Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: A. Plakhov
Title: Exterior billiards: systems with impacts outside bounded domains
Additional book information: Springer, New York, 2012, xiii+284 pp., ISBN 978-1-4614-4480-0, US $109.00

References [Enhancements On Off] (What's this?)

  • [1] Pavel Bachurin, Konstantin Khanin, Jens Marklof, and Alexander Plakhov, Perfect retroreflectors and billiard dynamics, J. Mod. Dyn. 5 (2011), no. 1, 33-48. MR 2787596 (2012d:37019), https://doi.org/10.3934/jmd.2011.5.33
  • [2] M. Berry, Three laws of discovery in http://michaelberryphysics.wordpress.com/quotations/
  • [3] M. Bialy, A remark on the number of invisible directions for a smooth Riemannian metric, arXiv:1305.2736.
  • [4] Giuseppe Buttazzo, A survey on the Newton problem of optimal profiles, Variational analysis and aerospace engineering, Springer Optim. Appl., vol. 33, Springer, New York, 2009, pp. 33-48. MR 2573703, https://doi.org/10.1007/978-0-387-95857-6_3
  • [5] Giuseppe Buttazzo and Bernhard Kawohl, On Newton's problem of minimal resistance, Math. Intelligencer 15 (1993), no. 4, 7-12. MR 1240664, https://doi.org/10.1007/BF03024318
  • [6] Herman H. Goldstine, A history of the calculus of variations from the 17th through the 19th century, Studies in the History of Mathematics and Physical Sciences, vol. 5, Springer-Verlag, New York, 1980. MR 601774 (83i:01036)
  • [7] Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 1, 55-97. MR 2457072 (2010d:35399), https://doi.org/10.1090/S0273-0979-08-01232-9
  • [8] Ulf Leonhardt and Thomas Philbin, Geometry and light. The science of invisibility, Dover Publications Inc., Mineola, NY, 2010. MR 2798945 (2012f:53001)
  • [9] Isaac Newton, Mathematical principles of natural philosophy. Vol. 1: The motion of bodies, Translated into English by Andrew Motte in 1729. The translations revised, and supplied with an historical and explanatory appendix, by Florian Cajori, University of California Press, Berkeley, 1962. MR 0175747 (31 #24a)
  • [10] I. Newton, A letter of Mr. Isaac Newton, of the University of Cambridge, containing his new theory about light and color, Philosophical Transactions of the Royal Society 6 (1671), 3075-3087.
  • [11] Alexander Plakhov, Mathematical retroreflectors, Discrete Contin. Dyn. Syst. 30 (2011), no. 4, 1211-1235. MR 2812962 (2012f:37080), https://doi.org/10.3934/dcds.2011.30.1211
  • [12] Alexander Plakhov and Vera Roshchina, Invisibility in billiards, Nonlinearity 24 (2011), no. 3, 847-854. MR 2772626 (2012a:37072), https://doi.org/10.1088/0951-7715/24/3/007
  • [13] Alexander Plakhov, Tatiana Tchemisova, and Paulo Gouveia, Spinning rough disc moving in a rarefied medium, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010), no. 2119, 2033-2055. MR 2652732 (2011j:76152), https://doi.org/10.1098/rspa.2009.0518
  • [14] Serge Tabachnikov, Billiards, Panor. Synth. 1 (1995), vi+142 (English, with English and French summaries). MR 1328336 (96c:58134)
  • [15] V. M. Tikhomirov, Stories about maxima and minima, Mathematical World, vol. 1, American Mathematical Society, Providence, RI, 1990. Translated from the 1986 Russian original by Abe Shenitzer. MR 1152027 (92k:49002)
  • [16] Cédric Villani, Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. MR 2459454 (2010f:49001)
  • [17] Theme Issue ``Flow-control approaches to drag reduction in aerodynamics: progress and prospects'', Phil. Trans. of the Royal Soc. A, 369, 2011.

Review Information:

Reviewer: Serge Tabachnikov
Affiliation: Department of Mathematics The Pennsylvania State University University Park, Pennsylvania
Email: tabachni@math.psu.edu
Journal: Bull. Amer. Math. Soc. 51 (2014), 519-526
MSC (2010): Primary 37D50, 49Q10, 78A05
DOI: https://doi.org/10.1090/S0273-0979-2014-01452-1
Published electronically: March 11, 2014
Additional Notes: Supported by the NSF grant DMS-1105442.
Review copyright: © Copyright 2014 American Mathematical Society
American Mathematical Society