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TERCENTENNIAL ANNIVERSARY
OF BERNOULLI’'S LAW OF LARGE NUMBERS
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0

The importance and value of Jacob Bernoulli’s work was eloquently stated by
Andrei Andreyevich Markov during a speech presented to the Russian Academy of
Sciencdl on December 1, 1913. Marking the bicentennial anniversary of the Law of
Large Numbers, Markov’s words remain pertinent one hundred years later:

In concluding this speech, I return to Jacob Bernoulli. His biogra-
phers recall that, following the example of Archimedes he requested
that on his tombstone the logarithmic spiral be inscribed with the
epitaph Eadem mutata resurgo. This inscription refers, of course,
to properties of the curve that he had found. But it also has a
second meaning. It also expresses Bernoulli’s hope for resurrection
and eternal life.

We can say that this hope is being realized. More than two
hundred years have passed since Bernoulli’s death but he lives and
will live in his theorem.

Indeed, the ideas contained in Bernoulli’s Ars Conjectandi have impacted many
mathematicians since its posthumous publication in 1713. The twentieth century,
in particular, has seen numerous advances in probability that can in some way be
traced back to Bernoulli. It is impossible to survey the scope of Bernoulli’s influence
in the last one hundred years, let alone the preceding two hundred. It is perhaps
more instructive to highlight a few beautiful results and avenues of research that
demonstrate the lasting effect of his work.

1

Late seventeenth and early eighteenth century mathematics had not seen suffi-
cient development for understanding and expressing laws of chance. The treatise
of Huygens|q which considers probability as a quotient of favorable cases by all
possible cases, is a vivid testimony of such early attempts to clarify the notion
of probability. In those days, and it even persists nowadays, there was a dispute
among different disciplines on the meaning of probability, likelihood, and chance.
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For instance, it was discussed how legal probabilities are connected to the outcomes
of rolling dice, the latter resulting in equally likely, elementary events. “There was
an old legal saying, known to Leibniz, reasons are not to be counted, but weighted.”ﬁ
It took 200 years to get this straight, axiomatically as a number between zero and
one, and defined for events, alternatively (but mathematically not that rigorous)
as a stabilizing property of relative frequencies (von Mises approach [47]). The
foundation of an axiomatic treatment of probability took more than 30 years and
culminated in Kolmogorov’s treatise in [30], as Kolmogorov writes himself in the
introduction:

Der diesen allgemeinen Gesichtspunkten entsprechende Aufbau der
Wahrscheinlichkeitsrechnung war in den betreffenden mathema-
tischen Kreisen seit einiger Zeit geldufig; es fehlte jedoch eine
vollstdndige von iiberfliissigen Komplikationen freie Darstellung
des ganzen Systems (es befindet sich allerdings ein Buch von Fré-
chet in Vorbereitung)@

When Bernoulli’'dl Ars Conjectandi was first published in 1713, eight years after
his death, “the message of Ars Conjectandi was not fully absorbed at the time of
its publication.”ﬁ Today we have a fairly good understanding of the material. So
it is merely a question of awareness when connecting present knowledge with its
origins in Bernoulli’s work. The book by Halll gives an excellent historical account
of the Ars Conjectandi with a detailed list of related literature and early impact of
the work.

The weak law of large numbers, as it is called today, is a central part of the Ars
Congectandi and a basic theorem in contemporary probability. It follows (once the
step from a philosophical to an analytical definition of probability is made) easily
from Chebychev’s inequality. An easy analysis of variance then leads directly to the
strong law of large numbers (see Etemadi [21] for a complete workout of this old
idea). At a first glance, one may think that weak laws are predecessors of strong
laws. However, the motivations and approaches to prove these laws are completely
different. A strong law avoids probability calculations as understood by Bernoulli
to a large extent, as can be seen from the ergodic theorem or other strong laws.
It merely requires the notion of null sets from measure theory and some maximal
inequality; both ideas are not present in the Ars Conjectandi. There is no direct
connection to probabilistic reasoning for the strong law as it is for the weak law.
The connection to Bernoulli’s original ideas may be seen in modern developments
of almost sure theorems in spaces of measures, results that originated in the work
of Brosamler, Schatte, and Fisher in the mid-1980sf The idea of proof goes back
to the ergodicity of the Brownian flow (cf. Brosamler [12], p. 566): The scaling

3Quoted from Franklin [23], p. 365.

4Kolmogorov in [30], Vorwort. The book by Fréchet is cited as Recherches théoriques modernes,
fasc. 3 du tome I du Traité des probabilités par E. Borel et divers auteurs. Paris: Gauthiers-Villars.
The text says that the main ideas of probability were common knowledge among specialists, only
a complete, simplified version had been missing.

5Jakob (Jacques) Bernoulli *12/27/1654 (Basel) to 108/16/1705 (Basel).

6Shafer [43] writes in the preface “Unfortunately, the message of Ars Conjectandi was not fully
absorbed at the time of its publication, and it has been obscured by various intellectual fashions
during the past 300 years.”

7[27], Chapter 15.

8See [33] for the final result for second moment variables, which we follow here.
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flow (f,t) — Tif, Ty f(s) = e /2 f(se!) (t € R,s > 0) on the space C(R,,R) of
continuous real valued functions on R is ergodic with respect to the distribution of
the Brownian motion (on C'(R4,R)). An application of the ergodic theorem leads
to the almost sure central limit theorem for normally distributed random variables.

The almost sure theorem (in its final form of Lacey and Philipp) states that for
a sequence of independent, identically distributed, and square integrable random
variables X,, (n € N) there is a set Q of full probability such that for each w € Q2
andt € R

N
. 1 Z 1
(11) ]\}Ego In N n=1 E]I{nGQ:Sn(77)77’w,§t\/ﬁ(7} ((U) = q)(t)’

where ® is the distribution function ®(t) = ffoo o(u)du of the standard normal

probability measure with density ¢(u) = %e“z/? Here, and in the sequel, T4

denotes the indicator function of the set A and .S, stands for the partial sum of
the variables Xi,...,X,: Sp(w) := > i, X;(w) with expectation a = E(X;) and
variance 02 = E(X?) — a?.

The following excerpt, the original Latin text, from Bernoulli’s Ars Conjectandi
contains the law of large numbers. We shall see below how the above theorem is re-
lated to Bernoulli’s ideas. In Part Four of the Ars Conjectandi the main proposition
reads as follows{]

Propos. Princip. Sequitur tandem Propositio ipsa, cujus gratia hec
omnia dicta sunt, sed cujus nunc demonstrationem sola Lemma-
tum premissorum applicatio ad presens institutum absolvet. Ut
circumlocutionis tedium vitem, vocabo casus illos, quibus eventus
quidam contingere potest, fecundos seu fertiles; € steriles illos,
quibus idem eventus potest non contingere: nec non erperimenta
fecunda sive fertilia illa, quibus aliquis casuum fertilium evenire
deprehenditur; & infecunda sive sterilia, quibus sterilium aliquis
contingere observatur. Sit igitur numerus casuum fertilium ad nu-
merum sterilium vel precise vel prozime in ratione -, adeoque ad
numerum omnium in ratione Tis seu 7, quam rationem terminent
limites Ttil & 771. Ostendendum est, tot posse capi experimenta,
ut datis quotlibet (puta c) vicibus verisimilius evadat, numerum fer-
tilium observationum intra hos limites quam extra casurum esse,
h.e. numerum fertilium ad numerum omnium observationum ra-

tionem habiturum nec magjorem quam %1, nec minorem quam
r—1

7
The translation of the last part is taken from [7]

Let the number of fertile cases be to the number of sterile cases
precisely or approximately as r to s; or to the number of all the
cases as rtor+s, or asr tot so that this ratio is contained between
the limits (r + 1)/t and (r — 1)/t. It is required to show that it is
possible to take such a number of experiments that it will be in any

9], p. 236.
10Page 28. Other translations are cited in the bibliography.
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number of times (for example, in ¢ times) more likel that the
number of fertile observations will occur between these limits rather
than beyond them, that is, that the ratio of the number of fertile
observations to the number of all of them will be not greater than
(r+ 1)/t and not less than (r — 1)/t

The message told is fairly simple: Calculate the probability of the event that a
partial sum deviates from its mean by at most some fixed amount. Bernoulli solved
this problem in a simple case, at his time, however, it was not as simple as it looks
today.

Of course, Bernoulli’s weak law of large numbers has its trace in the development
of probability theory. In the pre-Kolmogorov era, the nineteenth and beginning of
the twentieth century, the law of large numbers was considered as a core result of
probability theory, and an account of the law as of 1913 was given by Chuprov
the paper being translated and reprinted in [38]. Kolmogorov’s result in 1928-
29 ([31]) gives a necessary and sufficient condition that a sequence of indepen-
dent, identically distributed random variables with law u obeys the weak law
with some (non-random) centering constants (replacing na) if and only if
limy, o0 np({z : 2| > n}) = 0[H

At this point, and as a sort of application to other areas in mathematics, let us
mention that the weak law characterizes B-convex Banach spaces, which are defined
by Beck in [2]. A Banach space E is called B-convex if for some k € N and some
€ > 0 the inequality

gffjfﬂ €121 + - + &rwgl| < k(1 —¢)

holds for any choice of elements x1,...,zr € E of norm 1 Beck showed that
this convexity property of a Banach space is equivalent to the strong law of large
numbers to hold. Later, Marcus and Woyczynski ([37]) added a third equivalent
condition, Bernoulli’'s weak law of large numbers for a sequence X,, (n € N) of
independent, identically distributed, and E-valued symmetric random vectors. This
is Theorem 0.1 in [37] observing that 1-stable Banach spaces are exactly those which
are B-convex™ and that weak convergence to the point mass in 0 is the same as
the weak law of large numbers.

Although the work of Bernoulli was largely neglected at its time of appearance,
it was picked up by de Moivre who in [I7] proved a refinement, now known as the
celebrated central limit theorem[T] In fact, de Moivre proved a local limit theorem

1Tt has been pointed out by Sylla ([6], p. 121) that the correct translation of verisimilius is
more likely. Some translations use the term “more probable”; see page X in [6]. We followed the
translation by Sheynin since it is closer to the original, though not in the best English.

123ee also [27], p. 259.

13 Statisticheskii Vestnik (1914), 1-21.

14The literature on weak laws is quite huge, and spans the area when the conditions in the last
theorems are relaxed: non-identical distribution, arbitrary norming constants (e.g. Feller [22]),
Banach space valued random variables, .. ..

15The infimum is taken over all choices of positive or negative signs for the x;.

16G. Pisier, Sur les espaces qui me contiennent pas de € uniformément, Comptes Rendus
Acad. Sci. Paris 277 (1973), 991-994.

7The terminology is due to G. Pdlya, Uber den zentralen Grenzwertsatz der Wahrschein-
lichkeitsrechnung und das Momentenproblem, Math. Z. 8 (1920), 171-181. This is quoted by H.
Cramér in Mathematical Probability and Statistical Inference. Some personal recollection from
an important phase of scientific development, Intern. Statist. Review 49 (1981), p. 311.
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which says that the probability of the deviation from the mean by ezactly some
fixed amount d € Z — np is asymptotic to
1 a2

77y ¢ ey i
2mnp(1 — p)

In modern terminology it means that this quantity@ is

P(S, =np+d) = ( >pnp+d(1 _p)n(lfp)fd (0 < d+np<n).

np+d
This theorem appears the first time in the 1738 edition of the Doctrine of Chances,
but de Moivre worked on the problem much carlie™ and found Stirling’s formula
at the same time as Stirling himself (published in Miscellanea Analytica de Seriebus
et Quadraturis, Tonson & Watts, London, 1730). De Moivre also remarked that
upon integrating one obtains the central limit theorem (in modern language).

Returning to the Lacey—Philipp result and taking the expectation in (1), we
see that the logarithmic average of the probabilities of the deviation from the mean
converges to the corresponding probability for independent and identically stan-
dard normally distributed random variables. Moreover, equation (II]) also shows
that the quantity in which Bernoulli was interested, ), Vo P(S,, =np+d), can
be approximately calculated using the data provided by the sequence of observed
variables. This means for any = > 0 and n sufficiently large,

1 1
P(|Sy = np| < ne) = P(|Sn —np| < av/n) ~ — > 2 Lf1sk—kpl<avE)-
k=1

In particular, letting  — oo recovers trivially the weak law of large numbers. This
application is in the same line of reasoning as Efron’s bootstrap method in statistics,
but it avoids the resampling procedure. Simulations have shown that the quantile
estimation based on ([TI]) is a reasonable competitor to bootstrap.

2

At the time of Bernoulli (and even today) one should distinguish between the
meaning of phrases such as without reasonable doubt in law and probabilistic terms
describing uncertainty. Franklin writes on page 365 in [23]: “By 1700 law had
served its purpose for the mathematical theory of probability. The service was
never returned. Legal probability has continued to exist, and it is accepted in legal
theory that such notions as proof beyond reasonable doubt involve probability.” Dis-
regarding such difficulties with the notion, the probability of the deviation from the
mean is well defined in Bernoulli’s work, and his viewpoint became of much wider
importance more than a century later. Statistics (from the Italian statistica, mean-
ing statesman) had been introduced as a new branch of science in the middle of the
eighteenth century by Gottfried Achenwall@ and the Gauss—Markov theorem in
the early 1820s ([24]) is one of the first decision theoretic results in statistics. Both
are milestones in the development of statistics. The probability of the deviation
from the mean became a decision theoretic tool to estimate parameters of unknown
distributions and to differentiate between distributions. Its calculation and estima-
tion are therefore crucial for decision making under uncertainty. The emergence of

181n the sequel, P(A) denotes the probability of an event A.
19See Hall [27], p. 469.
208ee his book Noticia politica vulgo statistica.
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statistical decision theory provided a much deeper insight into the relevance and
usefulness of Bernoulli’s original ideas. He certainly had such applications in mind,
though not well articulated.

Having said this, the appreciation of Bernoulli’s contribution to the development
of probability and statistics becomes evident by the following illustration. Suppose,
a mathematical model contains an unknown expectation of a distribution. A simple
statistical task is to estimate the unknown up to a certain precision. First of all
one has to quantify precision. There are two issues here: the upper bound e for the
deviation from the mean, and the probability ¢ of the event that the deviation is
bounded by e. Usually, € is small and ¢ close to one. For example, if the unknown
distributions P are given by a Bernoulli distribution with parameter p € [0, 1}
then the parameter p is the expectation of the unknown probability distribution
P and can be estimated by repeating an experiment n times returning 0 or 1
according to the probability P. By Bernoulli’s result, for a given deviation error e
of n repetitions we have that??

q=P{w:|Xn(w) —p| <e}).
Now, this expression tends to 1 as n increases by the weak law of large numbers.
It follows that p is estimated up to any accuracy with high probability (if only the
observed sample is large enough). It also follows from this that a differentiation of
two means can eventually be made, since X, is close to the true mean with large
probability. Of course, this is a rather imprecise statement for practical purposes,
but it points to the direction where statistical decision theory becomes relevant. To
date, the above reasoning is the heart of statistical decision theory. It is a major
problem in statistics to calculate such probabilities as precisely as possible, either
by mathematical reasoning or by simulation of many sequences of independent
samples and calculating the probabilities of deviations by the Bernoulli method:
the ratio of fertile to all cases. As explained before, the Ars Conjectandi had a
significant influence on de Moivre’s work on the central limit theorem, which in
turn had a tremendous impact on the British probability school in the eighteenth
century. This is nicely described in the article by Schneider [42] and, moreover,
demonstrates the value of Bernoulli’s work for statistics.

Statistical ideas are not found directly in the Ars Conjectandi, although there
is a direct influence on the work of Nikolaus Bernoulli in [8] The law of large
numbers had little or no influence of Nikolaus’s work, since he was interested in
calculating the expected lifetime of the last living among b species over the time
span 0 to t, and showed that this equals bfl. The title of Nikolaus’s dissertation
has to be seen in the light of the difficulty “to apply the theory of games of chance
outside its own domain” 4 At this point it should be mentioned that Montmort’s
Jeux de Hazard was a much more appreciated source for a theory of games of
chance than Bernoulli’s work. More importantly, notice that Chapter Four of the
Ars Conjectandi gains its value as a first step to use “mathematics of probabilities
in civil, moral and economic affairs” P4

21That is P({1}) =1 — P({0}) = p € [0,1].

22WWe use here the statistical notation X, = %(Xl + -+ 4+ X,) for a sequence X1,..., X, of
observations.

23See page 113 in [27].

24This is attributed to Montmort in [43], prepublication version, p. 10.

258ylla [6], p. viii.
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The formulation of the Principal Proposition, as it is called in Bernoulli’s work,
differs from later formulations of the weak law of large numbers; for example, by
Poisson in 183529 An interesting discussion of Bernoulli’s theorem can be found
in Pearson’s article [39]. He claims that all French and German publications on
Bernoulli’s theorem (after Cournot in 184) state the theorem incorrectly by
claiming that accuracy increases with the square root of the number of observations.
Of course, such statements are due to de Moivre Pearson then discusses at length
the number of observations needed to obtain a certain coverage probability and
found that by de Moivre’s result only half or a third of the observations are needed,
in contrast to an application of Bernoulli’s law of large numbers. At the end of
his article he concludes, “Bernoulli saw the importance of a certain problem; so
did Ptolemy, but it would be rather absurd to call Kepler’s or Newton’s solution of
planetary motion by Ptolemy’s name! Yet an error of like magnitude seems to be
made when De Moivre’s method is discussed without reference to its author, under
the heading of ‘Bernoulli’s Theorem’ 7, and a sentence later “The Pars Quarta of
the Ars Conjectandi has not the importance which has often been attributed to it”.
This was written before the axiomatic treatment of probability, and entirely from
a statistician’s viewpoint. Evaluations of historical facts can be quite different, as
can be seen from the quote of Markov’s bicentennial speech.

3

We saw that the art of determining the distribution of a sum of independent,
identically distributed random variables is the core of Jacob Bernoulli’'s Ars Con-
jectandi and still is a central part of probability today. From a purely analytic
viewpoint, the distribution of such a sum of n random variables is the n-fold con-
volution of their common distribution. Thus there is no harm in replacing the real
line by a topological group G and considering G-valued random elementsPd This
turns the problem immediately to Fourier analysis on groups. In the real case,
let p,, denote the probability distribution of ﬁXl, then the central limit theorem

states that the n-fold convolutions of p, converge to some normal distribution on
the real line in the weak topology of measures if X; has zero expectation and finite
second moment. Moreover, for fixed m, p,, converges as well to the m-fold convo-
lution power of the distribution of \/—%N , where NV has the distribution given by the

limiting normal distribution. Probability measures p being the m-fold convolution
power of a rescaled p for each m € N are called stable and characterize all possible
limits of sums of independent, identically distributed random variables (see [41]).
More precisely, let X be a random variable with distribution p. If for each m there
are numbers b,, > 0 and a,, € R such that the m-fold convolution of the distribu-
tion of b, (X — a,,) equals y, then u is called stable. All probability measures for
which the above sequence of convolutions converges to a stable distribution p form
the domain of attraction of p.

26In fact he says that the convergence holds towards the mean of the probabilities.

27THe refers to Antoine Augustine Cournot, Ezposition de la théorie des chances et des proba-
bilités, Paris, 1843.

28The proofs go back to Laplace (Théorie analytique des probabilités (1812)) and de Moivre
([I7], 2nd edition).

29The measurability here is defined through the Borel measurable subsets of G.



380 MANFRED DENKER

More generally, a probability measure p of R is called infinitely divisible if for each
m € N there is a probability measure of which its m-fold convolution is p. These
infinitely divisible measures are characterized by the famous Khinchin formula:
Their characteristic function ¢, (t) = E (e'*X) is given by

¢u(t):exp{wt+/ (et _1_1—|—x2) 22 F(dm)}7

— 00

where v € R is a real constant and I' is a non-decreasing bounded function (so
induces a finite measure) For a stable distribution, the characteristic function is

Pu(t) = exp {int — c[t|* (1 + i sign(t) w(t, o))}
with constants ¢ > 0,0 < a <2, =1 < <1, and v € R, where w(t,a) = tan 7*
for « # 1 and w(t, 1) = 2 log |t|.

Only little can be said about a complete and exact analytic formula of the dis-
tribution of partial sums, excluding of course special examples, such as stable dis-
tributions through their characteristic function ¢,(t) = [ €@ u(dx) or Bernoulli
distribution where the distribution is explicitly given. The general Fourier theory
ensures that the distribution function F' of a probability measure p on R is given
by

1 ) T e—ita _ e—itb
F) = Fla) = 5 Jim [ St

Of course, this development in the direction of Fourier analysis bears ideas that
are not contained in the Ars Conjectandi. However, it forms the backbone of
modern theory extending Bernoulli’s ideas. Going a step further, we end the section
discussing a beautiful result on infinitely divisible distributions on Lie groups. It
is clear that the property of being infinitely divisible can be formulated for any
probability measure on a group. Let G be a locally compact group. A probability
measure p on G is called infinitely divisible if it has roots of any integer order BT Tt is
called embeddable if there is a continuous convolution semigroup {y; : t > 0} such
that u = py. There is a long-standing conjecture that in all connected Lie groups
any infinitely divisible probability is embeddable. It is clear that any measure p in a
continuous convolution semigroup is infinitely divisible. A striking result, obtained
by Dani and McCrudden in 1992 ([I4], Theorem 4.7), states that any connected
Lie group that is representable through a homomorphism p : G — GL(d,R) for
some d > 1 with a discrete kernel has this property. The result has been extended
recently by Dani, Guivarc’h, and ShahP?3 The general case is still open

4

In order to discuss the modes of approximations of probabilities involving par-
tial sums of independent, identically distributed random variables, we begin with
convergence of densities. This is a local theory and provides approximations of

30The integrand is —t2/2 at = 0.

31For every n > 1, p is the n-fold convolution of a probability measure p, so that the latter
probability is then called a convolution root of order n.

32Math. Z. 272 (2012), 361-379.

33Dani and McCrudden [I5] is an excellent recent survey on this topic. As H. Heyer writes in a
review (MathReviews MR2213481) for McCrudden’s 2006 survey, “This is an impressive account
of recent progress on the embedding problem for probability measures on locally compact groups,
a problem of considerable depth, still not solved in full generality.”
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integrals if the convergence is uniform. De Moivre’s theorem is a good example
for such a procedure to approximate the probability of deviations from the mean.
According to the dominating measure for the density, one distinguishes two cases:
the absolutely continuous case when the dominating measure is Lebesgue and the
lattice case when the dominating measure is the counting measure on some lattice.

In the discrete case, de Moivre’s result has a natural formulation in full generality:
Consider a sequence of independent, identically distributed random variables X, X,,
(n > 1) with finite variance 02 > 0 and a lattice distribution; that is, there exist
¢ € R and h > 0 such that P(X € ¢+ hZ) = 1. Gnedenko’s extension ([25]) of de
Moivre’s result is that

U—}{ﬁP(S’n:nc—l—Nh)—ga(

lim sup
n—oo Nez

nc+ Nh —nE(X) —0
ovn N
holds if and only if the span h is maximal. The rate of convergence in this result

was also investigated first by Esseen [20] and later by Petrov [40], the latter showing
that

k—2
(1 + [2|") (x/cﬂnp(sn =nc+ Nh) — o(x) = Y q”(x)> -0 (n7<k72>/z>
v=1

nv/?2
uniformly in x, where x = 1\; T/—"n“ and
v km
w(@) = o) Y Hyax) A me2 7
(k1yomrk) L k! \ (m+ 2)lom 2
1syeeey v m=

where the sum extends over all (ki,...,k,) € Z4 with ky +2ko +--- + vk, = v,
s =ki +ko+ -+ k,, H the lth Chebychev—Hermite polynomial (I > 0) and ~,
the cumulant of order [ > 1 of the distribution

In 1964, Shepp ([44]) proposed a slightly different type of local limit theorems
for integer valued random variables. In this framework, Bernoulli’s approach and
de Moivre’s theorem read as

nlggo VnoP(S, =k, +I) = I|p(),

as (kn, —nFE(X1))/Vno? tends to x, where I is a bounded interval and |I| denotes
the counting measure of I. In fact, Shepp’s theorem is stated only in the case
kn = nE(X;7) = 0. In general, a sequence X,, (n > 1) of independent, identically
distributed random variables satisfies a local limit law in Shepp’s sense if there are
constants a, € R and b, — oo such that for any bounded interval

limb, P(S, =k, +I) = |I|g(z),

asn — oo and (k, —ay) /b, converges to « € R, where |I| denotes the Haar measure
on Z if X, is lattice distributed on Z, and the Haar measure on R otherwise. The
function g is necessarily the density of a stable distribution.

In order to describe the nature of local theorems for the absolutely continuous
case one has to assume that the partial sums have absolutely continuous distribu-
tions. Then, Gnedenko’s theorem ([26]) holds for a sequence X, of independent,

34The book [4I] states these theorems on pp. 187 and 207.
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identically distributed random variables with zero mean and finite, positive variance
o?: Under the assumption that ﬁSn has a density f, for each n > 1,

lim sup |f,(z) — ¢(x)] =0

if and only if some density f, is bounded.

The rate of convergence in this local limit theorem has also been studied by
many authors, Petrov’s result is easily grasped as a generalization of the above rate
theorem for the lattice case.

Two fairly recent developments seem to be in order at this point. A local limit
theorem for Cauchy distributed random variables is easily established for indepen-
dent and identically distributed random variables in the domain of attraction of a
Cauchy law. Such results can also be proved in cases when independence is relaxed,
such as in [I] for Gibbs—Markov dynamical systems aiming for convergence proper-
ties of the Poincaré series. For a Fuchsian group G of the second kind the Poincaré
exponent is defined as that power v for which

> (1 =lg(@))’

geG

diverges for s < v and converges for s > . The Z-extension of the three punctured
sphere is then represented as H\G, where G is a group of divergence type which
means that the above series diverges for s | 1. It is shown in [I] that the Poincaré
series for G is proportional to —In(s — 1) as s | 1. This is so since the associated
geodesic flow on the Riemann surface H\G has Poincaré sections for which the
return map is Gibbs—Markov and the return time satisfies the Cauchy local limit
theorem. Again we see that Bernoulli’s postulate to calculate deviations from the
mean is an essential tool. This example also shows that local limit theorems are
much stronger than central limit theorems and lead to new results as well in other
mathematical disciplines.

The almost sure central limit theorem discussed in Section 1 immediately puts
the question for an almost sure version in terms of a local limit theorem. This is
called an almost sure local limit theorem and is formulated as the convergence of
the logarithmic averages:

k, —na

N
. 1 o
]\}LI)I;O m n2:1 ﬁﬂ{sn:kn+l} == QO(JT)lIl a.S. as ? — X

for any bounded interval I. Such theorems are known: [I8] contains the almost
sure version of de Moivre’s theorem; extensions and clarifications by Burmeiste]
and WeberPd are more recent.

5

By far the most attention for estimating the unknown distribution of partial
sums has been given to the medium range, which means to the approximation of
probabilities of the form

1 t
1 Pl - —a < — R
(5.1) (nsn a_\/ﬁ>, LeR,

35]. Electr. Eng. 55 No. 12 (2004), 68-71.
36Stoch. Anal. Appl. 29 (2011), 779-798.
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under appropriate assumptions on the distribution on X;. This is just the exten-
sion of Bernoulli’s idea by de Moivre and was solved in terms of the central limit
theorem, currently the core of probability theory. The form of the theorem was
extended over the years by Laplace, Lyapunov, Lindeberg, Lévy, and Feller to its
present form. For independent and identically distributed random variables with
finite variance o2 > 0, it states that the above probabilities converge, as n — oo,
to ®(t/o). In fact, the result holds for distributions of X; which are in the domain
of attraction of a normal distribution, which is a slightly larger class, the variance
being replaced by a truncated variance. The most useful versions of a central limit
theorem are those of Lindeberg-Lévy for arrays of independent random variables®]
and the martingale central limit theorem of Billingsley and Ibragimov The lat-
ter theorem states that for a stationary sequence (Xj)r>1 of martingale differences
(i.e. E(Xg|o(X1,...,X,r_1)) = 0) with positive and finite variance o2, the distri-
butions of the sequence S,,/(y/no) follow asymptotically the standard normal law.

Current research entails relaxing the independence condition in the classical cen-
tral limit theorem. One example of doing this is to consider a measure preserving
transformation 7" on some finite measure space (€2, 3, m) and the stationary process
X, = FoT™ (n € N) for a measurable function F': Q — R. There are many central
limit theorems for such processes, the good choices for F are dense in the Lo(m)-
space for aperiodic transformations. This is mainly a topic in dynamical systems
theory. On the other hand, there are purely probabilistic open questions like the
Ibragimov conjecture: “If a stationary process (strictly stationary in the sense of
time series) X,, (n € Z) is uniformly mizing, then the central limit theorem holds
under the assumption that the variance of S, = X7 + -+ + X,, diverges”. This
problem is related to the coboundary representation of X; in the Lo(P)-space, for
if it is such a coboundary, the variance stays bounded 9

Since the central limit theorem estimates P(]S,, — na| < en) even if € tends to 0
at a rate O(n~'/?), it is of much greater use in statistics than Bernoulli’s original
estimate (see Pearson’s remark quoted earlier). In fact, the central limit theorem
plays a central role in non-parametric statistics where only for large sample sizes
type one errors are controllable. For Bernoulli random variables (as a special case
of a more general approach), the central limit theorem also serves to improve error
bounds for statistics by transforming data. This is known as the variance stabilizing
method.

A natural question is to estimate the speed of convergence in the central limit
theorem. A famous result in this vein is the Berry—Esseen theorem (][9], [20]), which
states that for X7 with vanishing first and finite third moment the approximation
by the normal distribution is

E(|X,]? 1
sup | P(S, < av/no) — ®(z)| < (.7975)%11_5.
z€R o

37See the references in [10].

38This was proved independently in [I1] and [28].

39The process is called uniformly mixing if P(B|A) — P(A) = O(ny,) uniformly in A and B for
some sequence 1, — 0, where A is measurable with respect to the o-algebra generated by all X}
with k& < 0 and B is measurable with respect to the o-algebra generated by all X with & > n.
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The least lower bound of the constant is still unknown[d The first result on such
bounds were obtained by Lyapunov ([35]) who needed an additional logarithmic
factor in the estimate. This was removed by Cramér under some additional as-
sumptions which then were shown to reduce to the third moment. It is clear
that the rate in the Berry-Esseen theorem is not improvable since the sum of
Bernoulli random variables (X,,)n>1 with P(X; = 1) = P(X; = —1) = 0.5 satisfies
P(S,=0)= O(ﬁ), again by Bernoulli’s calculations in the Ars Conjectandi. As
a side remark, notice that Bhattacharya obtained such approximation results for
convolutions of probability measures on compact groups which converge to Haar
measure[]

Once the rate of convergence in the approximation of the probabilities of devia-
tion from the mean is established, the natural question is for the analytic expansion
of the probability in (BI]). This is a mathematically highly non-trivial problem. The
books by Bhattacharya and Ranga Rao ([10]) and Petrov ([41]) are good references
for it. Such results are somewhat similar to the expansion formulas mentioned in
the section on local limit theorems. The ingredients for proofs are Fourier anal-
ysis, the expansion of the characteristic function, and some intriguing truncation
techniques.

There is a long history of the extension of the foregoing results to multidimen-
sional random vectors which are assumed to be independent and identically dis-
tributed. In this setting, intervals are replaced by convex sets. A highlight in this
regard is the work [3] of Bentkus and Gdtze on the rate of convergence of quadratic
forms and its application to lattice point problems of quadratic forms in ellipsoids.
We quote only the reference [3] here and review some of the remarkable results.
Let @ be an irrational* positive definite quadratic form in d dimensions, and let
Ey, = {x € R : Q(z) < s}. Then, in dimension > 9, for a positive irrational
quadratic form @ the number of lattice points in Z¢ which lie in a shifted ellipsoid
Es+c (s € Ry, ¢ € R?) deviates from the mean (the volume V; of the ellipsoid E)
by o(Vy/s). Results of this type go back as far as Landau ([34]) who derived the
order Vys~ T4 for d > 1, with refinements by Kriitzel and Nowak (B2]) to the order
Vs~ 1A 43 For special results one has to name Walfisz, Landau, and Jarnik. As a
consequence, for dimension d > 9, Bentkus and Gotze settle affirmatively a conjec-
ture by Davenport and Lewis that in dimension > 5 the gaps of successive values in
Q(Z%) of an irrational quadratic form converge to zero as s tends to infinity. This
is obviously not so if @ is rational. As a corollary, they also reprove Oppenheimer’s
conjecture in case d > 9 by their expansion of probabilities; the general case d > 5
had been settled earlier by Margulis ([36]) using methods from ergodic theory for
group actions.

6

Large deviation theorems were obtained in 1929 by Khinchin ([29]) for binomial
distributions, and later by Smirnov, Lévy, and Fréchet. Khinchin was interested in

40This may be no longer of such interest in the computer age. The constant appearing here is
due to van Beek (see [10], p. 186).

417 Wahrscheinlichkeitstheorie verw. Gebiete 28 (1972), 1-10.

42Irrational means that there is no M # 0 such that the matrix MQ has integer entries.

BN =5/(6d+2) ford > 8 and A = 12/(14d+ 8) for 3 < d < 7.
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the deviation from the mean in the form of

1
P (m(sn -p) < x(”)) )

when lim,, oo 7~ /?2z(n) = 0. Until the beginning of the 1970s (see [41]) this
was called a large deviation problem; today the terminology has changed and it is
considered as moderate deviation. Khinchin derived the estimate

P(S, > /i) = expl— 52 (1 + o(1)],

where x,, T oo with a certain rate of growth. The first celebrated Cramér theorem
(in its stronger form of Petrov [41], p. 218.) says that for z = o(y/n)
_ _ z+1
P(S,, > zoy/n) = (1 — ®(x))exp {x3n Y2\ (xn 1/2)} (1 +0 (W)) )

where ) is a power series (involving the cumulants of X7) converging in a neighbor-
hood of O The assumption here is that Cramér’s condition holds; that is, X7 has
a finite Laplace transform in a neighborhood of 0. These results sketch the scope
for moderate deviations. Under the same assumption, Cramér’s second celebrated
theorem in 1938 ([I3], p. 19) proves a result which has the form of a large deviation
result as it is accepted today. He showed that

1
lim —log P(S, > an) = —I(«a)
n—oo N,
for « > E(X7), where I is the information function (see the discussion below).
Large deviation is directly concerned with the deviation probabilities in Ber-
noulli’s sense. It aims to estimate probabilities of the form

P(S, > an)

when « is larger than the mean (and the analogous expressions when « is smaller
than the mean). Large deviation theory needs much stronger assumptions than
moderate deviation. The standard assumption here is Cramér’s condition.

The widely adopted terminology for a large deviation result is based on Varad-
han’s seminal work in 1966 ([45]) which has all the essential definitions and prop-
erties needed to formulate the large deviation principle. Let S be a complete met-
ric space equipped with the Borel field. A sequence of Borel probability mea-
sures {u, : n > 1} on S is said to have the large deviation property if there
exists a sequence a,, € Ry tending to infinity and a lower semicontinuous function
I:S — [0,00] with compact level sets such that for each closed set C' C S and
open set O C S

1
lim sup — log 1, (C) < — inf I(s),

n—oo Qn seC

lim inf x log p1r, (0) > — inf I(s).

n—00 Oy s€0

The function on the right-hand side is called the information function I. It is a
convex function.

44Cramér’s theorem is in [I3], p. 12.
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For the distributions pu,, of partial sums S,, the free energy function is defined as

: 1 tx
c(t) —nlgngoﬁlog/e i (dx)
for all ¢ € U, the domain of the Laplace transform. It is equal to log Ee!*t for in-
dependent, identically distributed random variables satisfying Cramér’s condition.
It plays a crucial role in deriving the large deviation principles for these random
variables, since by Chebychev’s inequality

. 1 .
hgl—iip - log P(S, > a) < tlél[g c(t) — at,
the converse inequality being a bit more involved.

Varadhan’s result from 1966 is the backbone of the theory today. It calculates
certain integrals under the assumption that the large deviation property holds. The
theory has been further developed by Donsker, Varadhan, and others. Details are
to be found in [I9] (among other excellent monographs).

Large deviation result are not so far apart from Bernoulli’s original goals.
Consider the case of fair coin tossing® Define the function I(z) = zlog(2z)
+ (1 - 2)log(2(1 — z)) for 0 < z < 1 and I(z) = oo for all other z € R. A
simple calculation using binomial coefficients (as Bernoulli did) leads to

(6.1) lim L log P (

n—o00 M

Sn—ﬁ‘ Zne) =— inf I(2).
2 2E(3—e3+e€)
One observes that 1 — I(z) is the entropy of the Bernoulli distribution with pa-
rameter z as long as 0 < z < 1. This is not a coincidence, it holds in general
and is connected to the thermodynamical formalism for shift spaces, as devel-
oped by Ruelle and others. Let us consider the space of all one sided infinite
sequences (z,)nen of zeros and ones. This space has a natural product topology
and a natural map which is the left-shift (the first coordinate is deleted under the
shift map). The pressure P(¢) of a continuous function 4 defined on the space
of infinite sequences is the supremum over all expressions H(u) + f wdp, where
w runs through all shift-invariant probability measures, and where H(u) denotes
the Kolmogorov—Sinai entropy of the measure. For the function ¥ ((z,)nen) =
—log(p)lf1y (x1)—log(1—p)lfy (1), the supremum is attained by the Bernoulli mea-
sure on the shift space with parameter p and hence the projection maps X,, (map-
ping a point in the shift space to its nth coordinate) form a Bernoulli process with
parameter p. Now let f((#y)nen) = I{13(21), and define E(t) = P(tf 4 1) — P(¢)).
Then F is differentiable and

lim log P(S,, > nE'(t)) = —tE'(t) + E(t)

n—oo M
for ¢ > 0. For p = § one easily reduces this to (G.)).

What is discussed up to this point is often called the level 1 large deviation
property. There are three levels, level 2 being the same type of problem replacing
the topology of the real numbers by the weak topology on the space of probability
measures(*d Instead of looking at S, consider the empirical measures defined by

45We follow here R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer,
1985, pp. 11-13.
46Level 3 will not be discussed here.
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Xl, N ,Xni
1 n
pn(w) = ) 6x ()
k=1

where 6, denotes the probability giving probability one to an event if and only if
x belongs to this event. Thus the large deviation property for Bernoulli random
variables has a formulation as random measures and their large deviation property.

Going a step further, there are quite a number of papers dealing with some finer
asymptotic analysis. As an example, Deheuvels, Devroye, and Lynch ([16]) used
Petrov’s theorem] on the rate of convergence in the large deviation principle to
obtain a rate theorem for the Erdds—Rényi law: Let l,, = [,,(«) denote the integer

log(n
part of 3%2)). Then

I Sm+1, — Sm — lna 1

imsu max = a.s.

n_wop 0<m<n—1, log(l,,) 21 (@)

and similarly the limit inferior is = —m a.s. Connecting to Bernoulli’s result,

we see that the maximal number of successes in [, consecutive subtrials in an
overall sequence of n Bernoulli trials is asymptotically proportional to log(l,,). This
counting was considered to be essential by Bernoulli.

7

The terms probability and expectation can be traced back to Cardano, Fer-
mat, and Pascal; apparently not to the science in the ancient world. The logical
treatment of these notions was first developed by C. Huygen in 1656, who con-
nected his theory to games of chance. Bernoulli goes one step further in the Ars
Conjectandi. In Pars Quarta he clearly connects probability to civil, moral, and
economic matters, expressed in its title, Application of the preceding theory to civil,
moral and economic relations. This is expressed in a few words on page 213 in [4]
“Conjecturing some matter means measuring its probability” He then discusses
at length the application to various daily life problems, and, as a conclusion, states
that it is necessary to either determine the probabilities by counting (a priori de-
termination) or to observe similar cases and deduce the unknown probability (a
posteriori determination) from this. The former leads to the law of large numbers,
by asking the question whether this is in principle possible or not: on page 225 in
[4] Jacob writes that still another problem has to be considered of which probably
no one has even thought about, whether an increase of observations would result
in a better approach of the unknown probability, or whether it does not converge
at all or converges to a wrong limit 9

In a letter to Leibniz on October 3, 1703, Jacob describes the content of the Ars
Conjectandi mentioning that most of it has been finished, the connection to the
applications (in the sense of the Pars Quarta) still being missing. He considered
this missing part to be essential. Jacob Bernoulli had a vision, he laid the foundation

47Theory Probab. App. 10 (1986). This is in fact a sharpening of Khinchin’s result for Bernoulli
random variables.

48 According to van der Waerden [46], p. IX.

49 Conjicere rem aliquam est metiri illius probabilitatem. This also explains why he chose the
title Ars Conjectandi.

50The Latin sentence begins “Ulterius aliquid hic contemplandum. ...”
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for its realization with the law of large numbers, and 300 years later we can see
that his vision became one of the important applications of mathematics.
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