Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Ian Musson
Title: Lie superalgebras and enveloping algebras
Additional book information: Graduate Studies in Mathematics, Vol. 131, American Mathematical Society, Providence, RI, 2012, xx+488 pp., ISBN 978-0-8128-6867-6, $87.00, hardcover

References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernšteĭn and D. A. Leĭtes, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series $ {\rm Gl}$ and $ {\rm sl}$, C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1049-1051 (Russian). MR 620836 (82j:17020a)
  • [2] Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $ \mathfrak{g}\mathfrak{l}(m\vert n)$, J. Amer. Math. Soc. 16 (2003), no. 1, 185-231. MR 1937204 (2003k:17007), https://doi.org/10.1090/S0894-0347-02-00408-3
  • [3] Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $ {\mathfrak{q}}(n)$, Adv. Math. 182 (2004), no. 1, 28-77. MR 2028496 (2004m:17018), https://doi.org/10.1016/S0001-8708(03)00073-2
  • [4] Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373-419. MR 2881300 (2012m:17009), https://doi.org/10.4171/JEMS/306
  • [5] Jonathan Brundan and Catharina Stroppel, Gradings on walled Brauer algebras and Khovanov's arc algebra, Adv. Math. 231 (2012), no. 2, 709-773. MR 2955190, https://doi.org/10.1016/j.aim.2012.05.016
  • [6] Shun-Jen Cheng, Ngau Lam, and Weiqiang Wang, Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math. 183 (2011), no. 1, 189-224. MR 2755062 (2012f:17011), https://doi.org/10.1007/s00222-010-0277-4
  • [7] S. J. Cheng, N. Lam, W. Wang, Brundan-Kazhdan-Lusztig conjecture for general Lie superalgebras. arXiv:1203.0092v3.
  • [8] Jonathan Comes and Benjamin Wilson, Deligne's category $ \underline {\rm {Rep}}(GL_\delta )$ and representations of general linear supergroups, Represent. Theory 16 (2012), 568-609. MR 2998810, https://doi.org/10.1090/S1088-4165-2012-00425-3
  • [9] Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197 (97c:17010)
  • [10] Maria Gorelik, Weyl denominator identity for affine Lie superalgebras with non-zero dual Coxeter number, J. Algebra 337 (2011), 50-62. MR 2796063 (2012c:17038), https://doi.org/10.1016/j.jalgebra.2011.04.011
  • [11] Maria Gorelik and Shifra Reif, A denominator identity for affine Lie superalgebras with zero dual Coxeter number, Algebra Number Theory 6 (2012), no. 5, 1043-1059. MR 2968633, https://doi.org/10.2140/ant.2012.6.1043
  • [12] Caroline Gruson, Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 531-553 (French, with English summary). MR 1450424 (98b:17024)
  • [13] Caroline Gruson and Vera Serganova, Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 852-892. MR 2734963 (2012a:17010), https://doi.org/10.1112/plms/pdq014
  • [14] V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96. MR 0486011 (58 #5803)
  • [15] V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5 (1977), no. 8, 889-897. MR 0444725 (56 #3075)
  • [16] Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415-456. MR 1327543 (96j:11056)
  • [17] Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252-268. MR 1149625 (93c:17022), https://doi.org/10.1016/0001-8708(92)90018-G
  • [18] Ian M. Musson, Enveloping algebras of Lie superalgebras: a survey, Azumaya algebras, actions, and modules (Bloomington, IN, 1990) Contemp. Math., vol. 124, Amer. Math. Soc., Providence, RI, 1992, pp. 141-149. MR 1144033 (93b:17012), https://doi.org/10.1090/conm/124/1144033
  • [19] I. B. Penkov, Borel-Weil-Bott theory for classical Lie supergroups, Current problems in mathematics. Newest results, Vol. 32, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 71-124 (Russian). Translated in J. Soviet Math. 51 (1990), no. 1, 2108-2140. MR 957752 (90f:22018)
  • [20] I. Penkov and V. Serganova, Characters of irreducible $ G$-modules and cohomology of $ G/P$ for the Lie supergroup $ G=Q(N)$, J. Math. Sci. (New York) 84 (1997), no. 5, 1382-1412. Algebraic geometry, 7. MR 1465520 (98i:17010), https://doi.org/10.1007/BF02399196
  • [21] Manfred Scheunert, The theory of Lie superalgebras. An introduction, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. MR 537441 (80i:17005)
  • [22] Vera Serganova, Kac-Moody superalgebras and integrability, Developments and trends in infinite-dimensional Lie theory, Progr. Math., vol. 288, Birkhäuser Boston Inc., Boston, MA, 2011, pp. 169-218. MR 2743764 (2011m:17056), https://doi.org/10.1007/978-0-8176-4741-4_6
  • [23] Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra $ {\mathfrak{g}}{\mathfrak{l}}(m\vert n)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607-651. MR 1443186 (98f:17007), https://doi.org/10.1007/PL00001385
  • [24] A. N. Sergeev, Representations of the Lie superalgebras $ {\mathfrak{g}l}(n,\,m)$ and $ Q(n)$ in a space of tensors, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 80-81 (Russian). MR 739101 (86b:17005)
  • [25] Alexander Sergeev, The Howe duality and the projective representations of symmetric groups, Represent. Theory 3 (1999), 416-434 (electronic). MR 1722115 (2000j:20021), https://doi.org/10.1090/S1088-4165-99-00085-0

Review Information:

Reviewer: Vera Serganova
Affiliation: University of California, Berkeley
Email: serganov@math.berkeley.edu
Journal: Bull. Amer. Math. Soc. 50 (2013), 691-696
MSC (2000): Primary 17B35, 17B10, 17B05
DOI: https://doi.org/10.1090/S0273-0979-2013-01418-6
Published electronically: May 1, 2013
Review copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society