have integer curvature and how these results
are obtained. This survey is also meant to illustrate how to treat arithmetic
problems related to other thin groups.

1. INTRODUCTION

To begin our story about Apollonian circle packings, we consider four mutually
tangent circles, one of them internally tangent to the other three as in the first
picture in Figure [ The name Apollonian packing as well as the study of these
objects stems from the following ancient theorem of Apollonius of Perga, which
Apollonius discovered while searching for a straight edge and compass construction
of mutually tangent circles and lines.

Theorem 1.1 (Apollonius, circa 200 BCE). To any three mutually tangent circles
or lines there are precisely two other circles or lines that are tangent to all three.

As far as the first picture in Figure [Il goes, Theorem [[.1] implies that there is a
unique circle that can be inscribed into every interstice between the four mutually
tangent circles in the picture—these unique circles are shown in the second picture
in Figure[Il Inscribing these circles produces 12 new interstices, each of which can
again be filled with a unique circle. This process can be continued indefinitely to
get a packing of infinitely many circles which is duly called an Apollonian circle
packing (ACP). Given this procedure of constructing the packing, we say that the
original four circles in the first picture of Figure [[l are born in generation 0 of the
packing, the new circles in the second picture are born in generation 1, and so on.
Note that in Figure [Tl we also include a construction of an unbounded Apollonian
circle packing, where two of the four circles we start with are parallel lines (these
are circles of infinite radius which are tangent at infinity).
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Generation 0 Generation 1 Generation 2

Generation 0 Generation 1

FIGURE 1. Packing circles

One can study Apollonian circle packings from many different angles—various
properties of the packings are investigated in [I] and [52], as well as in a beautiful
series of articles by Graham, Lagarias, Mallows, Wilks, and Yan (see [24], [25], [26],
[27]). A good introduction to number-theoretic questions related to Apollonian
packings can be found in [45]: these questions will be the main focus of this article.
To understand how such questions arise in the context of this purely geometric con-
struction, consider the curvatures, or reciprocals of the radii, of the circles in a given
ACP. By the following theorem of Descartes, the curvatures of any four mutually
tangent circles (in an ACP in particular) satisfy a certain quadratic equation.

Theorem 1.2 (Descartes, 1643). Let a,b,c, and d denote the curvatures of four
mutually tangent circles, where a circle is taken to have negative curvature iff it is
internally tangent to the other three. Then

(1.1) Q(a,b,c,d) :=2(a®>+b* + 2 +d?) — (a+b+c+d)? =0.

We will refer to the quadratic form @ in (1) as the Descartes quadratic form,
and to the curvatures (a, b, ¢, d) of any four mutually tangent circles as a Descartes
quadruple.

In 1936, the Nobel Prize laureate in chemistry, Frederick Soddy, rediscovered
Theorem and even expressed it in the form of a poem in [49]. He deduced
from it that if any one Descartes quadruple (a,b, ¢,d) in a packing is integral—i.e.,
a,b,c,d € Z—all of the circles in the packing must in fact have integer curvature.
We call such ACPs in which all circles have integer curvature integer ACPs. A
few examples of integer Apollonian packings are illustrated in Figure the first
packing is generated by starting with circles of curvatures —1, 2,2, 3; the second is
generated by starting with circles of curvatures —11, 21, 24, 28; and the last packing
is an unbounded packing generated by starting with circles of curvature 0,0,1,1
which is the only unbounded integer ACP up to scaling (see [27] for a proof).
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There are many more examples of such packings: in fact, there are infinitely many
primitive@ integer ACPs which makes them particularly interesting from a number
theoretic point of view.

Indeed, this remarkable integrality feature gives rise to several natural questions
about integer ACPs; Graham et al. make some progress towards answering them
in [27] and pose striking conjectures, many of which are now theorems or at least
better understood (see [7], [8], [9], [13], [19], [20], [21], [22], [32], [46], etc.) In this
article we will survey how all these questions are handled and give an overview of
what is currently known. We first recall the notion of a root quadruple of an ACP
from [27] in the following theorem:

Theorem 1.3 (Graham, Lagarias, Mallows, Wilks, and Yan [27]). Define a
Descartes quadruple v = (a,b,c,d)t with a +b+ c+d > 0 to be a root quadruple
ifa<0<b<c<danda+b+c>d. Then every integer ACP has a unique root
quadruple. However, the packing may contain more than one quadruple of mutually
tangent circles that yields the root quadruple.

Essentially, a root quadruple of a packing consists of the curvatures of the four
largest circles in the packing and completely defines the ACP in question: for
example, the root quadruple of the packing in Figure Bis v = (—1,2,2,3)%. The
algorithm in [27] for finding the root quadruple of a packing is derived from a
convenient representation of the curvatures of circles in an ACP as maximum norms
of vectors in an orbit of a group A C GL4(Z) called the Apollonian group, which is
a subgroup of the orthogonal group fixing the Descartes form ) and which appears
first in work of Hirst in [29]. In fact, an orbit of A containing some Descartes
quadruple in a given packing will consist precisely of all of the Descartes quadruples
in this packing. This group will be of great importance throughout this article. We
introduce it in Section [Tl

One notable property of the Apollonian group which we discuss in more detail
in Section [[.Tis that it is a “thin” group in the following sense.

Definition 1.4. Let I" be a subgroup of GL,(Z), and let G = Zcl(T') be its Zariski
closure. We say that I is thin if T is of infinite index in G(Z). We say T is arithmetic
if it is not thin.

This thinness property makes the study of integer ACPs quite intricate. To
give a flavor of why this is, consider the contrast between thin and arithmetic
subgroups I' of SLs(Z). One basic tool in problems connected to arithmetic T' (say,
counting primes in orbits of such subgroups) is the theory of modular forms, or more
generally for arithmetic subgroups of GL,,(Z) the theory of automorphic forms and
L-functions. Indeed, several long-standing problems in analytic number theory
have been reduced to finding good estimates for Fourier coefficients of automorphic
forms. An important aspect of studying these forms which also plays a role in
the thin case is understanding the spectral theory of the Laplace operator A on
L?(T'\H). For example, it is known that the smallest eigenvalue in the spectrum
for finite index subgroups of SLy(Z) is A\g = 0, corresponding to the constant
eigenfunction. In the special case where T is a congruence subgroup of SLy(Z),
Selberg’s eigenvalue conjecture states that there are no eigenvalues 0 < \; < 1/4.

1Primitive integer ACPs are those in which the curvatures in the packing share no common
factor greater than 1. It is natural to study only primitive integer packings, as a non-primitive
ACP is simply a scaling by an integer factor of a primitive one.
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FIGURE 2. Apollonian packings with root quadruples (—1, 2,2, 3)?,
(—11,21,24,28)!, and (0,0,1,1)".

Selberg himself showed that A\; > 3/16, and there have been various subsequent
improvements towards 1/4. There are analogs of this conjecture in the context of
more general groups as well.

However, the study of automorphic forms has traditionally focused on forms
associated to arithmetic groups. In the case that I' is an infinite index subgroup of
SLo(Z) that is Zariski-dense in SLs much less is known: for example, it is no longer
true that the smallest eigenvalue is 0—in fact, the constant function is no longer
square-integrable in this situation!

Unlike the theory of arithmetic groups, until recently there have been few tech-
niques to handle thin groups; however this has changed. Moreover, thin groups
arise naturally whenever the group is given in terms of a finite generating set (see
[]). Furthermore, it is known that all but finitely many discrete groups of motion
of hyperbolic n-space generated by reflections in hyperplanes are thin; in fact, all
such groups in dimension n > 300 are thin. These results, as well as other similar
results due to Vinberg and Prokhorov, can be found in Nikulin’s ICM article [41].

To come back to integer ACPs, the thin group prevalent in this article is the
Apollonian group mentioned above. This example is meant to convince the reader
that it is very natural to consider Diophantine problems associated with thin groups
as well as to outline the methods one might use to address them. Specifically, our
aim in this article is to shed light on the following arithmetic questions.

Question 1. What can be said about the residues modulo an integer d of the
curvatures of circles in a given ACP?

We discuss this question in Section Graham et al. were the first to investi-
gate congruence obstructions in Apollonian packings in [27], where they show that
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there are always obstructions modulo 12 in any given ACP, and that there are no
congruence obstructions modulo d if the greatest common divisor (d,30) = 1. One
such result is the following.

Theorem 1.5 (Graham, Lagarias, Mallows, Wilks, and Yan [27]). Let P be a
primitive integer Apollonian packing. For any integer m with ged(m,30) = 1,
every residue class modulo m occurs as the value of a curvature of some circle in
the packing P.

In Section 2] we review the results in [2I] which extend Theorem and give
a complete answer to Question 1, namely it is shown that the only congruence
obstructions for any primitive integer ACP are modulo 24, and that the number
30 in Theorem above can be improved to 6. The basic idea is to use the
representation of the packing as an orbit of the Apollonian group A and analyze the
mod d structure of A. It is worth noting that Graham et al. prove their theorems
by considering only unipotent subgroups of A, while in [2I] we exploit the full
Apollonian group.

Graham et al. also conduct various numerical experiments to better understand
the set of curvatures in different integer Apollonian packings. Based on these
experiments, they pose a “strong density conjecture” which predicts that given a
primitive packing P, any sufficiently large integer satisfying some fixed congruence
conditions appears as a curvature in P. This conjecture is posed in a more precise
way as a local-to-global conjecture in [22]. As we discuss in Section Ml this precise
local-global conjecture has stood up to experimental scrutiny and remains wide
open. A much more feasible task is to determine integers which cannot occur as
curvatures in a given packing by ruling out congruence classes modulo various “bad”
primes. We make this notion of badness more precise in Section 2] and explain how
such information can suggest local-to-global conjectures both in the Apollonian case
and beyond in Section [l

Question 2. How many circles of curvature with few prime factors are there in a
given ACP?

In studying (primitive) integer ACPs, it is interesting to consider which primes
appear as curvatures of circles in a given packing. We discuss this question in
Section Bl In [46] Sarnak shows that there are infinitely many circles of prime
curvature and infinitely many pairs of tangent circles both of prime curvature in
any given packing P. We summarize his results in the following theorem.

Theorem 1.6 (Sarnak [46]). Let P denote the orbit of Descartes quadruples cor-
responding to a primitive integer Apollonian circle packing P, and let

(1.2) C={xeC*Qx)=0}

denote the cone of solutions to the Descartes equation in ([([LIl). Fiz two integers
1 <4,7 <4 and suppose that for every x = (z1,x2,x3,24)" € P we have that z;
and x; are odd.

(i) Let wp(X) denote the number of primes < X that are curvatures of circles
in P. Then

cX
X -
7p(X) > (log X 372

for large X, where ¢ is a constant depending on P.
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(ii) The set of points {x € P|x;,x; are prime} is Zariski-dense in C.
(iii) There exist arbitrarily long chains of tangent circles in P such that every
circle in the chain has prime curvature.

In addition, in [32] Kontorovich and Oh establish upper bounds for the number
of circles of prime curvature less than X in a packing P as well as the number of
pairs of circles both of prime curvature less than X. These bounds depend on the
number of circles of curvature less than T in the packing in question, which was
first considered by Boyd in [I4]. The notation y < z below is taken to mean that
there is some constant ¢ > 0 such that y < cz and the notation > is interpreted
analogously.

Theorem 1.7 (Kontorovich and Oh [32]). Given a primitive integer Apollonian
circle packing P, let Np(X) denote the number of circles of curvature less than X
in P, let mp(X) denote the number of circles of prime curvature less than X in P,
and let 75 (X) denote the number of pairs of tangent circles both of prime curvature
less than X in P. Then there is a constant ¢ depending on P such that

(i) Np(X) ~ e X°,

(if) mp(X) < J22,

Np(X

(iii) 7%(X) < ﬁ,

where § = 1.30568 - - - and the implied constants depend on the packing P.

The constant § above is in fact the Hausdorff dimension of the residual set of a
packing P (see [27] for a discussion of this), which is the same for every Apollonian
circle packing (see [39] where this was first noted) and has been computed to five
decimals by McMullen in [38]. We should mention that part (i) of the theorem
above applies to non-integer Apollonian packings as well as integer packings, and
that Oh and Shah specify the constant ¢ in [42], while recent work of Lee and Oh
in [34] and independently of Vinogradov in [50] gives a formula for Np(X) together
with an error term. The proof of parts (ii) and (iii) of Theorem [[7] relies on the
recently developed affine sieve in [10], which we elaborate on in Section[Bl Note that
the upper bounds for 7p(z) and 7%(X) above are of the correct order of magnitude.

In [22] the results of [2I] are paired with the affine sieve to give a heuristic for
precise asymptotics for 7p(X) and 7%(X). In [20] there is a similar heuristic for
asymptotics for WgF::n(T), the number of circles of prime curvature that are born
at generation T, and we discuss both of these heuristics in Section Bl The rather
different question of counting primes that come up as curvatures of circles in a
given ACP (that is, counting circles of prime curvature without multiplicity) has
also been considered in [9] and [7]. In fact, we should mention that an immediate
consequence of results in [7] and [13] is that, given a packing P, the primes that do
not come up as curvatures in P make up a zero-density subset of all primes.

Another problem we address in Section B] is that of determining the satur-
ation number ro(f,P), where P denotes the set of Descartes quadruples x =
(z1,22,73,74)t in a packing P and f(x) is an integer valued polynomial on P.
In this notation the saturation number is defined to be the smallest positive integer
ro such that the set of points

{x € P| f(x) has at most 7y prime factors}
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is Zariski-dense in the cone C' in ([I2)). Part (ii) of Theorem states that ro = 2
if f(x) = a;x;. In Section Bl we consider the saturation number in the case of

f(x) = zraox324/12,
which is equivalent to finding Descartes quadruples all of whose curvatures have few
prime factors and show that 7o < 28 in this case (the 12 above has to do with the
fact that 12|z zoxsxy for all x € P for any packing P). As we discuss in Section [3]
it is conjectured that rg = 4 in this case.

Question 3. Do the integers that come up as curvatures in a given ACP make up
a positive fraction of N7

In counting the number of integers represented in a given ACP, Graham et al.
appeal to the existence of unipotent elements in A in [27] to establish the following
bounds.

Theorem 1.8 (Graham, Lagarias, Mallows, Wilks, and Yan [27]). Let P be an in-
teger Apollonian packing, and let (P, X) :=|{a € N|a < X, a is a curvature of a
circle in P}|. Then

K(P,X) > VX.

Graham et.al. suggest in [27] that the lower bound above can be improved. In
fact, they conjecture that the answer to Question 3 is “yes” and that much more
is true.

We note here that this question is different from the one addressed in part (i) of
Theorem [[’7l The latter involves counting curvatures appearing in a packing with
multiplicity, rather than counting every integer that comes up exactly once, as is
done in [§] and summarized in Section @l of this article.

A more fruitful method for this problem is to consider arithmetic Fuchsian sub-
groups of the Apollonian group A. In [46] Sarnak uses these subgroups to prove
the following bound towards Graham et al.’s positive density conjecture.

Theorem 1.9 (Sarnak [46]). Let x(P, X) be as above. Then
X
Vieg X
Sarnak’s method was further improved to yield a bound of
X
(log X)
where € = 0.153 - - in a preprint [19]. In [g], this Fuchsian subgroup method was

enhanced in a number of ways to settle Question 3 and to prove Theorem [£.2] below,
that

K(P, X) >

k(P X) >

Kk(P,X) > X,

where the implied constant depends on the packing P. Recently, a further refine-
ment of this analysis coupled with new techniques, introducing the circle method for
thin orbits ([I2], [13]) as well as the congruence analysis in [21], has given asymp-
totics for k(P, X) as X — oo (see Theorem and the discussion in Section ).

All of these questions can be asked in the context of integer orbits of more general
subgroups of GL,,(Z), and in many cases these questions can be handled precisely
as they are for the Apollonian group. However, the Apollonian group is particularly
attractive as it is so far the only one we have seen to arise as naturally as it does. In
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this sense it is often regarded as the quintessential thin group. On the other hand,
it also appears that the Apollonian group is not a typical thin group in many ways
(for example, it has many unipotent and arithmetic subgroups, it is geometrically
finite, its Hausdorfl dimension is > 1, etc.), and this is one reason that so much
progress has been made in understanding its arithmetic.

1.1. The Apollonian group. We mentioned above that the arithmetic of the set
of curvatures of circles in a given integer ACP is best studied with the help of the
Apollonian group, since any ACP can be realized as some orbit of this group acting
on the root quadruple of the packing. In this section we explain how this group
is derived and what role it plays in our study of Apollonian packings. Recall from
Theorem that if a,b,c, and d are curvatures of four mutually tangent circles,
then
Qa,b,c,d) =2(a*> +b* + > +d*) — (a+b+c+d)? =0.

If we fix three of the curvatures (say b, ¢, d) above, we may solve the above equation
for two solutions a = a4, a_ with

(1.3) ay +a_ =20b+c+d).

Geometrically, this amounts to finding the two circles (see Theorem [[L1)) C,, and
C,_ of curvatures ay and a_, respectively, which are tangent to all three circles of
curvature b, ¢, and d. Thus if there is a Descartes quadruple a4,b,c,d in a given
ACP, then another Descartes quadruple in the packing is —a4 +2b+2c+2d, b, ¢, d.

Evidently, it is very natural to consider the curvatures of quadruples of mutually
tangent circles (Descartes quadruples) rather than curvatures of individual circles.
In fact, we lose no information about the set of curvatures of circles in a given
packing by studying instead the set of Descartes quadruples in the packing, since
every circle in the packing is a member of a Descartes quadruple. Moreover, the
set of Descartes quadruples encodes geometric information (the tangencies in the
packing) that is not detectable in the set of curvatures of circles alone. Therefore,
given an Apollonian packing, we associate to it a set of Descartes quadruples and
study this set.

Returning to the process giving (L3]) above, we note that we could just as well
have fixed any other triple from (a, b, ¢, d) and solved for the fourth. Geometrically,
this corresponds to choosing a triangular interstice and filling it with a circle as in
our original construction in Figure[Il Similarly, inscribing a circle in any triangular
interstice corresponds to solving such a quadratic equation. We summarize this as
follows: if vp = (a,b,c,d)t is a Descartes quadruple in a packing P, the collection
of Descartes quadruples in P is precisely the orbit Avp, where A is the group
generated by the four matrices

102 2 2 1 0 00
0 1 0 0 2 -1 2 2

(1.4) S5i=1 g 010 =00 10|
0 0 0 1 00 0 1

1 0 0 O 1 0 0 0

01 0 0 01 0 O
53_22-2’54_0010

00 0 1 2 2 2 -1

This group A encodes everything about Apollonian packings and is therefore known
as the Apollonian group. In the literature, the vector vp is usually taken to be the
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F1cURE 3. Dual circles in an Apollonian circle packing

root quadruple of the packing P, but this is not necessary. Note that S? = I for
1 < ¢ < 4, and in fact there are no other relations among the generators of A.
Perhaps the best way to see this is by considering the geometric representation of
these generators, which we describe next.

Note that to any triple of mutually tangent circles (Cy, Cq, C3) there is a unique
dual circle or dual line D13 which passes through the tangency points of the
three. Four such dual circles are drawn in dotted lines for the circle packing
in Figure Bl Now, if (Cy,Cs,C3,C4) are mutually tangent circles in a packing,
the generators Si,.52, 53,54 of A then transform (Cy,Cs, Cs, Cy) via inversions in
Do34, D134, D124, D123, respectively. In Figure Bl the shaded circle on the inside is
the image of the outside circle under inversion in the smallest of the dual circles,
while the other three circles in the quadruple are fixed by this inversion. In fact,
any generator S; acting in this way on a quadruple of mutually tangent circles in
the packing fixes three of the circles and maps the ith circle to the one other circle
tangent to the fixed three.

Furthermore, since the Descartes form @ is of signature (3,1), the group A4 is a
subgroup of Ogr(3,1), the isometry group of hyperbolic 3-space

H° = {(z,y,2) € R® | z > 0},

where the metric is given by M and the boundary of the space is C =

C U oo. Thus the Apollonian group A acts on this space in a natural way, and in
fact it is a subgroup of the Vinberg group W, the subgroup of Og(Z) generated by
reflections in hyperplanes in H3. To see this, we first embed an Apollonian pack-
ing into C and note that the geometric action of A on the circles of the packing
as described above extends to an action on C. This action on the plane is then
easily extended to an action on H?3: the generators of A act on H? as reflections
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through the hemispheres lying above the dual circles of the packing. A fundamental
domain for this action is the intersection of the exteriors of the hemispheres lying
above Dazy, D134, D124, D123, the dual circles corresponding to the root quadru-
ple of the packing. This fundamental domain has infinite volume with respect to
the hyperbolic volume form which, as we mentioned before, renders the theory of
automorphic forms inapplicable to counting in the orbit of A.

Now that we have introduced the Apollonian group, we list some notable prop-
erties of A and the bigger group Wg:

1) A is an infinite-index subgroup of the orthogonal group O¢(Z) fixing Q;

2) Ais Zariski-dense in Og(C);

3) Wy is of finite index in Og(Z).
Property 1 was first proven in [27]. Properties 1 and 2 together imply that the
Apollonian group is thin (for a proof of Property 2, see [20], Lemma 2.1). Property
3 is essentially a theorem in [I7] after one passes to the spin double cover of SOg(R)
(we discuss this passage in the following section). The fact that A is Zariski-dense in
O¢(C) can be interpreted as saying that A is large in an algebro-geometric sense:
it simply means that any polynomial with complex coefficients in variables x;;,
1 <14,j <4, that vanishes on A vanishes on Og(C) as well.

The fact that A is Zariski-dense in Og(C) is precisely what makes its integer
orbits suitable for the affine sieve described in [10]. It is also for this reason that,
as we will see, its orbits are quite rich in some sense, even though A is thin in the
sense of Definition [[[4 The ability to sieve in ACPs allows us to tackle quite a few
of the questions outlined above. To illustrate how one does this, we begin the next
section with a short summary of how sieving works in a more classical situation.
The ingredients that go into this classical sieve have natural analogs in the higher
dimensional group-orbit setting: the basic requirements are

(i) a “Chinese Remainder Theorem” for the orbits of the group;
(ii) an expansion property for the Cayley graphs associated to finite quotients
of the group.

We discuss requirement (i) and how to show it is satisfied in the next section. In
Section Bl we explain the role of requirement (ii) in the sieve and discuss how it
can be applied together with (i) in two different sieves in the ACP example: one
application is to count points all of whose coordinates have few prime factors in
various orbits of the Apollonian group; and the other is to count circles of prime
curvature. We note that Sectiondl concerning the density of integers that appear as
curvatures in a given ACP, is of a somewhat different flavor and does not appeal to
the affine sieve at all. One reason for this is that this problem concerns the number
of integers < X that occur as curvatures in an ACP without multiplicity while
the affine sieve is a counting tool in the orbit of A and counts with multiplicity.
The results in all of these sections, however, all point to one general rule that the
curvatures in an integer ACP are structured much like all of N even though they
come from an orbit of a thin group. Finally, we say a few words on future directions
in the study of general thin groups in Section

2. CONGRUENCE OBSTRUCTIONS IN APOLLONIAN PACKINGS

In this section we consider Question 1 of the Introduction regarding congruence
obstructions for integers appearing as curvatures in a given ACP. Studying these
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congruence obstructions has many benefits: one concrete benefit is the ability to
count primes in Apollonian packings as discussed in Question 2 of the Introduction.
A natural way to do this is by sieving in orbits of the Apollonian group A. To give
an idea of what this entails and how congruence obstructions come in, we next
review the setup of a more classical Brun sieve (which was introduced by Viggo
Brun in 1915). For a good brief overview of sieves both in the classical and in the
group orbit setting, see [33].

The Brun sieve. The Brun sieve is a tool that can be used to tackle various clas-
sical questions in number theory: it can give meaningful upper and lower bounds,
depending on N € N, on the number of values less than N of a given integer poly-
nomial that have at most k prime factors, for k fixed and sufficiently large. For
example, Chen used this in [I5] to show that there are infinitely many values of the
polynomial x(z +2) that have at most three prime factors: if one could replace the
3 with 2, the twin prime conjecture would be proven.

To introduce this sieve, we focus on the following general problem. Let f(x) be
a polynomial with integer coefficients such that the ged of the coefficients is 1, and
suppose we wish to count the number of primes (with multiplicity) that can be
written as f(b) for some positive integer b < N where N € N is fixed. Brun’s sieve
can give a good estimate of this count in terms of NV and the number of solutions
to the equation f(x) = 0 (mod d) for various square-free integers d; see (23] for
a more precise statement of this. To derive this answer, consider the sequence
{an}n>1, where

ap = |{b€N|b<Naf(b):n}|a

X:Zan.

n>1

and let

The basic idea now is reminiscent of the sieve of Eratosthenes: We consider all
values of f(b) where b < N and strike out all multiples of 2 that are greater than 2.
We then strike out all multiples of 3 in a similar way, but in doing so we have now
crossed out multiples of 6 twice. Thus to count how many integers have survived
the sieve so far, we subtract from X the number of values of f that are multiples of
2 or 3, and then add back in the number of values of f that are multiples of 6. We
keep subtracting off multiples of primes and adding back in what we subtract more
than once. One can express this count in a neat formula in terms of the number
of values of f that are multiples of d for various square-free positive integers d (see
23)). To this end we introduce a bit of notation. For some parameter z depending
on N, usually a small power of N, let

P, = Hp and S(z) = Z Q-

g 0¥

Note that S(z) counts precisely those integers that survive the process above when
one strikes out multiples of primes less than z. Furthermore, if z is large enough,
S(z) is a fairly good estimate of how many primes there are among f(b) where
b < N, since it is essentially the number of values of f that have all prime factors
> z. We note here that usually a sieve cannot be used to pick out primes only:
outside of very few examples, the best one can do is to pick up integers with at most
two prime factors, but this tends to be a good estimate for the number of primes
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alone. So our mission to count prime values of f can be translated into evaluating
the sum S(z) above. Let
Sd = Z Qp, .

n>0
dln

Then we may express S(z) in terms of Sy as

(2.1) $(z) = 3" Su-u(d),

d|P.

where the Mébius function p(d) = 1 if d is square-free and has an even number
of prime factors, u(d) = —1 if d is square-free and has an odd number of prime
factors, and p(d) = 0 otherwise. Indeed, (ZT) is just a concise way of describing
the inclusion/exclusion strategy above. Our aim is now to compute the values Sy
appearing in the second sum in ([2.I]). Note that

Sy = Z 1,

0<b< N

f(©)=0 (d)
and that the condition f(b) = 0 mod d above depends only on the value of b mod
d. Therefore, we may write
S S

mez/dz b<N
f(m)=0 (d) b=m (d)

Finally, this boils down to evaluating
w(d) =|{mez/dZ | f(m) =0 (mod d)}|.
Specifically, we get that

(2.2) Sy = @X +0(1).

Here w(d) is multiplicative by the Chinese Remainder Theorem (this is crucial in
evaluating w(d) for arbitrary square-free integers d), and the remainder term is
small in the sense that even when one sums Sy - u(d) over all d as we do in (21),
we get

(2.3) S(z):st.u(d):X.Z@+R,

d| P, d| P,

where R is small compared to the main term. This gives us an upper bound on
the number of primes we were interested in counting above. The main moral of
this story is that we need a Chinese Remainder Theorem to sieve, and we need to
control the remainder term R when we proceed as above with z large.

Sieving in orbits. Passing from this classical example to a more general setting,
suppose we would like to sieve for vectors with prime first coordinate in an orbit
of a subgroup of GL,,(Z). The affine sieve which is developed in [10] and [43] is
a machine that allows us to count such vectors in fairly general situations. While
there are various subtleties in this group orbit counting that are not present in
the classical situation above, the general idea of this affine sieve is very similar.
For example, in order to be able to sieve in an integer orbit I'v C Z™, where
I' < GL,(Z), one needs to know the exact structure of the orbit modulo square-free
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integers d, just as one needs to understand the values of the polynomial f mod d
in the classical example above. To this end, let I'yv denote the projection of I'v in
(Z/dZ)™. Tf one sieves for points w with prime first coordinate w; in I'v, one needs
to evaluate the ratio

el =0 dd
o) sy — 7 € Lav [0 =0 (mod )}

{w e Tav}|

for every square-free integer d > 1. This ratio is the analog of w(d)/d in (Z2)
and it plays an identical role in counting prime points in the group-orbit setting as
w(d)/d plays above. The rest of this section will be concerned with understanding
the analog of the Chinese Remainder Theorem in this general setting to guarantee
that the ratios in (2Z4]) are multiplicative in d. Along the way, we will pave the road
to evaluating these 5(d) in the Apollonian case.

A very general result that is a starting point to such Chinese Remainder Theo-
rems is the strong approximation Theorem 10.1 of Weisfeiler in [5I]. In the simple
case of subgroups I' of SLy(Z), this theorem says that if I" is Zariski-dense in SLo,
then the reduction of I' modulo primes p is onto SLa(F,) for all but finitely many
bad primes p.

In the context of integer ACPs, the relevant version of Weisfeiler’s theorem says
that if T' is a subgroup of SLy(Z[v/-1]) that is Zariski-dense in SLy(C) and such
that traces of elements of I' generate the field Q(v/-1), then there is a finite set of
prime ideals B in Z[v/~-1] such that I projects onto SLa(Z[v/-1]/p) for p & B. We
will see how the Apollonian group relates to SLo(C) via the spin homomorphism
later in this section. In order to execute the sieve, however, we need to explicitly
determine B. Once we do this, we will be able to evaluate 8(p) for p prime fairly
easily. We then want to show that for arbitrary square-free d the ratio 5(d) is the
product over p|d of 3(p)’s where p is prime. All this is done by specifying the orbits
of A mod d. To this end we introduce the following notation where ) denotes the
Descartes quadratic form from before. For any prime p, let

Cp = {v € (Z/pZ)* | v £ 0 (mod p), Q(v) = 0 (mod p)}.
If p > 2, for any integer r > 1, let
Cpr = {v € (Z/p"Z)" | v £ 0 (mod "), Q(v) = 0 (mod p')}.
Finally, for any integer r > 1, let
Cor ={ve(Z/277)* |vZ£0(21),Q(v)=0(2"),
FJw=v (27) st Q(w)=0(2""H}.

The reason that we define Cy- separately is that it is not true in this case that
every solution to @(v) = 0 (mod 2") lifts to some solution of the equation modulo
27+l —only half of the solutions modulo 27 lift to solutions modulo 2" +!. With this
notation, we have the following description of orbits of A mod d.

Theorem 2.1 (Fuchs [2I]). Let P be an orbit of A acting on the root quadruple
vp of a primitive packing P, and let Py be the reduction of this orbit modulo an
integer d > 1. Let Cpr be defined as above. Write d = didy with (d2,6) = 1 and
dy = 2™3™ where n,m > 0.

(i) The canonical projection Pg — Pa, X Py, is surjective.

(i) The canonical projection Pay, — [, 4, Ppr s surjective and Pyr = Cpr.
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(ili) The canonical projection Pgq, — Pan X Psm is surjective.

(iv) If n > 4, let @ : Con — Cg be the canonical projection. Then Pon =
F_I(Pg).

(v) If m > 2, let ¢ : Cgm — C3 be the canonical projection. Then Pgm =
¢~ (P3).

To paraphrase Theorem 2.1l in order to determine the reduction of any given
primitive orbit of A modulo any positive integer d > 1, one needs only to determine
the reduction modulo 24. Once this is done, the rest of the information about this
reduction comes from knowing the solutions to @(z) = 0 modulo various primes p.
The fact that the only local obstructions for integers occurring as curvatures in an
integer Apollonian packing are modulo 24 was first conjectured in [27], where the
authors conducted various numerical experiments to analyze these obstructions.

We note here that Theorem [2.1]is more than one needs for sieving, as it specifies
the reductions of orbits P of A modulo any integer d as opposed to just square-free
integers, which is all that the sieve requires. However, including integers that are
not square-free is natural in specifying the arithmetic structure of integer ACPs
and is key to the local to global conjecture discussed in Section [l

We now give a sketch of the proof of Theorem 2] in the case that d above is
square-free, before returning to the issue of counting circles whose curvature have
few prime factors in the next section. The generalization to the case where d is an
arbitrary integer requires some extra work, which we outline briefly at the end of
this section. In both cases the idea is to specify the structure of the Apollonian
group mod d in order to derive the corresponding structure of the group’s orbits.
We note that the strategy of this proof applies identically to any Zariski-dense
subgroup of O;(Z) where f is a signature (3, 1) quadratic form in four variables.

Detailed aspects of the proof are included to illustrate methods to obtain results
similar to Theorem 2.l for various groups beyond the Apollonian group. If desired,
however, it is possible to proceed immediately to the application of this theorem to
counting primes in Section [B] since the exposition in the remainder of the article is
independent of the proof.

A first observation is that it is difficult to arrive at Theorem [Z1] by working
with the Apollonian group A directly since it is a subgroup of the orthogonal group
O@(Z) where strong approximation does not hold: the reduction even of Og(Z)
itself (let alone A) modulo p is not onto Og(Z/pZ) if p = 3 mod 4. It is therefore
difficult to say anything about the projection of A in Og(Z/pZ) by working in the
orthogonal group itself, and consequently it is difficult to quantify the ratios in
[24) in this way. One can get around this difficulty by working in the spin double
cover of the arithmetic group SO where strong approximation does hold. To pass
to the spin double cover, let

Q(w1, 32, w3, 14) := 2} — 25 — x5 — 3.

In [21] it is shown that Og(Z[3]) = OQ(Z[%]) and that there is an isomorphism
(2.5) A-25A

between A and a subgroup A’ of O5(Z). With this notation, we consider the
preimage I' of A" SO5(Z) under the 2 to 1 spin homomorphism (see [17])

(2.6) p: SLy(C) — SO4(R).
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One can show that T' C SLa(Z[v/-1]), the traces of elements of I" generate Q(v/-1),
and T is a Zariski-dense subgroup of SLy(C) where strong approximation holds in
the sense of Weisfeiler’s theorem outlined above. Furthermore, since

s(p() = ANS0G(Z),

and since we have explicit formulas for s and p, by considering I' we simultaneously
consider the Apollonian group A. Note that this method of pulling back to the spin
double cover is a standard technique for sieving in orbits of subgroups of Of(Z)
where f is some quadratic form, as explained in [I0].

With this in mind, the first step towards proving Theorem 2] is to consider
the reduction of T' modulo ideals (d) in Z[+/-1] in order to gain information about
reductions of A’ and A. We note, however, that to analyze A modulo even integers
it is not enough to consider the reduction of I" modulo ideals (d) where d is even,
since the isomorphism in (Z3]) is defined over Z[1/2]. This is a technicality that can
easily be dealt with separately, and we will suppress its details here for the sake of
exposition (for the details, see [21]).

To analyze the reductions of ', the explicit formula for p given in [I7] is combined
with the fact that A N SOg(Z) is generated by S152,5253, and S2S54 to produce
exactly the generators and relations of I'. Here the S;’s denote the generators of A
as before. We describe this presentation of I' in the following lemma.

Lemma 2.2 (Fuchs [21]). Let T be as before. It is generated by +v1,+v9, 173,
where v; are as below and there are no relations between 1,72, and 3 :

2 - -2-2¢ -4-3¢ 1 -4

Given this presentation of T', finding the set B of bad primes turns out to be
a problem in elementary group theory: the main tool in accomplishing this is a
classification due to L. E. Dickson (Theorem 8.27 in [31]) of subgroups of PSLs
over finite fields. In the case that the finite field is F, for p prime, it is shown
in [16] that most of the groups in this classification are metabelian, meaning their
commutator subgroups are Abelian. In light of this, we state the following version
of Dickson’s classification:

Theorem 2.3 (Dickson, 1901). Letp > 5 be prime. A proper subgroup of PSLa(FF,)
is either metabelian or one of Ay, Sy, or As.

Using Dickson’s classification, one can show that the reduction mod p of our
group T’ must be SLy(Z[v/~-1]/p) for all but finitely many p as well as specify these
finitely many p. The strategy for this is to determine a girth bound for every I'/p
and then to show that for all but finitely many p € Z[\/—_l] the proper subgroups in
Dickson’s theorem would violate this bound, meaning that I'/p cannot be a proper
subgroup of SLy. We note here that one reason that it is feasible to carry this out
for I' is that the classification of subgroups of SLy over finite fields is particularly
simple. In the case of a higher rank group, the relevant classification would be
much more complex, and consequently the corresponding result on reductions of
the group modulo d would be much harder to prove. In the case of I', one has the
following.

Proposition 2.4 (Fuchs [21]). Let I' be as before, let O = Z[v/-1], let p denote a
prime ideal in O, and let (d) denote an ideal generated by d € O. Denote by B
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the set of prime ideals in O containing (6). Let d > 1 be a square-free integer such
that d = dyc, where |6 and ged(dy,6) = 1. We have that the product of canonical
projections

(2.8) m: T — T x H SL2(O/p),

pO(d1)
where T is the image of T' in SLy(O/(c)), is surjective. In particular the reduction
of T modulo any prime p & B is onto SLy(O/p).

Theorem 2] in the case of d square-free follows quickly from this proposition.
The main ingredient in the proof is Theorem [2.3] combined with the girth bound
mentioned above, as well as an application of Goursat’s lemma for the multiplica-
tive aspect. Our method of proving Proposition 2.4 is quite general and gives an
effective version of Weisfeiler’s theorem for subgroups of SLy(Z[v/-1]) given in terms
of generators. In this particular case, one can also give a shorter argument using
results of Hall in [28] since one of I'’s generators (y3) is a pseudo-reflection. Specif-
ically, Theorem 3.1 in [28] implies that the only potentially bad primes in this case
are 2 and 3. Next we outline the more general proof which does not require any
extra conditions on the generators.

We first show that I'/p surjects onto SLo(O/p) for prime ideals p 5 (6). There
are three cases to consider:

(1) pp = (p) where p = 1 (mod 4)—here p splits in O, and the reduction of I’
modulo (p) is mapped to SLa(Fp) x SLa(Fp);

(2) p = (p) where p = 3 (mod 4)—here p does not split in O, and the reduction
of I modulo (p) is mapped to SLy(F,2);

(3) p* =(2).

We sketch the proof that for p as in case (1) we have I'/p = SLo(O/p) for all p.
The proof that I'/p = SLo(O/p) for all p # (3) as in case (2) is essentially identical,
and case (3) is quickly taken care of by hand (it is not hard to see that I'/(2) is not
all of SLy(0O/(2)) for example).

Let pp = (p) where p denotes a prime congruent to 1 mod 4 as in case (1). One
can check that the center Z of SLy(Z[v/-1]) is contained in I'. Denoting I” =T'/Z C
PSLy(C), our strategy is now to determine when the reduction I', of I modulo p
is all of PSLo(F,) x PSLy(F,) as this can be shown to imply that the reduction of
I’ mod p is all of SLy(F,) x SLa(F,). In fact, it is enough in this case to check that
the projection of I' in the first factor PSLy(F)) is surjective, as we do next.

By Theorem R.3] if the image of I'}, in the first factor is a proper subgroup of
PSLy(F)), it is either metabelian or is one of the groups A4, Si, or As. To rule
out these proper subgroups, we appeal to a result of Margulis in [37] on girth
bounds, which we define next. The method of using this bound to rule out proper
subgroups as candidates for F;, is a useful tool that has previously been featured
in [16] and [23], for example. From now on we denote the image of I} in the first
factor PSLy(FF,,) by T, ;.

For v € TV let 7 denote the image of v in I‘;ﬁl, and let

Sp = {7171 72,75 7. T3 1
where ~; are, as in ([2.1]), a set of generators of I'y ;. Consider the Cayley graph
C(I', 1, Sp), where the vertices correspond to elements of T, ; and two vertices

p, 1>

v, w are connected by an edge if and only if vw™! € S,. The girth c( ;’1, Sp) of
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C(I', 1, Sp) is defined to be the length of the shortest cycle (vy,vz,...,vx) with
vg = vy in O(Iy 1, Sp) where v;—1 # vi41 for any 1 <7 < k. From [37] we have that

(2.9) (T 1, 5p) > 2log, (p/2) — 1,
where

o= max (|vill),

where [|v|| is positive and

2 *
Y™ = Amax (7).
Here v* is the conjugate transpose of 7, and Apax(7*7y) is the largest eigenvalue of
~v*~. Using this, we compute that in our case

a=1194+6v10=6.1623--- .

Note that an upper bound for the girth of any Cayley graph corresponding to Ay,
Sy, or As is 6, since an element in any of these groups has order < 6. On the other
hand, the bound in (Z9) implies that

c(Ty1,8p) >6  for p> 1161,

and so I'} ; cannot be Ay, Sy, or As if pp = (p) where p > 1161. We then check with
the help of a computer that for pp = (p) where 5 < p < 1161 we have |F;)1’ > 60,
and so I‘;’l # Ay, As, or Sy.

It remains to show that I'j, ; cannot be metabelian. If it were metabelian, we
would have that for any A, B,C, D € T, 4,
(2.10)

[[4, B],[C, D]] := (ABA™'B~')(CDC™'D " (BAB*A~'Y(DCD 'C™') =1I.

This would give an upper bound of 16 for ¢(I'} ;, Sp). However, the bound in (2.9)
implies that

(T} 1, Sp) > 16 for p>2.57-10,
and so I, ; cannot be metabelian in this case. We are left with a finite number
of cases, which are handled with the help of a computer in [2I]. Namely, one can
check that taking A = %,,B = 7,,C = 73, and D = 7,757, where ~; are as in

@), one has
(2.11) [[A, B],[C,D]] # I

in PSLy(F,) for 5 < p < 2.57-107, and thus I'}, ; is not metabelian in these cases.
Combined with the fact that F;’I isnot Ay, Sy, or As, we have that F;}l = PSLy(F,)
for all p as in case (1). Since no proper subgroup of SLy(F,) maps onto PSLy(F),)
(see [48] for a proof), this implies that the projection of I'y is surjective in the first
factor of SLy(F),) x SLa(FF,) as well. Again, in this case this implies that T' is
indeed the full SLy(F,) x SLa(F)).

After handling case (2) using very similar arguments as in case (1) for p > 3, we
can identify p = 2,3 as the bad primes as far as reduction of I' mod (p) goes. It
remains to show the surjectivity of the map 7 in Proposition 2:4], and this is done
in [21] using Goursat’s lemma together with an analysis of the composition factors
of T'/(d).

It is then not difficult to derive the part of Theorem 2.1] concerning square-
free integers d > 1 which is the necessary ingredient for sieving in orbits of the
Apollonian group A as we do in Section [l
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Theorem 2.1l however, gives much more than the bare minimum required for
sieving: it specifies in particular the structure of A modulo any integer which
paints a clearer picture of which integers appear in any given ACP, as we discuss in
Sectiondl Thus in order to finish the proof of Theorem 2.1l one needs to determine
the reduction of I' modulo an arbitrary ideal (d). The ingredients in doing this are
similar to the ingredients in determining the reduction modulo square-free ideals.
First, just as we determined the reductions I'/(p) above, we must determine the
reductions T'/(p*) for arbitrary integers k > 1. The basic idea is to look at the
sequence of canonical projections

(2.12) L/(p) «—T/(p*) «—T/(p") -

for every prime p and to determine at which level in the sequence the kernels of the
projections above begin to coincide with those in the sequence

(2.13) SL2(0/(p)) <= SL2(0/(p*)) = SLa(O/(p%)) -+~ -

It is known that the kernels must coincide from some finite power of p onwards
by Weisfeiler’s theorem. The crucial observation is that as soon as the kernels do
coincide (say, starting at T'/(p*)) and given m > k, one can simply lift from I'/(p™)
to I'/(p™™!) in the natural way that one lifts in the second sequence above. In
other words, an element v € I'/(p™) has precisely the elements

{7 € SL(O0/ (™)) |7 () = 7}
lying above it.

If p is “good”, meaning p 1 6, the reduction of I' modulo (p) is onto SLa(O/(p)),
and the two sequences in (Z.12) and (23] are identical by a slight generalization
of Serre’s Lemma 3 on page IV-23 in [48]. Namely, it can be shown that if q #
(1+41),(3) is a prime ideal in O and O4 denotes the completion of O at q, then
a closed subgroup G of SLy(O,) whose projection into SL2(O4/q) is surjective is
precisely SLa(Oy).

On the other hand, in the case where p = 2 or 3, we have seen that I'/(p)
is not all of SL2(O/(p)) and so the sequences above are not identical for such
primes. However, the kernels of the maps do begin to coincide quite quickly—
starting at w3 for p = 2 and at m; for p = 3—and combining this with an analog
of Serre’s lemma gives a complete description of I' modulo powers of “bad” ideals.
Combining this with Goursat’s lemma to show that the reduction mod (d) is in
some sense multiplicative gives the desired description of T'/(d) for arbitrary ideals
(d). For more details of this proof, see [2I]. Again, this strategy applies similarly
to Zariski-dense subgroups of O(Z) where f is of signature (3,1).

3. PRIME NUMBER THEOREMS AND SIEVING

In this section we survey how a sieve can be used to count circles of prime
curvature as well as Descartes quadruples of circles all of whose curvatures have few
prime factors in Apollonian packings. As we mentioned in the Introduction, there
are two main ingredients in such a sieve, the first of which is a Chinese Remainder
Theorem that we discussed in Section [ (see Theorem [Z]). To elaborate on the
second ingredient regarding the expansion property in the context of Apollonian
packings, consider the following problem. Let P be a bounded Apollonian circle
packing, and suppose we want to count the number of circles of prime curvature in
P that are born at a fixed generation T'. With this in mind, let a,, be the number
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of circles of curvature n in P born at generation T', and denote the sequence of such
an’s by A := {a,}n>0. Note that there is a finite number of circles of curvature n
in any bounded packing P since all circles in the packing are contained in a circle
of fixed radius r and thus a,, < r?n2. Let

X = Z Q-
Analogously to the classical sieve described at the beginning of Section [2] let

P, = Hp and S(A,P,):= Z s

p;?;e (n,P,)=1

where z depends on T'. Our goal is to estimate S(A, P,) which can be viewed as
an approximation to the total number of circles of prime curvature at generation
T if the dependence of z on T is chosen carefully. As in the classical example at
the beginning of Section 2 we will compute S(A, P,) by estimating the sum in (31
for square-free integers d > 1. To evaluate these sums, we note that there is a
multiplicative density function 0 < 3(d) < 1 such that

(3.1) Y an=B(d)X + R(A,d),

n=0 (d)

where the remainder term R(A,d) is on average small comparing to X. Theo-
rem (2] gives us a good understanding of 5(d). However to control the size of the
remainders R(A,d) one needs to check whether the Apollonian group A satisfies
certain combinatorial properties (essentially, that the Cayley graph associated to
A with respect to the generators S1,S2, 53,5, is an expander), which we discuss
next.

3.1. The affine sieve and the importance of expanders. The requirement
that R(A,d) be small on average turns out to be quite subtle when sieving over an
orbit of a group G C GL,,(Z) (the Apollonian group in our case) rather than over the
integers. Specifically, to carry out a sieve over Z one considers integers belonging to
a large interval that occurs in some arithmetic progression with difference d. Over
the integers, the size of the boundary of such an interval is trivially small compared
to the size of the whole interval, and the same holds for arithmetic progressions
within this interval. In the setting of groups, however, this is generally not true.
Namely, consider all points in an orbit of an arbitrary discrete group acting on Z™
that lie in a large ball B(z,r) of radius r centered at x which is the analog of an
interval in Z. Naively, one might propose sifting out all points on the boundaries
of balls B(x,r") centered at x, whose radii ' < r are in an arithmetic progression
of difference d. However, in this setting the points on the boundary may in fact be
most of the points in B. In order to ensure this does not happen (equivalently, to
make sure that the remainder R(A, d) is small), it is necessary for G to satisfy some
combinatorial properties. To this end for p prime, let GG, denote the reduction of
G modulo p and let S, = {aq, afl, ceey QU 04,;1} be the generators of G mod p. We
associate to every such reduction G, the Cayley graph

Gp = Cay(Gp, Sp);

where the vertices correspond to elements of G, and two vertices z and y are
connected by an edge if and only if zy~! € S,. If G is free on 2k generators
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(one can always replace G with a suitable free subgroup of G as far as the affine
sieve goes) we associate with G, a 2k-regular graph. If G is the Apollonian group,
the corresponding graph is 4-regular. This association is crucial in controlling the
remainder term in (B in the orbit setting—mnamely, under certain conditions on
the Cayley graphs G, one can show that the remainders are small as desired.

Specifically, for any finite graph G with n vertices, let V' = V(G) denote the set
of vertices of G. For any subset S C V', let 95 denote the set of edges that connect
some vertex in S with a vertex in the complement of S. We define the Cheeger
constant of the graph G to be

05|
3.2 h = min ——.
(3.2) (©) scvlsi<z |9
Perhaps the most intuitive definition of expanders is that an infinite family of
finite, connected, d-regular graphs {G;};>1, where d € N is fixed, is called a family
of expanders if there is an € > 0 such that

h(G;) > ¢ foralli>1.

There are several other equivalent definitions of expander families, and the most
useful one for our purposes is the algebraic Definition Bl Specifically, if |G| = n,
we can define an n X n adjacency matric M = M(G) whose rows and columns are
indexed by vertices v; of G, such that

M. — 1 iff v; and v; are adjacent,
71 0 otherwise.

In the case that G is d-regular, we have that
d=X2>2A 22 A1 2 —d,

where Ag > Ap if the graph is connected, which we assume for our applications.
Thus in the context of a Cayley graph G associated to a free group of order n on
2k generators, the adjacency matrix M(G) is an n X n symmetric matrix with n
eigenvalues between —2k and 2k. With this in mind, we would like the set of Cayley
graphs {G, | p prime} defined earlier to satisfy the following expander property (see
[30] for a beautiful introduction to expander graphs).

Definition 3.1. Let {G;};,>1 be an infinite family of connected, d-regular finite
graphs with n; = |G;| — oo as i — oo, and let M (G;) be the adjacency matrix of
G;i. Let {Xo(i), A2(i), ..., An,—1(7)} be the set of eigenvalues of M (G;) and denote
by A(M(G;)) an eigenvalue of M (G;) such that

IA(M(Gi))| = max({[A;(¢)], where [A;(i)] # d}).
We say that the graphs G; form a family of expanders if and only if
(3.3) limsup [A(M(G;))| < d.

J—00

This definition is equivalent to the previous one by theorems of Alon in [2]
and Alon and Milman in [3] relating the eigenvalue Ay to the Cheeger constant
in (B2). The spectral gap implied in B3] is a measure of the “expansion” in an
expander family {G;}. It is precisely this expander property that guarantees that
the remainder R(A,d) in the sieve is small, and it turns out that the affine sieve
can be carried out precisely for orbits of groups that satisfy this property. The
following theorem implies that the Apollonian group A is in fact such a group. We
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should mention that the spectral gap has proven to be useful beyond the sieve as
well: for example, it is a key ingredient in the work of Bourgain and Kontorovich
in [I3] that we discuss in Section [l

Theorem 3.2 (Bourgain, Gamburd, and Sarnak [10]). Let G be a subgroup of
G = SLo(Z[v-1]) such that G is Zariski-dense in Zcl(G), and such that the traces of
elements of G generate the field Q(v/-1). Then as (d) varies over square-free ideals
in Z[v/-1], the Cayley graphs (G/(d),S), where S is a fived symmetric generating
set of G, is a family of expanders.

This theorem applies to the analysis of curvatures of circles in Apollonian pack-
ings since the preimage of A in the spin-double cover of the orthogonal group SOgq
satisfies the conditions on G above. Thus the Cayley graphs arising from reduction
mod d in the case of ACPs satisfy the expander property, and we can use the affine
sieve to count prime curvatures in a packing P. In [I0], the authors discuss how
such a sieve can be applied to “prime point” counting in the orbit of a subgroup of
SLo(Z); we explore this question in the context of curvatures of circles in Apollonian
packings in Section

A similar question that has many variants over the integers concerns the infini-
tude of points in the orbit whose coordinates have few prime factors. For example,
given an integer-valued polynomial f(x) over Z, one might ask whether there are
infinitely many primes that can be expressed as f(a) for some a € Z. This question
extends to the affine setting as follows.

Consider a discrete group G generated by linear transformations that take Z"
to Z", and let O be the orbit of G acting on b € Z". Let f € Q[z1,...,z,] be a
polynomial that takes integer values on O. Let

O, = {x € O] f(x) has at most r prime factors},

which we refer to as the set of r-almost prime points in O. We ask whether there
is an r € Z such that there are “many” points x € O for which f(x) has at most r
prime factors. In particular, we are interested in finding an r such that the set O, s
is Zariski-dense in the Zariski closure Zcl(O) of O. Note that if O, s is dense in
Zcl(O) for some r € Z, then O, s is dense in Zcl(O) for v’ > r as well. If such an r
exists and is finite, we call the minimal r for which O,. ¢ is dense in O the saturation
number of (O, f), denoted by 7¢(O, f), and say that the pair (O, f) saturates.

This question is most interesting if there are no local obstructions for the pair
(O, f). For example, if there is an integer ¢ > 2 such that (f(x),q) > 1 for all
x € O we have that f(x) is divisible by some factor of ¢ for every x € O. Thus
ro will be larger than what one might expect from the arithmetic properties of O
alone, which is ultimately what interests us. For this reason, we demand that the
pair (O, f) be primitive, meaning that for every ¢ > 2 we have at least one point
x € O for which (f(x),q) = 1. We state the result for saturation of the orbit in the
primitive case here:

Theorem 3.3 (Bourgain, Gamburd, and Sarnak [I0]). Let G be as in Theorem B2
and let O be an orbit of G acting on a vector b € Z™ as before. Let f be as above,
and suppose (O, f) is primitive. Then the pair (O, f) saturates, and the saturation
number ro(O, f) can be explicitly given in terms of the spectral gap in the expander
family.
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In particular, Theorem combined with Theorem implies that the satura-
tion number 7 exists and is finite in the setting of orbits P of A, and in [20] we
show that ro(P, f) < 28 if f is defined as

f($1, $2,$37$4) = $1$2$3$4/12-

In this case if P is an orbit associated to a primitive packing, the pair (P, f) is
indeed primitive; this can be derived from Theorem 2.1l However, the methods to
obtain this upper bound do not rely on the affine sieve, since there is not enough
information about the Apollonian group to obtain good bounds in this way. To
see why this is, note that the affine sieve gives an upper bound for ry in terms
of a lower bound for the spectral gap in ([B3)) associated to the Cayley graphs of
finite quotients of A: the larger the spectral gap, the smaller rq. Lower bounds
for this spectral gap can be extracted from the analysis in [44], where the authors
give necessary and sufficient conditions for a family of such graphs associated to
more general groups to be an expander family—in fact, the authors show that their
methods are technically effective. However, the lower bounds for the spectral gap
that one can extract from their proof would yield upper bounds for ry that are
several orders of magnitude larger than what one can obtain using simpler methods
such as those outlined below. It is conceivable that in the near future a good lower
bound for the spectral gap in the Apollonian case will become available, in which
case the above bound could probably be significantly improved.

One other possible method to get a lower bound for the spectral gap in ([33)) is to
relate the combinatorial spectral gap coming from the adjacency matrices described
above to the spectral gap of the Laplacians of A;\H® where A4 are “congruence
subgroups” of A: a lower bound for the gaps between the first and second eigenval-
ues of these Laplacians would imply a lower bound for the combinatorial spectral
gap and vice versa. However, since the fundamental domains of these quotients
have infinite volume, usual integration techniques to determine the spectra of the
Laplacians do not apply. In fact, the only eigenvalue known in this case is the first
eigenvalue \g = (2 — 9), where ¢ is the Hausdorfl dimension of the limit set of
a packing. Beyond this, the existence of a combinatorial spectral gap guarantees
some spectral gap in this setting but says nothing about how large it is. In fact,
it is currently difficult to approximate this spectral gap even numerically, so one is
perhaps better off approaching the problem from the combinatorial side.

On the other hand, A has many subgroups generated by unipotent elements that
can be exploited to obtain a bound on 7y using a classical sieve over Z rather than
the affine sieve, and this does not require the spectral theory discussed here. We
state the theorem for the orbit P = A(—1,2,2,3)! and give a brief overview of its
proof next.

Theorem 3.4 (Fuchs [20]). Let A be the Apollonian group, and let P =
A(—1,2,2,3)t. For x = (w1,%2,23,74)" € P, let f(x) = mywowswye/12, and let
Pag denote those points x € P for which f(x) has at most 28 prime factors. Then
Pag is Zariski-dense in Zcl(P).

The number 28 in Theorem [3.4] has no particular significance; it is the best one
can do with the method outlined below. In fact, one expects that, given a primitive
Apollonian orbit P, the set of points x € P for which f(x) is 4-almost prime should
already be Zariski-dense in Zcl(P). Since 4 is the smallest number of prime factors
possible (see [20]), one basically expects the best case scenario to be true.
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The theorem above is proven by considering the groups U;; generated by S;5;,
where 7 # j and S; denotes a generator of A, noting that the product of any two
of the group generators is a unipotent element. For example,

2k+1 -2k  2k(2k+1) 2k(2k+1)
r_ | 2k 1-2k 2k(2k—1) 2k(2k — 1)
(S152)7= | 0 1 0 ’

0 0 0 1

where the top two rows are switched if k is even (note that since we are ultimately
interested in taking the products of coordinates of vectors in the orbit, this switch is
of no consequence to us). Let P(4,j) denote the orbit of U;; acting on (—1,2,2,3)".
It can be shown that the union of these P(i,j) is Zariski-dense in Zcl(P), and so
to prove Theorem [34] it is enough to prove its analog for the orbits P(4,5). This
is done by counting for various r the number of r-almost prime points in a ball in
P(i,7) where 1 < i # j < 4. Such a counting problem is reminiscent of the Brun
sieve example at the beginning of Section 2l For example, we have that

P(1,2) = (208 + 45 — 1,205 — 165 + 2,2, 3),

where the parameter s ranges over non-negative integers. Thus the values of f(x)
on this orbit are precisely the values of the polynomial

p(s) = 200s" — 1205 — 22s% + 125 — 1

for non-negative s € Z. Counting the number of r-almost prime points for the
orbit P(1,2) thus reduces to counting the number of r-almost prime values of p(s).
The number of r-almost prime points in other orbits P(i, ) similarly reduces to
counting r-almost prime values of polynomials over Z. This is done via a classical
sieve, and the lower bound in all cases is large enough to show Zariski-density if
r > 28.

3.2. Prime number theorems. As we pointed out before, the above method of
counting rg-almost prime points is not actually an application of the affine sieve:
the affine sieve tells us that the saturation number 7o exists but we need extra
information to determine what it is with any accuracy. We now demonstrate how
one can use the affine sieve in order to produce prime number conjectures of two
different flavors in the context of ACPs. The one main assumption made in arriving
at these conjectures is that the Mobius function y is random in a suitable sense. If
this assumption were true, then these conjectures would in fact be theorems.

One such conjecture concerns counting circles of prime curvature less than X in
a given primitive packing. Specifically, combining the sieve constructed in [10] with
the analysis in [2I] that we summarized in Section [2] one obtains precise heuristics
for mp(X). These heuristics are computed and checked in [22]: according to the
data presented there, they are most likely correct. The strategy is to consider

(34) ve(X) = > log(a(C)),

a(C)<X

a(C) prime
where C' denotes a circle in the packing P and a(C) denotes its curvature. See
[22] for an explanation of how 7p(X) can be derived from 1p(X). The heuristic
obtained in [22] for ¢¥p(X) is as follows.
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Conjecture 3.5 (Fuchs and Sanden [22]). Recall that Np(X) is the number of
circles in a packing P of curvature less than X, and let ¢p(X) be as in (BA).
Then as X — oo,

Yp(X) ~ L(2,x4) - Np(X),
where L(2, x4) = 0.9159 - - - is the value of the Dirichlet L-series at 2 with character
Xa(p) =1 for p=1(4) and x4(p) = =1 for p=3 (4).

This implies, in particular, that

L(2aX4) ) NP(X)

log X '
These asymptotics are reminiscent of the classical prime number theorem, which
states that the weighted count ¥ (z) ~ x and that w(x) ~ z/logz.

We now outline how one obtains the heuristics in Conjecture To count
circles of prime curvature, we observe that to every circle C' in a given packing
one can associate a unique vector x in the corresponding orbit in the following
manner. Suppose P has root quadruple v of curvatures of circles C,Cs, C3, and
Cy4. We will associate v with each of these circles C;. For any other circle C in the
packing there is exactly one element 7 of the Apollonian group which transforms
the circles Cy, Cy, C3, and Cy to a quadruple of circles containing C, of which C has
the largest curvature. In terms of the orbit, this means that C corresponds to one
vector x = yv € Av in which the maximal coordinate is the curvature of C. Denote
by ||x|| the maximal coordinate of x. Given the observation above, counting circles
of prime curvature amounts to counting x € Av for which ||x|| is prime. Here we
define Av to be the multiset of vectors {yv |y € A}. As we mentioned above, it
is convenient to count primes in the orbit of A with a logarithmic weight. To this
end, let

’iTp(X) ~

el
A(n)_{ logp if n=p* for some [ > 0,

0 otherwise.
Equivalently,
(3.5) A(n) == p(d)logd,
d|n

where p(d) is the Mobius function. Note that if d is not square-free, we have
wu(d) = 0, so in the following we assume d is square-free. It is shown in [22] that

(3.6) Z A(|x]]) + O(X Z > u(d)logd+ O(X).

xEAvV
HXHSX HXH<X
113/ 1=0 ()
Now, sieve theory can only help us to evaluate the right-hand side of (8.0) if we sum
over d < D where D is a small power of Np(X), the number of circles of curvature

less than X in the packing. We therefore split the sum in (B8] as follows:

(3.7)  ¢p(x) = —< > p(d)logd 1) - ( > p(d)logd > 1) + O(X)

d<D xEAvV d>D xEAvV
[1x[|<X [Ix||<X
[1%[1=0 (d) [I1x[I=0 (d)

Assuming that u(d) above becomes random as d grows, the sum over d > D in (31
is negligible, and so we ignore it (if we could prove the validity of this step, the
conjecture above would be a theorem). The task is now to evaluate the first sum,
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and it is here that we rely heavily on the affine sieve developed in [I0]. Specifically,
the analysis in [I0] guarantees that there is a function 3 : Z>% — [0, 1] such that
B(pq) = B(p)B(q) for primes p # ¢, and such that for every square-free d < D, we
have

> 1=5(d)- Np(X) +r(d),

xEAvV

[[x[[<X
[1x[1=0 ()

where the remainder r(d) is small on average in the sense that

Y r(d) = O(Np(X)' =)

d<D

for some €y > 0. Thus, since we have assumed that we can ignore the second sum
in (B7), this evaluation of the remainder term allows us to rewrite (1) as

(3.8) — | D Bd)u(d)logd | Np(X)+O(Np(X)')
d<D

for some 0 < € < 1. To compute this expression, note that

(3.9) > Bdu(d)logd =Y B(d)u(d)logd — Y B(d)u(d)logd.

d<D d>0 d>D

Assuming once again that the sum over d > D is insignificant due to the conjectured
randomness of the M&bius function, we have that the sum over d < D in (3.9]) can
be approximated by the sum over all d. To evaluate this sum, we must have a
precise formula for (d) in the Apollonian situation, which is obtained in [22] using
the results outlined in Section [2 of this article. First of all, letting O4 denote the
orbit Av reduced modulo d (this is finite), we define f3; for 1 <i <4 as

_ #{x = (r1, 20, 23,24)" € Og | x; = 0}

We have that 8;(pq) = 5;(p)Bi(q) for primes p # ¢ from the analysis in Section 2]
and so to determine (3;(d) for square-free d we must simply determine it for primes
p. It turns out that 5;(p) is independent of i for all primes p > 2, and indeed our
function S(d) will simply be §;(d) for any 1 < ¢ < 4 if d is odd. For d even, S is
only a bit more complicated, but we suppress this technical detail here (essentially,
the issue is that the orbit Av is even at two coordinates and odd at the other two).
More specifically, if p # 2, we have 5(p) = B;(p) for 1 < i <4 and

1
p+1

for p =1 mod 4,
(3.11) B(p) =

p+1
p?+1

for p = 3 mod 4.

With this precise form of 8, computing the sum over positive integers d from (3.9
is a problem in elementary number theory as soon as one understands § for even
d, and we refer the reader to [22] for this computation which yields

— > B(d)u(d)logd = L(2, x4).

d>0
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L 10.92
L 10.91
L 10.9
—, (x) / Np ()
L 10.89
— L2, %)
0 2 4 6 8 10 0.88
X
X 106

FIGURE 4. Prime number heuristic for the packing P generated by (—1,2,2,3)

Combined with ([B.6) and the discussion above, this yields the heuristic in Con-
jecture as desired. Figure [ indicates that the heuristic in Conjecture B3] is
quite accurate. It depicts the straight line y = L(2,x4), as well as the graph of
Yp(X)/Np(X) for 0 < X < 107 where P is the packing generated by (—1,2,2,3),
which clearly tends towards the straight line as X grows. Similar numerical tests
have been carried out in [22] for other packings, and the heuristic appears accurate
in all such tests.

The argument above can also be carried out for counting circles of prime curva-
ture that are created at generation 7', rather than according to their size. Although
this seems to be a different proposition at first glance, in some sense it is quite sim-
ilar, since the curvatures of circles produced at generation 7" do tend to be larger
than those produced at previous generations. This idea can be made rigorous by
considering the Lyapunov exponent in the case of a random walk on the generators
S; of the Apollonian group, which gives a relationship between the curvatures of
most circles born at generation T to the generation T itself: basically, it is known
that for most circles C' born at a large generation 7' in an Apollonian packing, the
curvature a(C) is of size €77 for some exponent . This exponent is approximated
experimentally as v = 0.9149 in [20], where prime number conjectures in the case
of counting circles of prime curvature born at generation T are then derived using
sieve methods similar to those outlined above.

To summarize, the inputs into these prime number conjectures are

(i) the existence of a spectral gap;
(ii) an explicit formula for the function 5(d);
(iii) the determination of the Lyapunov exponent for random walks on the gen-
erators of the group.
In many Diophantine problems concerning integer orbits of a subgroup of GL,(Z)
where these three inputs are attainable, one can proceed as above to determine a
heuristic prime number conjecture.
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4. DENSITY OF CURVATURES AND THE LOCAL-TO-GLOBAL CONJECTURE

So far we have seen that the integers that occur as curvatures in any given ACP
behave very similarly to all of N in general: there are very few local obstructions that
we have defined completely in Section 2] there are infinitely many prime numbers
in any packing, and the conjectured prime number theorem in the case of ACPs
described in Section Blmimics the classical prime number theorem over the integers.
In fact, it is predicted that the integers that come up as curvatures in a given
primitive Apollonian packing are precisely all those that are not ruled out by the
congruence obstructions specified in Section [2] outside finitely many exceptions.
This very strong local-to-global conjecture which we state below holds up under
experimental scrutiny but remains open.

Conjecture 4.1 (Fuchs and Sanden [22], Graham, Lagarias, Mallows, Wilks, and
Yan [27]). Let P be an integer ACP, and let Pay be the set of residue classes mod 24
of curvatures in P. Then there exists Xp € Z such that any integer x > Xp whose
residue mod 24 lies in Pay is in fact a curvature of a circle in P.

Note that the “24” in this conjecture comes precisely from the statement of
Theorem 2.1, which roughly states that to determine the reduction of an ACP
mod d it is essentially enough to know its reduction modulo 24. The conjecture
is saying that for any packing P, all large enough integers that satisfy some easily
computable congruence conditions mod 24 are in fact curvatures in P. Furthermore,
these integers are precisely the set of curvatures larger than Xp in P. At least at
first glance, it is remarkable that an infinite index subgroup of O¢g(Z) should possess
such a rich property. However, several experiments outlined in [22] indicate that
the conjecture is true. For example, if P is taken to be the packing generated by
(—1,2,2,3), it is shown that Pyy = {2,3,6,11,14,15,18,23} and that all integers
10% < x < 5- 108 such that x € Py modulo 24 appear as curvatures in P.

An immediate consequence of Conjecture 1] is the positive density conjecture
of Graham et al. in [27] that the curvatures in a given packing have positive density
in N which was first proven in [8]. In this section we outline the proof of this
positive density conjecture and survey what is currently known about this density
and about the local-to-global conjecture above.

The natural way to approach Graham et al.’s positive density statement is to
count integers that come up as curvatures in an ACP. This is no longer a problem
suitable for the affine sieve (sieves do not count points in a ball, rather they sift out
points in a ball that in some sense have many prime factors). In fact, the problem of
counting how many integers less than X (without multiplicity) one picks up in the
curvatures of an ACP is a very different question from counting circles of curvature
less than X in an ACP, which is what we have done so far. It is unclear how to
derive the former from the latter.

However, although the problem we now discuss is of a different flavor from what
we have seen earlier, the methods do resemble somewhat the strategy used to bound
the saturation number 7o in Section Bl the basic idea will be to exploit the fact
that while the Apollonian group A is thin, it does have various nice subgroups that
are easier to work with.

To set up notation, for any primitive packing P we let

Kk(P,X):=#{a €Nla < X, ais a curvature of a circle in P}.
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Conjecture 1] would imply that the limit below exists and is positive:

lim

X—00
In fact, Conjecture 1] combined with the analysis in [21I] predicts (see [22]) the
exact limit

. k(P X) 1 1

4.1 lim 222 — Zor =
(4.1 X X 47w
depending on the packing P. Both the positive density conjecture and the existence
of the limit (with correct constants) is now known. We state the former below and
review its proof next.

Theorem 4.2 (Bourgain and Fuchs [8]). For an integer Apollonian circle pack-
ing P, let k(P,X) denote the number of distinct integers up to X occurring as
curvatures in the packing. Then for X large we have

k(P X) > X,
where the implied constant depends on the packing P.

This theorem is proven by counting curvatures in different “subpackings” of an
ACP which we sketch next. Since counting integers in the full Apollonian group’s
orbit is quite difficult given the thinness of the group, we consider instead of the
full group A some special subgroups of A. In doing so we are confronted with a
much easier counting problem. Namely, let A; be the group generated by all but
the ith generators of A:

(4.2) A; = ({51,852, 83,5} — {S:}) .

Geometrically, such a group fixes one circle in the packing (the ith circle in the
root quadruple) and produces circles that are tangent to the fixed one. This is
readily seen by observing that the generator S; is the only generator which acts on
the ith coordinate of a vector in R*. In [46], Sarnak showed that one can realize
these subgroups as subgroups of SO(2,1) acting on H, and that the fundamental
domain of this new action is in fact finite. Furthermore, he showed that the integers
occurring in the orbits of these groups acting on Descartes quadruples contain the
set of integers represented by a certain binary quadratic form whose coefficients are
expressed in terms of the root quadruple of the packing (and this is a set in which
we know how to count).

This can be seen by first noting that A; is isomorphic to a subgroup of GL3(Z)
(in particular A; acts only on three of the four coordinates of the root quadruple
vp). Specifically, a variable change sends the group A; to a subgroup A; of Og(2,1).
Next, one notes that the preimage of A;NSO(2, 1) under the spin homomorphism p :
SLa(R) — SO(2, 1) is the principal congruence 2-subgroup Ay of SLa(Z). Combined
with the map p, this gives a very nice expression for the orbits of A}. From this
expression it is not hard to derive the relationship between the integers appearing
in the orbit A;vp and integers represented by a binary quadratic form as described
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above. We illustrate this process in the following diagram.

AL 00(3,1)

“
A;
change | variables

s arithmetic
AL Or(2,1)

P p

A2< arithmetic SLQ (R)

We refer the reader to [46] and section 2 of [§] for the details of this manipulation
which leads to the following result if ¢ = 1 (there are analogous results for every
1 <i<4). Let vp = (ag,b,c,d) is the root quadruple of a bounded packing P,
and let C,, be a circle of curvature a¢ in the root quadruple. For X € N, let

Pi={neN|n<X, n=|z

for some 1 < j < 4, for some x = (x1, %2, 73,74)" € A1vp},

and let
fao(2,y) = A2® + 2By + Cy?,
where
A=b+tay, B= %, C =d+ ap.

The process described in the diagram above then yields that P; contains the set

(4.3) Afag) ={aeNJa< X, a= fo(z,y) —ao
for some z,y € Z, ged(z,y) = 1}.

So, since the orbit A;vp above is contained in the full orbit Avp, a lower bound
on the number of integers less than X represented by the shifted quadratic form
fao — ao will also serve as a lower bound for (P, X). Getting a lower bound on the
number of integers represented by a binary quadratic form is quite classical. For
example, in his 1912 thesis [5] Bernays showed that for a positive definite binary
quadratic form f over Z of discriminant —D, the number B(X) of integers less than
X represented by f is

c- X X
4.4 B(X) = (0]
(4.4) (X) Viog X " (logX)7
where c is a positive constant such that

e I3 TS ()

q=3 (4)
qtD
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FIGURE 5. A pictorial representation of the proof of Theorem

It is not hard to see that the form f,, is indeed positive definite, so the expression
in (@) combined with the fact that A(ag) C P; implies that

X

Viog X'
This lower bound was first proven by Sarnak in [46]. Shortly thereafter, the idea
of counting in suborbits of Avp was refined to yield a slightly better bound in [19]
and subsequently to prove Theorem 2 in [8]. Recently, this idea was taken a step
further to get a precise formula for x(P, X) in [I3].

The idea in both of these refinements is as follows: counting in the orbit of one
group A; reflects only those circles that are tangent to a fixed circle in P, and one
wants to count some of the missed circles to improve the bound in (@35]). This is
done as follows. To obtain the lower bound in (£3]), we fixed a circle of curvature ag
and associated curvatures of circles tangent to it with the set of integers represented
by fa, (z,y) —ag. We denoted the set of these integers that are less than X by A(ao)
in [@3).

Now, to every integer a € A(ag) one can associate a circle C, of curvature a
tangent to C,, in the packing P. One can again relate the integers less than X
occurring as curvatures of circles tangent to C, to integers represented by a shifted
binary form and thus get a lower bound on the number of such integers. Specifically,
for every a € A(ag) there is a binary quadratic form f, such that the set

(4.5) K(P, X) >

{a € N|a < X, a is the curvature of a circle tangent to C, in P}
contains the set
{aeN|a< X, a= f.zr,y) —a for some z,y € Z, ged(z,y) = 1}.

We now wish to count the integers represented by the new shifted forms f,(z,y) —a
for a € A(ag). This strategy is depicted in Figure B in the picture on the left we
fix the lightly shaded circle, and count some of the darkly shaded circles as in the
argument leading to ([@A]). On the right in Figure Bl we fix one by one some of the
circles we counted in the left picture, and count the dark circles tangent to those,
taking care not to count any of the shaded circles more than once. This is the
natural next step to improving the bound in (3.

One might worry that perhaps the sets of integers coming from circles tangent
to each of the ones we fix (the clusters of dark circles in the second picture above)
are not significantly different, in which case we are wasting our time trying to
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meticulously count the cardinality of the union of these sets. However, this is not
the case. To see why, we introduce a bit of notation. For each a € A(ayp), let

S.={neN|n<X,n=f,(x,y) for some relatively prime integers z, y}.

One can show that the discriminant of each f, is simply —4a?, which in fact implies
that S, is a subset of the integers that can be written as a sum of two squares.
Thus the union

U S

a€A(ap)

is not very big, and the sets S, do not differ much from one another. However,
if one considers instead (as we do) the union of sets S, of integers less than X
represented by the shifted form f, — a,

Se={neN|n<X,n= f.(x,y) —a for some relatively prime integers x,y},

one gains a substantial amount of new integers, since this shift by a makes the
sets S, quite different from one another. In fact, Theorem is proven in [8] by
showing that

‘ U Sa‘>>X.
a€A(ag)

We now mention some of the obstacles in showing this and give an idea of how to
overcome them.

One important consideration in evaluating the size of these sets S, i.e., in count-
ing integers represented by the forms f,, is that the discriminants and thus the
coefficients of f, can be very large with respect to X. In this case many of the
represented integers may be > X. In particular, the count in ([£4) is not uniform
in D, so one cannot rely on this bound alone to determine |S,]| if a is large. There-
fore one must understand how exactly |S,| depends on the size of a. This question
has been addressed by Blomer and Granville in [6], where the authors give lower
and/or upper bounds for the number of integers < X represented by a positive def-
inite binary quadratic form which depends almost solely on the size of the form’s
discriminant as compared to X. In their notation, let Us(X) be the number of
integers less than X represented by f, and let D < 0 denote the discriminant of f.
Blomer and Granville show

o if —D € [0, (log X)"°#?], then Uy (X) > qozxyimre:

e if —D € [(log X)'°82 (log X)?!°82] there are no good known lower bounds
on Us(X);

e if —D € [(log X)?°82 X, then U;(X) > %

For our purposes, this translates into the following information about the sets

Sq, since f, has discriminant —4a?:
e if 2a € [0, (log X)(1°82)/2] then |S,| >. 7(logx)§l/2+é;
e if 20 € [(log X)(°82)/2 (log X)!°82], there are no good known lower bounds
on |Sgl;
o if 2a € [(log X)°¢2,V/X], then |S,| > 2.

Since we are interested in lower bounds, only the first and third range above are

useful to us in proving Theorem In [T9], we consider only the first range and
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(108 X’ f4—14 ; — = = = — ——](logX)’
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FIGURE 6. Constructing a subset S C A(ag) N 1.

show that
(4.6) k(P X) > \ U S

acAag)
a<(log X)(log2)/2

X

> (log X )0-153°

This is the best bound that can be obtained by working in the first range and of
course it does not give a positive fraction of all integers.

On the other hand, one can apply the method used to obtain the bound in
(@D) in the third range above to get a better bound and to prove Theorem
However, in the third range one encounters a new obstacle that has to be handled
by considering only a very small subset of all possible S, where a is in the third
range I = [(log X)'°82/2,v/X /2]. To see why this is necessary, note that the most
intuitive way to obtain a lower bound on

(4.7) Q= ‘ U S

aGA(ao)r‘]I

is as follows:

(4.8) Q> > 1Sl = > [SanSal.

a€A(ag)NI a#a’€A(ag)NI

Specifically, one needs to obtain a lower bound on the first sum above, and an upper
bound on the second sum. However, the upper bound that we can hope to obtain
on the second sum will be larger than the lower bound we can hope to obtain for
the first sum, and so we do not learn anything of interest about 2 by doing just
this. Instead, we consider a small subset S(X) of Ay NI and compute the relevant
bounds on the two sums in (@8] taken over S(X). This subset needs to be chosen
carefully: On the one hand, it needs to be large enough so that the lower bound on
> |Sa| is a positive fraction of X. At the same time it needs to be small enough
so that the upper bound on > |S, N Sy| is small. Additionally, for the purpose
of determining these bounds, one wants that as X grows the integers in S(X) are
equidistributed modulo any prime q.

Since the construction of such a subset is crucial to the proof of Theorem
M2l we recall it below (for details, see [§]). We first consider the subinterval
[(log X)?, (log X)3] of the third range I and break it into dyadic ranges, as in
Figure 6l

For k satisfying (log X)? < 2¥ < (log X)?/2, denote by S*) the following subset
of [2/4:’ 2/€+1]’

(4.9) S®) = A(ag) N [2F, 2% + nﬁ}

. , i
where 0 < n < 1 is a parameter independent of k that we are free to choose and
which will play an important role momentarily: we will see that the bounds on
the two sums in ([£J)) will depend in a crucial way on 7, and it is this parameter
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that will allow us to ensure that the difference between the two sums is a positive
fraction of X. We explain in what sense S*) is chosen “optimally” to produce a
positive fraction of integers shortly. Namely, we take S to be the union of all of
these sets S(¥):

(4.10) s=[Js®,

where k ranges over all positive integers satisfying (log X)? < 2% < (log X)3/2 as
before. This subset of A(ag) NI is optimal in the sense that if it were any smaller,
we would not get the desired lower bound in ([4I1]) below. Furthermore, the set
S does satisfy the equidistribution modulo primes property mentioned above (see
[8]). We now return to bounding Q as in (£8). Using the results of Blomer and
Granville in [6], we are able to show that

(4.11) > 1Sal > nX,
a€S

where the implied constant depends only on ag. It remains to obtain a good upper
bound on the second sum in ([@8]). To do this, we must first get an upper bound
for S, NS, where a # o’ € S. In [§] this is done rather crudely by counting points
(z,y,2'y’) in a closed region on the quadric

(4.12) fa(z,y) = far(@',y') =a—d

for each a # a’ € S. This is crude because it counts every integer in the intersection
Se NSy with multiplicity (the more representations of the integer by f, and f,
there are, the higher the multiplicity), while in fact every integer in S, NS,/ comes
up only once. Nevertheless, the upper bound we obtain with this method is good
enough to prove Theorem Specifically, this crude count produces the upper
bound

(413) Z |Sa N Sa’l S 0772X7
a#a’ €S

where ¢ > 0 is a constant depending only on ay. This bound is obtained by using
the circle method as refined in [40] to compute the representation numbers of a —a’
by the quaternary quadratic forms f,(z,y) — for (2, y).

Combining (A1) and [@I3), we have that

k(P X) > Z [Sa| — Z |Sa N S| > (n — en?) X.

ac€A(ag)NI aF#a’ € A(ag)NI

Since we are free to choose 0 < 1 < 1, we can in particular choose 7 such that
cn? <, and so we have that

K(P,X)> X

as desired. So by repeating Sarnak’s method in the third range of Blomer and
Granville and by introducing this parameter 7, we are able to control the sums in
([£XR) and prove that the positive integers appearing as curvatures in any integer
ACP make up a positive fraction of N.

As we mentioned before, there is now a stronger positive density theorem which
we state below.

2The region in these points are counted is determined by the condition that fu(z,y) < X.
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Theorem 4.3 (Bourgain and Kontorovich [13]). Let P be an integer ACP, and let
o = o(P) be the number of residue classes mod 24 of curvatures in P. Then there
exists some absolute constant € > 0 such that as X — oo

kp(X) = i X 4 0(x').

The proof of this theorem builds upon the methods of [§] in that the authors
consider an infinite family of binary quadratic forms and count integers represented
by this family. The family they choose is a larger one than the one used in [§] and
their method of counting represented integers is more intricate, utilizing a version
of the Hardy—Littlewood circle method similar to the one introduced in [12], where
the authors count integers represented in orbits of thin subgroups of SLs(Z). This
counting method relies heavily on the existence of the combinatorial spectral gap for
the Apollonian group as discussed in Section B] together with methods from [11] to
relate the combinatorial spectral gap to the Laplacian spectral gap. It also utilizes
results of Vinogradov in [50] on bisector counting in hyperbolic 3-folds as well as
on the congruence analysis in [21]. This method is quite general and can be applied
to counting integers in orbits of various other thin subgroups of Of(Z) where f
is signature (3,1). One should note, however, that it is unlikely that the counting
methods outlined here would lead to a proof of the local-to-global conjecture, which
would likely require a deeper understanding of the Apollonian group’s orbits.

5. THE QUEST TO BETTER UNDERSTAND THIN GROUPS

Having perhaps convinced the reader that thin groups are interesting objects
to study from an arithmetic point of view, we end this article with a few words
about the contrast between thin and arithmetic groups as well as what remains to
be done to put our knowledge of thin groups on the same footing as our knowledge
of arithmetic groups. For more information, see [47] for a beautiful account of thin
groups and related problems.

Throughout this article we have dealt at length with various arithmetic problems
connected to orbits of the Apollonian group, and the methods we described can be
applied to other thin subgroups of GL,,(Z). As we saw in Section[3 a powerful tool
in such problems is the affine sieve, which applies to thin and arithmetic groups alike
as long as the connected component of the Zariski closure of the group is perfect.
This is proven in [43] and [44]. Since this condition has little to do with whether
the group is thin or not, one might ask why we should focus on thin groups in
particular. To address this, we note that a key input into the affine sieve is showing
that the group involved satisfies the expander property discussed in Section Bl
It is in the case of thin groups that this input has only recently become available,
and it is also in this case that a lot of work remains to be done. Indeed, showing
that an arithmetic group satisfies the expander property, and even determining the
corresponding spectral gap is much more classical. For example, consider for n > 2
a finite index subgroup I' of SL,,(Z) that is Zariski-dense in SL,,, and suppose we
want to show that the Cayley graphs associated to finite quotients of I'" form an
expander family. We can argue as follows: for n > 2 the group SL,(Z) as well as
all of its finite index subgroups have Kazhdan property T (see [35] for a definition).
Furthermore, the fact that they have property T implies that they possess the
desired expander property; this observation is an old result due to Margulis in [36],
and is the idea behind the first explicit construction of expanders, also in [36]. Yet
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for the general thin group, property T will not help. Similarly, while one can usually
get reasonable bounds on the spectral gap connected to an arithmetic group (e.g.,
Selberg’s 3/16 theorem implies a gap of 3/16 for congruence subgroups of SLa(Z)
and this in turn gives a combinatorial spectral gap in this context), as we mentioned
at the end of Section Bl there is not currently a way to give good bounds for the
spectral gap in the case of a thin group. Thus a natural next step in understanding
the arithmetic of orbits of thin groups is to attempt to improve these bounds. In
particular, this would make the affine sieve a much more precise tool for counting
in such orbits.

We should also mention that thin groups come up very naturally in arithmetic
problems that are quite different from the counting problems we outline in this
article. For example, Ellenberg, Hall, and Kowalski have recently obtained results
in [I8] about rational p-torsion points for Abelian varieties over Q by considering
the monodromy groups (thin monodromy groups in particular) connected to these
varieties. Like the fundamental theorem of the affine sieve, their results rely heavily
on expander graphs—they need that the Cayley graphs coming from the finite
quotients of the monodromy group involved form an expander family.

In both the problem of counting primes in orbits of groups and in the problems
considered in [I8], it is natural to ask how one can tell whether a group is thin. This
question in general is not easy, mostly because there is currently no easily verifiable
characteristic of a group that would imply it is thin: as we have seen throughout
this article, in some sense thin groups are just as “rich” as arithmetic groups so
it is hard to tell the two apart. A different question of a similar flavor is, how
generic are thin groups? For example, given a meaningful definition of “generic”,
is the generic group to which one can apply the affine sieve thin? Is the generic
monodromy group in applications in [I§] thin? A positive answer to these questions
will give all the more reason to study these groups in more detail.
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