Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Tomasz Downarowicz
Title: Entropy in dynamical systems
Additional book information: New Mathematical Monographs, Vol. 18, Cambridge University Press, Cambridge, 2011, xii$+$391 pp., ISBN 978-0-521-88885-1, US $101.00

References [Enhancements On Off] (What's this?)

  • [AKM65] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 0175106 (30 #5291)
  • [BFF02] Mike Boyle, Doris Fiebig, and Ulf Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), no. 5, 713-757. MR 1924775 (2003g:37024), https://doi.org/10.1515/form.2002.031
  • [Bo10] Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217-245. MR 2552252 (2011b:37010), https://doi.org/10.1090/S0894-0347-09-00637-7
  • [Bo12] Lewis Bowen, Every countably infinite group is almost Ornstein, Dynamical systems and group actions, Contemp. Math., vol. 567, Amer. Math. Soc., Providence, RI, 2012, pp. 67-78. MR 2931910, https://doi.org/10.1090/conm/567/11234
  • [Bu97] Jérôme Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. MR 1469107 (99g:58071), https://doi.org/10.1007/BF02773637
  • [Bu11] David Burguet, $ \mathcal {C}^2$ surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), no. 1, 191-236. MR 2836054 (2012k:37049), https://doi.org/10.1007/s00222-011-0317-8
  • [DF05] Tomasz Downarowicz and Bartosz Frej, Measure-theoretic and topological entropy of operators on function spaces, Ergodic Theory Dynam. Systems 25 (2005), no. 2, 455-481. MR 2129106 (2006k:47024), https://doi.org/10.1017/S014338570400032X
  • [DL11] T. Downarowicz and Y. Lacroix, The law of series, Ergodic Theory Dynam. Systems 31 (2011), no. 2, 351-367. MR 2776379 (2012h:37009), https://doi.org/10.1017/S0143385709001217
  • [DM09] Tomasz Downarowicz and Alejandro Maass, Smooth interval maps have symbolic extensions: the antarctic theorem, Invent. Math. 176 (2009), no. 3, 617-636. MR 2501298 (2010d:37038), https://doi.org/10.1007/s00222-008-0172-4
  • [DN05] Tomasz Downarowicz and Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), no. 3, 453-499. MR 2178700 (2006j:37021), https://doi.org/10.1007/s00222-004-0413-0
  • [Do01] Tomasz Downarowicz, Entropy of a symbolic extension of a dynamical system, Ergodic Theory Dynam. Systems 21 (2001), no. 4, 1051-1070. MR 1849601 (2002e:37016), https://doi.org/10.1017/S014338570100150X
  • [Do05] Tomasz Downarowicz, Entropy structure, J. Anal. Math. 96 (2005), 57-116. MR 2177182 (2006g:37016), https://doi.org/10.1007/BF02787825
  • [Do11b] Tomasz Downarowicz, A mathematical approach to the law of series, Wiad. Mat. 47 (2011), no. 1, 1-16 (Polish). MR 2961805
  • [DS03] Tomasz Downarowicz and Jacek Serafin, Possible entropy functions, Israel J. Math. 135 (2003), 221-250. MR 1997045 (2004c:37013), https://doi.org/10.1007/BF02776059
  • [DS12] T. Downarowicz and J. Serafin, A short proof of the Ornstein theorem, Ergodic Theory Dynam. Systems 32 (2012), no. 2, 587-597. MR 2901361, https://doi.org/10.1017/S0143385711000265
  • [FRW11] Matthew Foreman, Daniel J. Rudolph, and Benjamin Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2) 173 (2011), no. 3, 1529-1586. MR 2800720 (2012k:37006), https://doi.org/10.4007/annals.2011.173.3.7
  • [FW04] Matthew Foreman and Benjamin Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 3, 277-292. MR 2060477 (2005c:37006)
  • [Ka07] Anatole Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn. 1 (2007), no. 4, 545-596. MR 2342699 (2008i:37001), https://doi.org/10.3934/jmd.2007.1.545
  • [Ko58] A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861-864 (Russian). MR 0103254 (21 #2035a)
  • [KL11] David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501-558. MR 2854085, https://doi.org/10.1007/s00222-011-0324-9
  • [KS79] Michael Keane and Meir Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2) 109 (1979), no. 2, 397-406. MR 528969 (80f:28024), https://doi.org/10.2307/1971117
  • [Or70a] Donald Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337-352 (1970). MR 0257322 (41 #1973)
  • [Or70b] Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339-348 (1970). MR 0274716 (43 #478a)
  • [Or73] Donald S. Ornstein, An example of a Kolmogorov automorphism that is not a Bernoulli shift, Advances in Math. 10 (1973), 49-62. MR 0316682 (47 #5229)
  • [OW80] Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161-164. MR 551753 (80j:28031), https://doi.org/10.1090/S0273-0979-1980-14702-3
  • [OW87] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. MR 910005 (88j:28014), https://doi.org/10.1007/BF02790325
  • [Se06] Jacek Serafin, Finitary codes, a short survey, Dynamics & stochastics, IMS Lecture Notes Monogr. Ser., vol. 48, Inst. Math. Statist., Beachwood, OH, 2006, pp. 262-273. MR 2306207 (2008a:37009), https://doi.org/10.1214/lnms/1196285827
  • [St75] A. M. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR 223 (1975), no. 2, 300-302 (Russian). MR 0409769 (53 #13521)

Review Information:

Reviewer: L. Bowen
Affiliation: Department of Mathematics University of Texas at Austin
Email: lpbowen@math.utexas.edu
Journal: Bull. Amer. Math. Soc. 51 (2014), 669-674
MSC (2010): Primary 37A15, 37A20, 03E15
DOI: https://doi.org/10.1090/S0273-0979-2014-01445-4
Published electronically: May 13, 2014
Review copyright: © Copyright 2014 American Mathematical Society
American Mathematical Society