Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Alex Degtyarev
Title: Topology of algebraic curves. An approach via dessins d’enfants
Additional book information: Studies in Mathematics, Vol. 44, Walter de Gruyter & Co., Berlin, 2012, xvi+393 pp., ISBN 978-3-11-025591-1, US $181.00

References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275-306. MR 1501429, https://doi.org/10.2307/1989123
  • [2] Enrique Artal Bartolo and José Ignacio Cogolludo-Agustín, On the connection between fundamental groups and pencils with multiple fibers, J. Singul. 2 (2010), 1-18. MR 2763015 (2012a:14070), https://doi.org/10.5427/jsing.2010.2a
  • [3] Denis Auroux, Symplectic 4-manifolds as branched coverings of $ \mathbf {C}\mathbf {P}^2$, Invent. Math. 139 (2000), no. 3, 551-602. MR 1738061 (2000m:53119), https://doi.org/10.1007/s002220050019
  • [4] D. Auroux, S. K. Donaldson, and L. Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003), no. 1, 185-203. MR 1981618 (2004c:57039), https://doi.org/10.1007/s00208-003-0418-9
  • [5] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61 (German). MR 0293615 (45 #2692)
  • [6] Fabrizio Catanese, Differentiable and deformation type of algebraic surfaces, real and symplectic structures, Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Math., vol. 1938, Springer, Berlin, 2008, pp. 55-167. MR 2441412, https://doi.org/10.1007/978-3-540-78279-7_2
  • [7] Oscar Chisini, Il teorema di esistenza delle trecce algebriche. I, II, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 17 (1954), 143-149, 307-311 (1955) (Italian). MR 0071103 (17,86a)
  • [8] J. I. Cogolludo-Agustin and A. Libgober, Mordell-Weil groups of elliptic threefolds and the Alexander module of plane curves, J. Reine Angew. Math., to appear.
  • [9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109. MR 0262240 (41 #6850)
  • [10] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin, 1970 (French). MR 0417174 (54 #5232)
  • [11] Pierre Deligne, Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin, 1981, pp. 1-10 (French). MR 636513 (83f:14026)
  • [12] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302 (French). MR 0422673 (54 #10659)
  • [13] Alexandru Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992. MR 1194180 (94b:32058)
  • [14] Alexandru Dimca, Characteristic varieties and logarithmic differential 1-forms, Compos. Math. 146 (2010), no. 1, 129-144. MR 2581244 (2011g:14019), https://doi.org/10.1112/S0010437X09004461
  • [15] Alexandru Dimca and Alexander I. Suciu, Which 3-manifold groups are Kähler groups?, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 521-528. MR 2505439 (2011f:32041), https://doi.org/10.4171/JEMS/158
  • [16] F. Enriques, Sulla construzione delle funzioni algebriche di due variabili possedenti una data curva diramazione, Ann. Nat. Pure Appl. vol. 1 (1923).
  • [17] Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304 (95m:57046)
  • [18] William Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407-409. MR 569076 (82e:14035), https://doi.org/10.2307/1971204
  • [19] Leila Schneps and Pierre Lochak, editors. Geometric Galois actions. 1. Around Grothendieck's ``Esquisse d'un programme''. London Mathematical Society Lecture Note Series, 242. Cambridge University Press, Cambridge, 1997. MR 1483106 (98e:14003), DOI 10.1017/CBO9780511666124
  • [20] Joe Harris, On the Severi problem, Invent. Math. 84 (1986), no. 3, 445-461. MR 837522 (87f:14012), https://doi.org/10.1007/BF01388741
  • [21] Eriko Hironaka, Alexander stratifications of character varieties, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 555-583. MR 1450425 (98e:14020)
  • [22] F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Mass., 1983, pp. 113-140. MR 717609 (84m:14037)
  • [23] Vik. S. Kulikov, On Chisini's conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 6, 83-116 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 6, 1139-1170. MR 1748562 (2001c:14030), https://doi.org/10.1070/im1999v063n06ABEH000267
  • [24] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472 (2005k:14001b)
  • [25] A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), no. 4, 833-851. MR 683005 (84g:14030)
  • [26] A. Libgober, Alexander invariants of plane algebraic curves, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 135-143. MR 713242 (85h:14017)
  • [27] A. Libgober, Characteristic varieties of algebraic curves, computation (Eilat, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 215-254. MR 1866902 (2003e:14008)
  • [28] Anatoly Libgober, Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128 (2009), no. 1, 1-31. MR 2470184 (2010g:32026), https://doi.org/10.1007/s00229-008-0221-8
  • [29] Anatoly Libgober and Sergey Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337-361. MR 1761630 (2001j:52032), https://doi.org/10.1023/A:1001826010964
  • [30] B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin, 1981, pp. 107-192. MR 644819 (83c:14008)
  • [31] B. Moishezon, The arithmetic of braids and a statement of Chisini, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 151-175. MR 1282761 (95d:20069), https://doi.org/10.1090/conm/164/01591
  • [32] Boris Moishezon and Mina Teicher, Braid group technique in complex geometry. V. The fundamental group of a complement of a branch curve of a Veronese generic projection, Comm. Anal. Geom. 4 (1996), no. 1-2, 1-120. MR 1393558 (97j:14041)
  • [33] Madhav V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305-344. MR 732347 (86d:14027)
  • [34] Mutsuo Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann. 218 (1975), no. 1, 55-65. MR 0396556 (53 #419)
  • [35] Francesco Severi, Vorlesungen über algebraische Geometrie (German), Teubner, Leipzig, 1921.
  • [36] Domingo Toledo, Projective varieties with non-residually finite fundamental group, Inst. Hautes Études Sci. Publ. Math. 77 (1993), 103-119. MR 1249171 (94k:14008)
  • [37] Mina Teicher, New invariants for surfaces, Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math., vol. 231, Amer. Math. Soc., Providence, RI, 1999, pp. 271-281. MR 1707349 (2001c:14040), https://doi.org/10.1090/conm/231/03366
  • [38] Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), no. 1-4, 255-267. MR 1506962, https://doi.org/10.2307/2371128
  • [39] Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), no. 2, 305-328. MR 1506719, https://doi.org/10.2307/2370712
  • [40] Oscar Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32 (1931), no. 3, 485-511. MR 1503012, https://doi.org/10.2307/1968247
  • [41] Oscar Zariski, On the topology of algebroid singularities, Amer. J. Math. 54 (1932), no. 3, 453-465. MR 1507926, https://doi.org/10.2307/2370887
  • [42] Oscar Zariski, Algebraic surfaces, Second supplemented edition, with appendices by S. S. Abhyankar, J. Lipman, and D. Mumford, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61, Springer-Verlag, New York, 1971. MR 0469915 (57 #9695)

Review Information:

Reviewer: Anatoly Libgober
Affiliation: Department of Mathematics University of Illinois at Chicago Chicago, Illinois
Email: libgober@uic.edu
Journal: Bull. Amer. Math. Soc. 51 (2014), 479-489
MSC (2010): Primary 14H30, 14H45, 14H57, 14J17, 14J27, 20F36, 57M05
DOI: https://doi.org/10.1090/S0273-0979-2014-01444-2
Published electronically: March 17, 2014
Additional Notes: The author was supported during writing this review by a Simons Foundation grant
Review copyright: © Copyright 2014 American Mathematical Society
American Mathematical Society