BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY!

Volume 51, Number 4, October 2014, Pages 597648
S 0273-0979(2014)01456-9

Article electronically published on May 9, 2014

1.
2.

2.1.
2.2.
2.3.
2.4.
2.5.

HOMOTOPY TYPE THEORY
AND VOEVODSKY’S UNIVALENT FOUNDATIONS

ALVARO PELAYO AND MICHAEL A. WARREN

ABSTRACT. Recent discoveries have been made connecting abstract homotopy
theory and the field of type theory from logic and theoretical computer science.
This has given rise to a new field, which has been christened homotopy type
theory. In this direction, Vladimir Voevodsky observed that it is possible to
model type theory using simplicial sets and that this model satisfies an addi-
tional property, called the Univalence Aziom, which has a number of striking
consequences. He has subsequently advocated a program, which he calls uni-
valent foundations, of developing mathematics in the setting of type theory
with the Univalence Axiom and possibly other additional axioms motivated by
the simplicial set model. Because type theory possesses good computational
properties, this program can be carried out in a computer proof assistant. In
this paper we give an introduction to homotopy type theory in Voevodsky’s
setting, paying attention to both theoretical and practical issues. In particu-
lar, the paper serves as an introduction to both the general ideas of homotopy
type theory as well as to some of the concrete details of Voevodsky’s work
using the well-known proof assistant Coq. The paper is written for a general
audience of mathematicians with basic knowledge of algebraic topology; the
paper does not assume any preliminary knowledge of type theory, logic, or
computer science. Because a defining characteristic of Voevodsky’s program
is that the Coq code has fundamental mathematical content, and many of the
mathematical concepts which are efficiently captured in the code cannot be ex-
plained in standard mathematical English without a lengthy detour through
type theory, the later sections of this paper (beginning with Section [3)) make
use of code; however, all notions are introduced from the beginning and in a
self-contained fashion.

CONTENTS

Introduction

Origins, basic aspects, and current research
The homotopy theoretic interpretation of type theory
Dependent products
Inductive types
Groupoids
The univalent model of type theory

Received by the editors October 20, 2012.
2010 Mathematics Subject Classification. Primary 03-02; Secondary 03-B15, 68N18, 55P99.
The first author was partly supported by NSF CAREER Award DMS-1055897, Spain Ministry
of Science Grant MTM 2010-21186-C02-01, and Spain Ministry of Science Sev-2011-0087. He also
received support from NSF Grant DMS-0635607 during the preparation of this paper.
The second author received support from the Oswald Veblen Fund and NSF Grant DMS-
0635607 during the preparation of this paper.

EEEEEEE

©2014 American Mathematical Society

597

http://www.ams.org/bull/
http://www.ams.org/bull/
http://www.ams.org/jourcgi/jour-getitem?pii=S0273-0979-2014-01456-9

598 A. PELAYO AND M. A. WARREN

2.6. The univalent perspective

2.7. Computational aspects

2.8. Reasoning about spaces in type theory

3. Basic Coq constructions

3.1. The Coq proof assistant

3.2. Types and terms in Coq

3.3. A direct definition involving function spaces
3.4. An indirect definition involving function spaces
4. Some basic inductive types

4.1. The inductive type of natural numbers

4.2. Fibrations and the total space of a fibration

5. The path space

5.1. Groupoid structure of the path space

5.2. The functorial action of a continuous map on a path
6. Transport

6.1. Homotopy and homotopy equivalence

6.2. Forward and backward transport

6.3. Paths in the total space

7. Weak equivalences and homotopy equivalences
7.1. Contractibility

7.2. Homotopy fibers

7.3. Weak equivalences

7.4. Weak equivalences and homotopy equivalences
8. The Univalence Axiom and some consequences
8.1. The Univalence Axiom

8.2. An equivalent formulation of the Univalence Axiom
8.3. Function extensionality

8.4. Closure of h-levels under arbitrary products
8.5. The total space and h-levels

8.6. The unit type and contractibility

8.7. Some propositions

8.8. The h-levels of h-universes

9. Future directions

Acknowledgments

About the authors

References

EEEEEEEEEEEEEEEEREEEEEEREEEEEEEEEEEE

1. INTRODUCTION

Type theory is a branch of mathematical logic which developed out of the work
of Alonzo Church [T4HI6] and which has subsequently found many applications in
theoretical computer science, especially in the theory of programming languages
[58]. For instance, the notion of datatype in programming languages derives from
the type theoretic notion of type. Recently, a number of deep and unexpected
connections between a form of type theory (introduced by Per Martin-Lof [29]
[5IH53]) and homotopy theory have been discovered, opening the way to a new
research area in mathematics and theoretical computer science which has recently

HOMOTOPY TYPE THEORY 599

been christened homotopy type theory. Due to the nature of the mathematical
results in homotopy type theory, we believe that there is great potential for future
research in this field to have a considerable impact on a number of areas of pure
and applied mathematics, as well as on the practice of mathematics.

In 1998, Hofmann and Streicher [29] constructed a model of Martin-Lof type
theory in the category of groupoids (see Section 2.4). They also observed that
the data of type theory itself naturally gives rise to a kind of co-groupoid structure
(although they did not prove this for any precise definition of co-groupoid). In 2001,
Moerdijk speculated that there might be some connection between Quillen model
categories and type theory. Then between 2005 and 2006 Awodey and Warren [5L[80,
[81] and Voevodsky [(5H78] independently understood how to interpret type theory
using ideas from homotopy theory (in the former case, using the general machinery
of Quillen model categories and weak factorization systems, and in the latter case
using simplicial sets). Subsequently, around 2009, Voevodsky [76] realized that the
model of type theory in simplicial sets satisfies an additional axiom, which he called
the Univalence Aziom, that does not hold in general (see Section Z1]). Crucially,
satisfaction of the Univalence Axiom is a property which distinguishes Voevodsky’s
model of type theory in simplicial sets from the more familiar set theoretic model
(it does not hold in the latter).

These results and others (described in more detail below) give rise to what might
be called the univalent perspective, wherein one works in a formal system (namely,
type theory augmented by additional axioms, such as the Univalence Axiom, which
hold in the simplicial set model) which gives us at the outset the world of spaces
(homotopy types), without having first to “build” them from the empty set and
basic operations on sets. In this setting, all of the sets are still available, and it is
consistent for the sets to possess their usual properties (in the simplicial set model
they are exactly the familiar ZFC sets), but they are “carved out of” or extracted
from the universe as discrete spaces.

Something which is not revealed in this simple comparison is that it is consider-
ably easier to extract sets from the world of homotopy types than it is to construct
homotopy types from sets. It is also easier to work with “higher-level” mathemati-
cal structures in the univalent setting than in the familiar set theoretic setting. We
refer to Section for further information in this direction.

Although interesting in its own right, this perspective becomes significantly more
notable in light of the good computational properties of the kind of type theory
employed here. In particular, type theory forms the underlying theoretical frame-
work of several computer proof assistants such as Agda and Coq (see [I8] and [9],
respectively), and these can be used to formalize mathematics done in the univalent
setting.

In practical terms, this means that it is possible to develop mathematics involving
spaces in computer systems which are capable of verifying the correctness of proofs
and of providing some degree of automation of proofs. We refer the reader to [69]

TABLE 1. Sets and spaces from set theoretic and univalent perspectives.

| set theoretic univalent
spaces | constructed given
sets given extracted

600 A. PELAYO AND M. A. WARREN

and [27] for two accounts of computer proof assistants (and related developments)
written for a general mathematical audience.

Since his aforementioned discoveries, Voevodsky has been advocating the formal-
ization of mathematics in proof assistants, as well as greater interaction between the
developers of computer proof assistants and pure mathematicians. He has himself
written thousands of lines of code in the Coq proof assistant, documenting topics
ranging from the development of homotopy theoretic notions and proofs of new
results in type theory, to the formalization of the basics of abstract algebra (see
[79] for a survey of the library written by Voevodsky himself).

Voevodsky’s univalent perspective, as detailed in his Coq files, is a unique view
of mathematics, and we believe that it deserves to be more widely known. Unfor-
tunately, for a mathematician without some background in type theory, homotopy
theory, and category theory, we believe that the prospect of reading thousands of
lines of Coq code is likely rather daunting (indeed, it may be daunting even for
those with the prerequisites listed above). In this paper we attempt to remedy this
by providing an introduction to both homotopy type theory and the univalent per-
spective, as well as to some of the material contained in Voevodsky’s Coq files. It is
our hope that the reader who is not interested in the Coq code but who is curious
about homotopy type theory will benefit from an account of this field specifically
targeted at a general mathematical audience. For those who are interested in Coq
code, we believe that this paper can act as an accessible introduction. Indeed, it is
our ultimate aim that this paper will encourage other mathematicians to become
involved in this area and in the use of computer proof assistants in general.

Disclaimers. This article is written for a broad audience of mathematicians who
are not necessarily familiar with type theory and homotopy theory (a briefer in-
troduction can be found in [4]). Because of the introductory nature of the article,
we are less precise than one would be in a research article. This is especially true
when it comes to describing type theory and Coq, where we eschew excessive termi-
nology and notation in favor of a more informal approach. For those readers with
the requisite background in logic and category theory who are interested in a more
detailed account, we refer to [2]. Needless to say, in the present article the authors
have no intention of being comprehensive; this is merely an invitation to a new and
exciting subject. For a more comprehensive introduction to homotopy type theory
and with a somewhat complementary focus and perspective, see the new book [32].

Readers who do not intend to implement proofs in Coq and who are only inter-
ested in understanding the main ideas of Voevodsky’s program will be primarily
interested in Sections [and Those who, in addition, are interested in proof
assistants and some of the basics of Coq should also read Sections[Bland @l Those
more ambitious readers who want a deeper understanding or who are interested in
working on this program should also read Sections Bl B [and Bl These sections
introduce the concepts of homotopy type theory and Voevodsky’s program, and we
believe that they are better explained in the context of Coq code. Finally, Section
elaborates on some major open problems and research directions.

There are three main reasons we have chosen to include a significant amount of
Coq code in the body of this paper. First, as we understand it, one of the core
aims of Voevodsky’s program is to encourage the adoption of proof assistants as a
means of formally verifying mathematical proofs, while at the same time providing
theoretical insights from mathematics which will lead to advances in the technology

HOMOTOPY TYPE THEORY 601

of proof assistants. Second, much of Voevodsky’s own work in univalent founda-
tions can be found in his Coq libraries. However, without an introduction geared
towards his development, this mathematical work remains inaccessible to the av-
erage mathematician. We believe that the inclusion of Coq code here will make
Voevodsky’s work in this area accessible to those who are interested. Finally, the
Coq code has fundamental mathematical content, and many of the mathematical
concepts which are efficiently captured in the code cannot be explained in standard
mathematical English without a lengthy detour through type theory. While such a
detour is certainly worth making for the interested mathematician, we believe that
its inclusion here would be unwarranted.

There are already a number of introductions to Coq available (see for instance [9])
which are far more comprehensive and precise than this article in their treatment
of the proof assistant itself. However, such introductions inevitably make use of
features of the Coq system which do not enter into (or are even incompatible with)
the univalent perspective. As such, we warn the reader that this paper is not a Coq
tutorial: it is an introduction to the univalent perspective which along the way also
describes some of the basic features of Coq.

Finally, Coq is not an automatic theorem prover, but rather an interactive the-
orem prover: it helps one to verify the correctness of proofs which are themselves
provided by the user[t

2. ORIGINS, BASIC ASPECTS, AND CURRENT RESEARCH

This section gives an overview of the origins of homotopy type theory and Vo-
evodsky’s univalent perspective. We will introduce type theory—already with the
homotopy theoretic interpretation of [51[76] in mind—by analogy with certain de-
velopments and constructions in algebraic topology. This approach is admittedly
anachronistic, but we hope that it will serve as an accessible starting point for
readers coming from outside of type theory. Along the way we will try to give an
idea of the historical development of the field. However, we make no attempt to
provide a comprehensive history of homotopy theory or type theory. For the early
history of homotopy theory we refer to [21].

2.1. The homotopy theoretic interpretation of type theory. Although the
mathematical notion of type first appears in Russell’s work [61] on the foundations
of mathematics, it was not until the work of Church [I5] that type theory in its
modern form was born. Later, building on work by Curry [20], Howard [31], Tait

[72], Lawvere [39], de Bruijn [II], Scott [62], and others, Martin-Lof [29[51H53]

developed a generalization of Church’s system, which is now called dependent or
Martin-Lif type theory. We will be exclusively concerned with this form of type
theory and so the term “type theory” henceforth refers to this particular systemH

ITechnically, it is possible to automate proofs to a large extent in Coq (via the built-in tactics
language), but, aside from a minor amount of automation implicit in the “tactics”, we employ
below, we will not go into details regarding these features of Coq. The interested reader might
consult [I3] for a good introduction to Coq which pays particular attention to automation.

2We caution the reader that there are indeed many different kinds of type theory. Explicitly,
we are concerned with the intensional form of dependent type theory. One can ask, “But what
is a type theory?” This is an interesting question. However, just as the question “What is a set
theory?” is eschewed in most (if not all) surveys of set theory (there are also many different kinds
of set theory), we will not consider this question here.

602 A. PELAYO AND M. A. WARREN

Type theory, like set theory, is a formal theory which is given by a collection
of rules. Anyone interested in type theory should at some point study these rules,
but doing so is not strictly necessary in order to give some flavor of the theory. As
such, we choose to abstain from giving a fully formal presentation of type theory.
There is however a difference between set theory and type theory at this formal
level. Formulating set theory precisely requires all of the deductive machinery of
(first-order) logic in addition to the axioms describing the behavior of sets. In this
way, set theory (like, say, the theory of rings) is built on top of logic. In type
theory by contrast all of the deductive machinery is built in to the theory itself.
Consequently, the formal syntax of type theory may appear at first glance more
complicated than the formal syntax of set theory. This apparent complexity is not
without reason: it gives rise to many of the good properties and applications of
type theory.

Type theory is concerned principally with expressions of the form

a: A

which asserts that the term a is of type A. Here we already see a difference with
set theory: in set theory all that we can speak about are sets, whereas type theory
is concerned with both types and terms.

There are a number of ways that a : A has traditionally been motivated:

(1) Ais aset and a is an element of A.
(2) Ais a problem and a is a solution of A.
(3) A is a proposition and a is a proof of A.

Roughly, of the perspectives enumerated here, the first is due to Russell [61], the
second is due to Kolmogorov [38], and the third—usually called the Curry—Howard
correspondence—is due to Curry and Howard [31]. We will say more about these
three motivations in the sequel. Although (1)—(3) are often given as a heuristic way
of motivating the notions of types and terms, they can be made mathematically
precise. (1) is the most pertinent for us.

The starting point for understanding the connections between homotopy theory
and type theory is to consider a fourth alternative to these motivations:

(4) A is a space and a is a point of A.

That is, (4) is the generalization of (1) to spaces which are not necessarily discrete.
We will be intentionally vague about exactly what kinds of spaces we are consider-
ing, but we recommend that readers have in mind, e.g., topological spaces (better
yet) CW-complexes, or (still better yet) Kan complexes (in which case, “point”
means 0-simplex). The remarkable thing about (4) is that it helps to clarify certain
features of type theory which originally seemed odd, or even undesirable, from the
point of view of interpretations (1)—(3) above.

In addition to the kinds of types and terms described above, we also may consider
types and terms with parameters. These are usually called dependent types and
terms. E.g., when B is a type, we write

x: Bt E(z),

to indicate that we have a type E(z) which is parameterized by B (here z is a
variable). In terms of the motivation (1) above in terms of sets, we would think
of this as a B-indexed family (E,)zep. In terms of (3), we think of this as a
predicate on B, i.e., a property of terms of type B. From the homotopy theoretic

HOMOTOPY TYPE THEORY 603

gliie

B.
type theory homotopy theory
x: Bk E(x) p: E — B is a fibration over B
x: Bl s(x): E(x) s is a section of p

FiGURE 1. Homotopy theoretic interpretation of dependent types
and terms.

point of view (4), we think of such a type as describing a fibration E — B over
the space B. Technically, fibrations are maps satisfying a certain homotopy lifting
property; informally, they may be thought of as families of spaces (E,)yep which
“fit together” in accordance with the homotopy theoretic structure of the base space
B.

Similarly, we think of a parameterized term

x:BFs(z): E(x)

as a continuous section of the fibration £ — B. Types and terms are allowed to
depend on finitely many other types. L.e., we may have

s A e Ag(m), ey s Ap(, e 1) E B (2, X))

Of course, none of this would be useful without being given some types and terms
to start with and some rules for generating new types and terms from old ones. It
is to these that we now turn.

2.2. Dependent products. Given a dependent type @ : B F E(x), there ex-
ists a type [[,.5 E(z) called the dependent product of x : B + E(z). Intuitively,
[L..5 E(x) is a kind of parameterized function space. In the set theoretic interpre-
tation this is the usual set-theoretic product [[,z . of the family of sets (E;)ep-
From the homotopical point of view, this operation takes a fibration £ — B and
gives back the space of all continuous sections of the fibration. That is, we should
think of a point s : [],.5 E(x) of this type as corresponding to a continuous section

B————E

o

The rules for dependent products are consistent with this interpretation. In
particular, we have a rule which states that if we are given a term (section)
x : Bt s(x): E(x), then there is a corresponding term A,.p s(z) : [],.5 E(x).
This rule is often expressed as

604 A. PELAYO AND M. A. WARREN

x:BFs(z): E(x)

A s(x) : [[,.5 E(z)

which indicates that whenever data of the form above the line is provided, then
we have the term indicated below the line. Here the variable x is bound in the
term A;.p s(x) and in the type [[,.5 E(x). Le., a continuous section of £ — B
determines a point in the space of all such continuous sections.

The next rule shows us how to use terms of dependent product type. Given
terms f : [[,.5 E(x) and b : B, we obtain a further term app(f,b) : E(b). Written
in the form introduced above, this rule can be stated as

[l E(x) b: B
app(/f,b) : E(b)
In the interpretation the term app(f,b) corresponds to the result f(b) of applying
the function f to the point b.
The final rule governing dependent products describes the interaction between
application and the “A-abstraction” ..z s(x):

x:BFs(x): E(x) b:B

app(A\s:p s(x),b) = s(b) : E(b)
The dependent product can be used to construct function spaces. Given two types
A and B, the “function space” type B — A is constructed by regarding (trivially)
the type A as being parameterized by B (i.e., : B+ A, which corresponds to the
trivial fibration 71 : B x A — B). Then we define B — A to be the dependent
product [[,.5 A. We will now turn to some of the further ways of constructing
types.

2.3. Inductive types. Among all of the types which can be constructed, some
of the most significant and interesting are the inductive types. In non-technical
terms, inductive types are types which are freely generated in an appropriate (type
theoretic) sense. Before describing in more detail the notion of inductive type, we
will first consider a simple example.

The most familiar example of an inductive type is the type nat of natural num-
bers. As a type, nat is freely generated by the following data:

e a term O : nat (the natural number zero); and
e a term x : nat - S(x) : nat (the successor function).

To say that nat is freely generated by this data is to say that it is the smallest
space possessing a term and an endomorphism subject to no further conditions.
To say that it is the smallest is important. For example, the real numbers are
not freely generated by their successor endomorphism and zero. To say that the
generating endomorphism is subject to no further conditions is also important. For
example, the one point type {x} possesses an element * and an endomorphism
(the identity) and is smaller than the natural numbers. However, by making the
endomorphism the identity function, we have imposed additional constraints on
this structure. Therefore, {x} cannot be said to be freely generated in the same
sense. The reader who is puzzled by these points should consider by analogy the
case of finitely presented groups: a group may fail to be the group generated by
a specified finite presentation by virtue of possessing elements not obtainable from
the generators or by virtue of satisfying additional equations not derivable from
the group laws and the relations.

HOMOTOPY TYPE THEORY 605

This is achieved by the following type theoretic rule, which should be familiar
as proof by induction (alternatively, definition by recursion):

x:nat - E(x) e: E(0) x:nat,y: E(z)F f(z,y): E(S(x))
x :nat k- rec(e, f,x) : E(z).
This rule tells us that, given any type
2 :nat - F(x)

fibered over nat, in order to construct a term of type z : nat - E(x), it suffices to
provide terms

e c: E(0) (base case); and

e x:nat,y: F(x)F f(x,y) : E(S(x)) (induction step).
The remaining rules for nat require that the following equations hold:

rec(e, f,0) =e and
rec(e, f,8(x)) = f(z,rec(e, f,x)).

This should be compared with the usual way that functions from the natural num-
bers are defined by recursion. For example, fixing a natural number m, let us define
the function a,,: nat — nat which acts by n +— n + m, for n : nat. First, we ob-
serve that the type nat trivially is a dependent type over itself so that we may take

x :nat - E(x) to be x : nat F nat. The base case and induction steps are then
given as

e m :nat (base case) and
e 1 :nat,y:nat b S(y) : nat (induction step).

This gives, by applying the rules above to our base and induction cases, the recur-
sion term z : nat F rec(m,S(y), x) : nat. The map «,,: nat — nat is then defined
to be the following lambda abstraction (see Section above):
Q= Agmat Tec(m, S(y), z) : nat — nat.
This map then satisfies the recursion equations
app(@m,0) =m and
app(am,8(n)) = S(app(am,n))
for n : nat.

It is easy to show that in the homotopy theoretic interpretation a space nat
satisfies the aforementioned rules if and only if it is equivalent to the discrete space
of natural numbers.

In general, it is possible to construct inductive types which are generated (in the
sense that nat is freely generated by zero and successor) by arbitrary generators
(subject to some technical conditions on the kinds of generators allowed). It is
also possible to construct inductive types which are themselves dependent. Given
a base type B, such a dependent inductive type x : B + I(x) over B should
be understood homotopy theoretically as the smallest fibration I — B over B
equipped with the specified generators and subject to no further conditions. The
requirement that I — B should be a fibration will in general force the total space I
to possess additional structure in the same way that a finitely presented group will
in general possess additional elements and to satisfy additional equations, which
are not specified as part of the presentation but which are consequences of the

606 A. PELAYO AND M. A. WARREN

group laws. We will now turn to what is one of the most significant examples of a
dependent inductive type.

If A is a type, consider the inductive type fibered over A x A with a single gener-
ator r(a) in the fiber over (a,a). That is, consider the smallest (in an appropriate
sense) fibration over A x A having such elements r(a) in the fibers subject to no
further conditions. The resulting inductive type, called the identity type of A, is
usually written type theoretically as

x:Ajy: AbF Ida(x,y)
with its generators written as

x: AbFr(x): Ida(z, x).
Type theoretically, stating that this type is inductively generated in this way is to
say that the rule

x: Ay Av:Ida(z,y) F E(x,y,v) x: Ak e(z): E(x,z,x(x))
x: Ay Av:Ida(z,y) Frecle,z,y,v) : E(x,y,v)

holds and the corresponding rec terms satisfy the equation

rec(e,a,a,r(a)) = e(a).
Somewhat miraculously, this inductive type turns out, in the homotopical interpre-
tation, to be a well known space: the space of all (continuous) paths in A.

Theorem 2.1 (Awodey and Warren [5]). The path space fibration AT — A x A
has the universal property of the inductive type described above.

First, to say that AT — A x A represents a type at all is to say that this map is
a fibration. To say that it has the generators described above is to say that there

exists a map r making
A Al
N
Ax A

commute, where A: A — A x A is the diagonal. Here r is the map which sends
an element a of A to the constant loop r(a) on a. Finally, the remaining rules (the
existence of the rec(e,x,y,v) and the corresponding equation) correspond to the
fact that whenever we are given a fibration £ — Al and a map e making

A—F——F

Ny

commute, there exists a map J: AT — E such that

e

A

/
Al ———— Al
Tar

E

HOMOTOPY TYPE THEORY 607

commutes. Le., we take z : A,y : A,v:Ida(z,y) F rec(e,z,y,v) : E(x,y,v) to be
the section J.
We will now consider several points regarding identity types:

(1) For non-discrete spaces A, there exist elements of the path space fibration
not of the form r(a) and arising from non-constant paths in A.

(2) For discrete spaces, on the other hand, the path space fibration is equivalent
to the diagonal A: A — A X A, meaning every element is of the form r(a).
(The diagonal is not in general a fibration.)

The interpretation of types as sets (discrete spaces) mentioned in Section 2] above
is consistent with the rules we have so far described. Therefore, in order for type
theory to be able to express non-discrete spaces (which would preclude the set
theoretic interpretation), it is necessary to adopt further rules which reflect the
behavior of these spaces. One such rule is Voevodsky’s Univalence Aziom, described
in Section below. The other rules that give rise to non-constant paths govern
what are called higher inductive types. Higher inductive types are a type theoretic
way of describing spaces combinatorially (cf. CW-complexes, simplicial complexes,
etc.) and are considered in more detail in Section 28 below. These rules, as well as
the Univalence Axiom, give rise to non-constant paths. Once these rules have been
added and we have at our disposal some non-constant paths, the rules governing
identity types then give rise to further non-constant paths. Indeed, the identity
types induce on types the structure of oo-groupoids, which we will consider in
Section 24 below.

Finally, Theorem 21]is just a small part of a more general result from [5] (see also
[8T] for further details): it is possible to model type theory in weak factorization
systems or Quillen model categories [60] which satisfy certain coherence conditions.
Going the other way, Gambino and Garner [24] showed that it is possible to con-
struct a weak factorization system from the syntax of type theory.

2.4. Groupoids. Type theorists traditionally thought of the type Ida(a,b) as
something like the “proposition that a and b are equal proofs of A”. It was also
known that it is possible to construct a set theoretic model of type theory by think-
ing, as in perspective (1) above, of types as sets and terms as elements. In this set
theoretic interpretation we have that

1 ifa=0b, and

0 otherwise.

Ida(a,b) = {

Le., Ida(a,b) is either the one point set or the empty set depending on whether
or not a and b are in fact equal. Under this interpretation it follows that if there
is a term f : Ida(a,b), then in fact @ = b. This was originally seen by many,
no doubt based on intuitions gleaned from the set theoretic model, as a desirable
property and this property was added by many type theorists (including, for a time,
Martin-Lof himself) as an axiom, which we call the truncation rule.

Type theory with the truncation rule may be somewhat easier to work with and,
by work of Seely [63] and a coherence result due to Hofmann [2§], it is possible, using
the machinery of locally cartesian closed categories, to obtain many different models
of type theory which satisfy the truncation rule. Nonetheless, adding the truncation
rule destroys the good computational properties of type theory (see Section 2.7 for
a brief description of the computational aspects of type theory). Many of the

608 A. PELAYO AND M. A. WARREN

early questions in Martin-Lof type theory concerned the behavior of the identity
types in the theory without truncation. In particular, much research at the time
was concerned with trying to understand whether facts which are consequences of
truncation also hold without this rule. Streicher’s Habilitationsschrift [(1] contains
many fundamental results in this direction.

One important example of the kind of question about identity types that type
theorists were trying to answer is the problem of “uniqueness of identity proofs”:
if f and g are both of type Id4(a,b), does it follow that f = g (or even that there
exists a term 7 : Idrg,(q,)(f,9))? In order to solve this problem Hofmann and
Streicher [29] constructed a model of type theory in which types are interpreted
as groupoids and fibrations of groupoids, and terms are interpreted as sections
(see below for the notion of groupoids). In the process of constructing this model,
Hofmann and Streicher discovered an interesting fact which we will now describe.

Given terms a and b of type A, there is an equivalence relation ~ on the set of
terms of type Ida(a,b) given by setting f ~ ¢ if and only if there exists a term
0+ Tdia,(ap)(f,9). In terms of spaces, f and g correspond to paths from a to
b in the space A, and 7 corresponds to a homotopy rel endpoints from f to g.
Hofmann and Streicher realized that the quotient of the set of terms f : Id4(a,a)
modulo ~ forms a group. In fact, they realized that the type A can be made into
a groupoid. Recall that a groupoid is a category in which every arrow is invertible.
To turn A into a groupoid, we take the objects to be the terms a : A and the
edges to be equivalence classes of f : Ida(a,b) modulo ~. We now see that these
two constructions correspond, under the homotopy theoretic interpretation of type
theory sketched above, to the constructions of the fundamental group (A4, a) of
the space A with basepoint a and the fundamental groupoid IT;(A) (see [10] for
more on the fundamental groupoid of a space). In fact, Hofmann and Streicher
realized that their construction seemed to give some kind of co-groupoid, but they
did not pursue this possibility (see below for more on the notion of co-groupoid).
The first non-syntactic higher-dimensional models (which are shown to satisfy all
of the required coherence conditions) of type theory appeared later in work of
Voevodsky [36L[76] and Warren [811182).

In homotopy theory one is also concerned with groupoids and oo-groupoids.
The fundamental groupoid IT;(A) of a space A is the basepoint-free generalization
of Poincaré’s fundamental group [59] and captures the homotopy 1l-types. The
objects of II;(A) are the points of the space A and the arrows from a to b are
homotopy classes (rel endpoints) of paths from a to b. Here a homotopy n-type
is intuitively a space A for which the higher-homotopy groups m;(A4, a), for i > n,
vanish. For spaces A that are not 1-types, one must consider higher-dimensional
generalizations of the notion of groupoid in order to capture the homotopy theoretic
content of A. In his letter to Quillen, Grothendieck [26] emphasized the importance
of finding an infinite-dimensional generalization of the notion of groupoid which
would capture the homotopy types of spaces, and indeed he offered a suggestion
himself (see [49] for a modern exposition of Grothendieck’s definition). Such an
infinite-dimensional generalization is what is commonly referred to as a notion of co-
groupoid. Intuitively, an oo-groupoid should be like a groupoid which possesses, in
addition to objects (sometimes called 0-cells) and arrows (1-cells), arrows between
arrows (2-cells), arrows between 2-cells (3-cells), and so forth (i.e., (n+41)-cells, for
each natural number n, which are thought of as arrows between n-cells). It should

HOMOTOPY TYPE THEORY 609

be possible to compose these higher-dimensional cells, and there should be unit
and inverse higher-dimensional cells. The typical example of such an co-groupoid
should then be the fundamental co-groupoid T, (A) of a space A with objects the
points of A, arrows the paths, 2-cells homotopies (rel endpoints) of paths, and so
forth. As this motivating example suggests, it is unreasonable to expect the usual
algebraic laws governing groupoids to hold (since, e.g., composition of arrows will
now only be unital up to the existence of a 2-cell). Instead, these laws will hold up to
the existence of further higher-dimensional “coherence cells” which themselves will
satisfy certain laws (up to the existence of further higher-dimensional coherence
cells!) The resulting complexity associated with the shift from one-dimensional
algebraic structures (groupoids) in which the algebraic laws hold “on-the-nose” (up
to =) to higher-dimensional algebraic structures (co-groupoids), where these laws
hold up to higher-dimensional cells, has led to numerous candidate definitions of co-
groupoid in the literature, and the issue of finding a completely satisfactory notion
of oo-groupoid is not entirely settled. Indeed, of the different definitions of the
oo-groupoid in the literature only some have been shown to model homotopy types
in the sense proposed by Grothendieck, and the relations between the different
notions are also not completely settled. These problems have been among the
leading motivations for the development of higher-dimensional category theory. We
refer the reader to [7] for an overview of the problem of modeling homotopy types,
to [40] for an accessible introduction to higher-dimensional category theory, to
[T735, 4215516873 for some results on modeling homotopy types, and to [330] for
some results on type theoretic models of homotopy types.

In the setting of type theory, with respect to a Batanin-Leinster [6,[40] notion
of oo-groupoid following the work of Cheng [12], each type A has been shown to
give rise to an oco-groupoid using its higher-dimensional identity types Id4(a,b),
Td1q 4 (ap)(f5 9), IdIdIdA(a,b)(f;g)(a7/8)’ and so forth:

Theorem 2.2 (van den Berg and Garner [§], and Lumsdaine [44]). Every type A
has an associated fundamental co-groupoid 11 (A).

Hence the set theoretic intuition for the meaning of types fails to accurately cap-
ture certain features of the type theory, whereas those features (non-trivial higher-
dimensional structure) are captured by the homotopy theoretic interpretation of

types.

2.5. The univalent model of type theory. We mentioned above the problem of
finding a notion of co-groupoid which completely captures the notion of homotopy
type. One such notion is provided by Kan complezes. Introduced by Kan [34],
these were shown by Quillen [60] to provide a model of homotopy types. Kan
complexes are simplicial sets for which a certain combinatorial condition holds. In
the work of Joyal [33] and Lurie [47] on oo-toposes, oo-groupoids are taken to be
Kan complexes (co-toposes in this context are simplicial sets which possess certain
additional properties; a more detailed definition is beyond the scope of the present
paper). The starting place for Voevodsky’s univalent perspective is the following
result:

Theorem 2.3 (Voevodsky [76]). Assuming the existence of Grothendieck universes
(sufficiently large cardinals), there is a model of type theory in the category of
simplicial sets in which types are interpreted as Kan complezes and Kan fibrations.

610 A. PELAYO AND M. A. WARREN

We will henceforth refer to Voevodsky’s model as the wunivalent model of type
theory. The particular kind of type theory considered by Voevodsky includes a
type U which is a universe of types that we refer to as small typesE Given small
types A and B, it is then natural to ask what kinds of terms arise in the identity
type Idy (A, B). Voevodsky realized that, although this type a priori possesses no
interesting structure, in the univalent model it turns out to be non-trivial. Based
on this observation, Voevodsky proposed to add to the axioms of type theory an
additional axiom, called the Univalence Awziom, which would ensure that the iden-
tity type of U behaves as it does in the univalent model. We will now explain this
axiom and some of its consequences.

It will be instructive to compare several different ways of understanding the
Univalence Axiom. However, we will first start by giving an explicit description of
the axiom. Given small types A and B there is, in addition to the identity type
Idy (A, B), a type WEq(A, B) of weak equivalences from A to B. Intuitively, thinking
of A and B as spaces, a weak equivalence f: A — B is a continuous function which
induces isomorphisms on homotopy groups:

T (f) 1 (A, a) = 7, (B, f(a))

for n > 0. The notion of weak equivalence should be contrasted with the notion
of homotopy equivalence. A map f: A — B is a homotopy equivalence when there
exists a map f': B — A together with homotopies f'o f ~14 and fo f’ ~ 1g. For
sets (discrete spaces), homotopy equivalences correspond to invertible maps whereas
weak equivalences correspond to bijective maps. For groupoids (homotopy 1-types)
homotopy equivalences correspond to categorical equivalences of groupoids, whereas
weak equivalences correspond to functors which are full, faithful, and essentially
surjective on objects.

The most basic example of a weak equivalence is the identity map 14: A — A
on a space A. For A and B spaces in U, this gives, by the induction principle for
identity types, a map ¢: Idy (A4, B) — WEq(A, B). The Univalence Axiom can be
stated as follows:

Univalence Axiom (Voevodsky): For spaces A and B in U, the map
v:Idy (A, B) — WEq(A, B) is a weak equivalence.

That is, the Univalence Axiom imposes the condition that the identity type between
two types is naturally weakly equivalent to the type of weak equivalences between
these types. The Univalence Axiom makes it possible to automatically transport
constructions and proofs between types which are connected by appropriately de-
fined weak equivalences.
Without the Univalence Axiom there are three a priori different ways in which

two small types A and B can be said to be equivalent:

(1) A=B.

(2) There exists a term f : Idy, (A, B).

(3) There exists a term f : WEq(A, B).

The Univalence Axiom should be understood as asserting (in a type theoretic way)
that (2) and (3) coincide. That is, the Univalence Axiom answers the question

3The universes in Voevodsky’s model play two roles: The first is simply to interpret universes
of types. The second is to avoid certain coherence issues which arise in the homotopy theoretic
interpretation of type theory.

HOMOTOPY TYPE THEORY 611

“What is a path from A to B in the space of small spaces?” by stipulating that
such a path corresponds to a weak equivalence A — B.

Alternatively, the Univalence Axiom may be understood as stating that the
types of the form WEq(A, B) are inductively generated by the identity maps 14 :
WEq(A, A). Part of the appeal of the Univalence Axiom is that it has a number
of interesting consequences which we will discuss below. The connection between
the Univalence Axiom and object classifiers from topos theory has recently been
investigated by Moerdijk [54].

2.6. The univalent perspective. Following Voevodsky, we define a filtration of
types by what are called h-levels extending the usual filtration of spaces by homo-
topy n-types. The h-levels are defined as follows:

e A type A is of h-level 0 if it is contractible.
e A type A is of h-level (n + 1) if, for all terms a and b of type A, the type
Ida(a,b) is of h-level n.

In order to see what this definition is saying, let us first look at spaces of h-level 1.
If A is a space of h-level 1, then by definition we have that Id4(a,b) is contractible
for any points a and b of A. First, note that this condition is trivially satisfied if A is
the empty space. On the other hand, if A is non-empty, then this condition implies
that A is itself contractible. Therefore, we conclude that the spaces of h-level 1 are
(up to weak equivalence) the empty space and the contractible space. Accordingly,
we denote by hProp the type of all (small) types of h-level 1. The type hProp plays
the same role, from the univalent perspective, as the boolean algebra 2 := {0, 1} in
classical logic and set theory, or the subobject classifier {2 in topos theory. We will
usually refer to types in hProp as propositions. For hProp, the Univalence Axiom
states that paths in hProp correspond to logical equivalences. I.e., for propositions
P and @, it is a necessary and sufficient condition for there to exist a term of type
Idnprop(P, Q) that P and @ should be logically equivalent.

Similarly, we denote by hSet the type of all (small) types of h-level 2, and we
refer to these types as sets. To see that this is justified, suppose A is a type of h-
level 2. Then, for any terms a and b of type A, the identity type Ida(a,b) is either
empty or contractible, which is to say that A is weakly equivalent to a discrete
space.

For n > 1, A is of h-level n if and only if it is a homotopy (n — 2)-type. E.g.,
types of h-level 3 are the same as homotopy 1-types: spaces which are homotopy
equivalent to groupoids. From a more category theoretic point of view, we can view
the h-levels as shown in Table

It is worth recording several basic observations. First, weak equivalences respect
h-level: if there is a weak equivalence f : A — B, then A is of h-level n if and only
if B is of h-level n. Secondly, h-levels are cumulative in the sense that if A is of
h-level n, then it is also of h-level (n+1). Finally, for any n, if A (or B) is of h-level
(n+ 1), then so is WEq(A4, B).

For example, these observations can be used to show that hProp is a set. Note
that, by the “propositional” form of the Univalence Axiom mentioned above, there
is a weak equivalence ¢ : Idpprop(A, B) — WEq(A, B) for propositions A and B.
It then follows from the basic observations on h-levels summarized above that
Idwprop(A, B) has h-level 1, as required. This result is a special case of the more
general fact that the Univalence Axiom implies that the type hlevel,, of all (small)
types of h-level n is itself of h-level (n + 1).

612 A. PELAYO AND M. A. WARREN
TABLE 2. h-levels.

h-level corresponding spaces up to weak equivalence
0 the contractible space 1

the space 1 and the empty space 0

the homotopy O-types (i.e., sets)

the homotopy 1-types (i.e., groupoids)

the homotopy 2-types (i.e., 2-groupoids)

=W N

n the homotopy (n — 2)-types (i.e., weak (n — 2)-groupoids)

As we see it, the principal idea underlying the univalent perspective is that,
rather than developing mathematics in the setting of set theory where one must
“build” all of mathematics up from the emptyset and the operations of set theory,
we should instead work in a formal system (namely, type theory) where we are
given at the outset the world of spaces (homotopy types). In this setting we would
still have all of the sets available to us, but they are “carved out of” or extracted
from the universe as the types of h-level 2.

Something which is not revealed in this simple comparison is that it is consider-
ably easier to extract sets from the world of homotopy types than it is to construct
homotopy types from sets.

From the univalent perspective, the development of ordinary “set-level mathe-
matics”, which deals with sets and structures (e.g., groups, rings, ...) on sets, is
quite similar to the ordinary development of mathematics. However, in this set-
ting it is also easy to develop “higher-level mathematics”. One simple example is
that the notion of monoid can be axiomatized in the ordinary way. I.e., a monoid
consists of a type M together with a binary operation u : M x M — M which is
associative and unital (in the appropriate type theoretic sense). When we restrict
M to just small types in hSet, we obtain the usual notion of monoid. However,
when M is allowed to be an arbitrary type, we obtain the notion of homotopy
associative H-space in the sense of Serre [64]. We believe that it is an advantage
of the univalent perspective that it is in fact easier to work with such higher-level
structures in the univalent setting than in the familiar set theoretic setting.

In addition to the fact that it is efficient to reason about higher-dimensional
structures in the univalent setting, there are also technical advantages to doing so.
For example, in the presence of the Univalence Axiom, any structure on a type A
which is type theoretically definable can be transferred along a weak equivalence
A — B to give a corresponding structure on B. In general, being able to transfer
structures along weak equivalences (or even homotopy equivalences) is non-trivial
(see, e.g., [43] for some examples of such “homotopy transfer theorems” and their
consequences). Therefore, being able to work in a setting where such transfer is
“automatic” is technically quite convenient.

2.7. Computational aspects. One of the advantages of working with the partic-
ular flavor of Martin-Lof type theory employed in the univalent setting is that this
theory has good computational properties. In technical terms, type checking in this

HOMOTOPY TYPE THEORY 613

theory is decidable. Consequently, it is possible to implement the theory on a com-
puter. This is essentially what has been done in the case of the “proof assistants”
Coq and Agda. Therefore, mathematics in the univalent setting can be formal-
ized in these systems and the veracity of proofs can be automatically checked. In
the case of reasoning involving homotopy theoretic or higher-dimensional algebraic
structures, which sometimes involve keeping track of large quantities of complex
combinatorial data (think of, e.g., reasoning involving tricategories [25]), being
able to make use of the computer to ensure that calculation errors have not been
made is potentially quite useful.

Part of the reason that Martin-Lof type theory enjoys such good computational
properties is that it is a constructive theory. Classical logic is the usual logic (or
framework for organizing mathematical arguments) employed in mathematics (it is
the logic of the boolean algebra {0,1}). The logic employed in constructive mathe-
matics is obtained from classical logic by omitting the law of excluded middle, which
stipulates that, for any statement ¢, either ¢ or not ¢. Working constructively is
often more challenging than working classically and sometimes leads to new devel-
opments. Although there are many reasons that one might be interested in pursuing
constructive mathematics, we will give several practical reasons. First, construc-
tive mathematics is more general than classical mathematics in the same way that
non-commutative algebra is more general than commutative algebra. Second, even
in the setting of classical mathematics constructive reasoning can be useful. For
example, it is possible to reason constructively in Grothendieck toposes (which do
not in general admit classical reasoning). Finally, proofs given in many constructive
settings will carry algorithmic content, whereas this is not true in general for proofs
given in the classical settingH

2.8. Reasoning about spaces in type theory. Voevodsky [78] has described a
construction of set quotients of types. Explicitly, a relation on a type X is given
by a map R : X x X — hProp. For equivalence relations R, we can form the
quotient X/R of X. This type X/R is necessarily a set and can be shown to have
the appropriate universal property expected of such a quotient. The set mo(X) of
path components of X is constructed as a set quotient in the usual way. Because
loop spaces Q(X, x) of types X at points = : X can be defined type theoretically, it
then follows that we may construct all of the higher-homotopy groups m, (X, z) of
X with basepoint x : X by setting

(X, 2) i= 7o (Q"(X, 2)).

Many of the usual properties of the groups m,(X,x) can then be verified type
theoretically. E.g.,

(1) The homotopy groups of contractible spaces are 0.

(2) The usual Eckmann—Hilton [22] argument shows that , (X, z) is abelian
for n > 1 (Licata [41] has given a proof of this in the proof assistant Agda).

(3) Voevodsky has developed a large part of the theory of homotopy fiber se-
quences. Using this it is possible to construct the long exact sequence
associated to a fibration.

41t should be mentioned that there are logical techniques, which themselves exploit the algo-
rithmic content of constructive reasoning, for extracting algorithmic content from classical proofs;

see [37].

614 A. PELAYO AND M. A. WARREN

The notion of inductive type described in Section is the type theoretic ana-
logue of the notion of a free algebraic structure on a signature (a list of generating
operations together with their arities) as studied in universal algebra. By consider-
ing a type theoretic analogue of free algebraic structures on a signature subject to
relations, it is possible to describe many familiar spaces type theoretically. This no-
tion is that of higher-inductive type which is currently being developed by a number
of researchers (cf., the work by Lumsdaine and Shulman [45/[66] and the recent book
[32]). Rather than giving a comprehensive introduction to this subject, we will give
a simple example which should illustrate the ideas, and we will then summarize a
few of the additional things which can be done with this idea.

To describe the circle S' as a higher-inductive type, we require that it should
have one generator b : S' and one generator £ : Idg:(b,b). One then obtains an
induction principle for S! similar to the induction principle for nat described earlier.
Namely, given any type z : S' = E(z) fibered over S! together with terms

e V' : E(b) and

o (' IdE(b) (6* (b/), b/),
there exists a term x : S F recg1 (0, ¢/, x) : E(z) (satisfying appropriate “compu-
tation” conditions). (Here £, (b') is V' transported in the fiber along the loop | for
which we refer the reader to Section [Gl) So, in particular, in order to construct a
map S' — X, it suffices to give a point 2 : X and a loop ¢ : Idx(z,z) on z. The
usual properties of S! then follow from this type theoretic description (see [65] for
a type theoretic proof that w1 (S, b) = 7Z).

In basically the same way, finite (and suitably inductively generated) CW-
complexes and relative CW-complexes can be constructed as higher-inductive types.
In fact, Lumsdaine [46] has shown that with higher-inductive types, the syntax of
type theory gives rise to all of the structure of a model category except for the finite
limits and colimits.

3. Basic CoQ CONSTRUCTIONS

We will now introduce some basic constructions in Coq and their corresponding
homotopy theoretic interpretations. We mention here that there is an accompanying
Coq file which includes all of the Coq code discussed here, as well as some additional
code

3.1. The Coq proof assistant. The Coq proof assistant [9[13.[74] is a computer
system which is based on one flavor of Martin-Lof type theory called the calculus
of inductive constructions and based in part on the earlier calculus of constructions
[19] due to Coquand and Huet.

In February 2010 Voevodsky [78] began writing a Coq library of formalized
mathematics based on the univalent model. Pointers to Voevodsky’s library and
the libraries of other researchers can be found on the Univalent Foundations Wiki

.

While we will not explain here how to install or process a Coq file, it is nonetheless
worth mentioning that the way a Coq file is generally processed is in an active
manner. That is, one processes the file in a step-by-step way and as one does so
Coq provides feedback regarding the current state of the file.

5The Coq file can be found either as supplementary data attached to the arXiv version of this
paper or on the second author’s webpage.

HOMOTOPY TYPE THEORY 615

1 subgoal
] X W
B0

Lemma hfibertriangle2 { X Y : UU } (f:X -> YD) {y : Y } (xel xe2: hfib :-}. ‘
y:

er f y) (ee: paths (prl xel) (prl xe2))(eece: paths (pr2 xel) (paths

comp® (maponpaths f ee) (pr2 xe2))): paths xel xe2. R

Proof. intros. destruct xel as [t el]. [destruct xe2. simpl in eee. :i{:p::?;;f:iy

simpl in ee. destruct ee. simpl in eee. apply (maponpaths (fun e: pat ee : paths (prl {| prl := & pr2 := el }) (prl xe2)
hs (f t) y => hfiberpair f t e) eee). Defined. eee : paths (pr2 {| prl := t; pr2 := el |}

(pathscomp® (maponpaths f ee) (pr2 xe2))

paths {I prl = t

= el 1} xe2

FI1GURE 2. A Coq file being processed.

For example, FigureRlillustrates a Coq file being processed. The user is currently
processing a proof (indicated in the left-hand pane of the image) and the shaded
text denotes the part of the file which has so far been processed by Coq. The right-
hand pane is one of two mechanisms which Coq has for providing the user with
feedback. In particular, this pane indicates the current state of the proof which is
being carried out. Thus, as the user progresses through a proof, the output changes
so as to always indicate what remains to be done in order to complete the proof.
Further, more detailed, examples of this process are given below.

3.2. Types and terms in Coq. The Coq proof assistant, being based as it is on
a form of type theory, allows us to formalize and verify reasoning about types and
terms. Throughout our discussion, the reader should have in mind the interpreta-
tion of type theory described in Section 21 Coq comes with a number of types
and type-forming operations already built in. Using these, it is possible to define
new types. The first thing we want to do is to select a fixed universe of small types
with which we will work. This is accomplished by the following code:

Definition UU := Type.

Here the expression Type is a built-in type in the Coq system which is a universe of
types (in a suitable technical sense). The definition above then serves to define UU
to be this fixed built-in universe of types. The expression UU is chosen to suggest
something like a blackboard bold U. We think of the terms of type UU as the small
spaces and the universe UU itself as the (large) space of small spaces. Mathematically
this is roughly the same as fixing a Grothendieck universe and letting UU be the
corresponding space of spaces in the universe.

The type UU corresponds to U from Section 25labove. Henceforth, any statement
of the form A : UU should be thought of as asserting that A is a small space.

One interesting feature of the Coq system is that types are themselves terms. In
particular, the “type” UU above is itself a term of type Type, where this latter Type
is given the index (n 4 1) when UU has index n. That is, being a type is really the
same as being a term in a higher universe.

3.3. A direct definition involving function spaces. In order to illustrate some
features of the Coq system, we will define some basic constructions on function
spaces. First, we define, for any small type A, the identity function 14: A — A on
A:

Definition idfun (A : UU) : A -> A := fun x => Xx.

Let us dissect this line of code and try to understand each of its ingredients. A
definition, such as this one, is what we will call a direct definition, and such a

616 A. PELAYO AND M. A. WARREN

TABLE 3. Direct definitions in Coq.

Definition name parameters : type = explicit definition
uu Type
idfun (A : UU) A > A fun x => x

definition has the abstract form summarized (together with the two examples we
have so far encountered) in Table

Several remarks about Table Bl are in order. First, the name is the name given to
the term. This can be whatever (modulo some restrictions on the syntactic form)
the user likes. The type is the type of the term being defined. I.e., we have that
name is of type type. The next thing to note is that the parameters can be a list of
variables of fixed types. In the case of idfun there is just a single parameter: the
type A : UU; in the case of UU there are no parameters at all. Within a definition,
the parameters should be enclosed in brackets as in (A : UU). Next, note that
it is not strictly necessary to declare the type. When no type is given, Coq will
infer the type. Finally, note that the period at the end of the definition must be
included in order for Coq to correctly parse the input.

Coming back to the definition of idfun, we would like to remark that the type
A -> A is the way of denoting the function space A4 in Coq. That is, for types
A and B, the type A -> B is the type of functions from A to B. For us, this type
should be thought of more specifically as the type of all continuous functions from
the space A to the space B. The remaining part of this definition is the actual
content of the definition: fun x => x. In this definition, the expressions fun and
=> go together and tell us that it is the function A;.4 x in the notation of Section
So this function takes a point z in A and returns x itself. T.e., fun ... => ...
is the same as giving a definition of a function by writing ... —

3.4. An indirect definition involving function spaces. We will now show,
given functions f : A — B and g : B — C, how to construct the composite
go f: A— C type theoretically. In order to introduce indirect definitions, we will
give two ways to construct g o f.

First, we have the following direct definition:

Definition funcomp { ABC : UU} (f : A->B) (g:B->C) :=
fun x : A =>g (£ x).

Notice about this definition that we have enclosed the first three parameters in
curved brackets as {A B C : UU} in order to indicate to the Coq system that these
parameters are implicit. Implicit parameters do not need to be supplied (when the
term is applied), by the user, and the system will try to infer the values of these
parameters. In this case, these can be inferred from the types of £ and g. Note also
that we have here not given explicitly the type of the term being defined. As such,
we must include the additional typing data x : A in the definition in order for the
Coq system to be able to infer the type of the term.

The utility of indirect definitions in Coq is that sometimes it is not easy to see
how to give the explicit definition of a term. This is especially true as one starts
working with increasingly complicated definitions. As such, rather than having
to struggle to define exactly the required term, it is possible to construct the term
being defined as a kind of proof. Along the way, as this proof is constructed, certain

HOMOTOPY TYPE THEORY 617

automation possible in Coq can be employed. In order to see how this works in
practice, let us introduce our first indirect definition.

Definition funcomp_indirect (ABC : UU) (f : A -> B)
(g:B->C) :A—>C.

Proof.
intros x. apply g. apply f. assumption.

Defined.

The first observation about this definition is that it looks like everything to the
left of the := in a direct definition. In this case there are three parameters of type
UU (namely, A, B and C). There is also one parameter of type A -> B (namely, f).
Finally, there is one parameter of type B —> C (namely, g).

After the first full stop of an indirect definition, we encounter the start of the
proof. This is given by the line

Proof.
Likewise, the end of the proof is indicated by
Defined.

Between the start of the proof and the end of the proof is a sequence of what
are called tactics, which allow one to construct, using the given parameters, the
required term. One limitation of writing an article which includes proofs in Coq,
is that proofs in Coq are usually constructed using “backward” reasoning, and
so it can be hard to read for the uninitiated. In particular, the nature of Coq
is such that, qua interactive proof assistant, proofs can be understood better by
directly watching the output of a Coq session, where an additional window appears
after each step, giving us precise explanations of any given step of the proof. We
have included in Figure] the output from Coq as we move through the proof of
funcomp_indirect. Readers should not be discouraged if they are unable to read
Coq proofs directly: it is much easier if you are going through the proofs yourself
in the computer.

St of jpreeyf after intros x.

A B : :

A : UU B : UU C : UU £ KU>B U;)(:C UI;
H - H - X

f:A->B g:B —>C g

C
A->C

after apply g. after apply f.

A : UU B : UU C : UU A : UU B : UU C : UU
f:A->B g:B->C x: A f:A->B g:B->C x: A
B A

F1GURE 3. Coq output during indirect definition of function composition.

618 A. PELAYO AND M. A. WARREN

We will now go through the proof one step at a time. Notice that once the proof
is started, Coq displays the hypotheses (above the line =======) together with the
current goal (below the line). Since the goal is to construct a function A -> C,
we are allowed to assume given an arbitrary term x : A. This is accomplished in
Coq by entering intros x. Note that the name x here is something which we have
chosen and the user can choose this name freely (or it can be omitted, in which case
the Coq system will supply a name of its own choosing). As such, after processing
intros x, the output has changed (as indicated in Figure B) by adding a new
hypothesis (x : A) and changing the goal to C. This means that we now need to
supply a term of type C. To accomplish this, we note that we are given a function
g : B —> C, and so it suffices to supply a term of type B. We communicate the
fact that we intend to use g to obtain the goal by entering apply g. The effect of
this is to change the goal from C to B since B is the domain of g. Applying the same
reasoning now with f, we are in the final situation indicated in Figure Bl Because
we have as a hypothesis the term x : A and the current goal is to construct a term
of type A, we may simply communicate to the Coq system that there is already a
term of the required type appearing among the hypotheses. This is accomplished
by entering assumption. Indeed, at this point, Coq tells us

No more subgoals.

and the proof is complete. Note that we must add the final “Defined.” in order
for the Coq system to correctly record the proof.
We can now check that our definition coincides with the direct one by entering

Print funcomp.
Print funcomp_indirect.

The effect of Print is to output both the type and explicit definition of the term in
question. In particular, even if the term in question was defined indirectly, as our
funcomp_indirect was, it is an explicit term as far as Coq is concerned, and when
Print is used, Coq will unfold the term to give a completely explicit description.

To understand what this means, simply think of a linear differential equation for
which it is possible to explicitly write down the solutions. The solution set can be
difficult to write down, but it can be done. Although you may not want to have
these solutions in front of you, you know that the explicit solutions are available
if they are required (say, to verify that they satisfy a certain equation). The Coq
system effectively keeps track of this kind of bookkeeping for the user.

4. SOME BASIC INDUCTIVE TYPES

In this section we will begin manipulating inductive types in Coq. We start with
the natural numbers as a warm-up and then move on to consider total spaces of
fibrations (dependent sums).

4.1. The inductive type of natural numbers. The inductive type nat of nat-
ural numbers is already defined in the Coq system. As an inductive type, nat is
generated by

e the single generator (O-ary operation) O : nat and
e the single generating function (1-ary operation) S : nat -> nat (this is
the usual successor function).

HOMOTOPY TYPE THEORY 619

In Coq, this inductive type is specified as follows:
Inductive nat := 0 | S : nat -> nat.

Here the internal Coq command Inductive functions similarly to Definition (as
we will see below). For now the crucial point is to observe that the generating
operations of the inductive type appear on the right of := and are separated by the
symbol |.

One of the advantages of working with an inductive type such as the natural
numbers is that functions with inductive domain can be defined by cases. To see
an example, consider the predecessor function:

Definition predecessor (n : nat) : nat :=
match n with
| 0 =>0
| Sm=>m
end.
This is the way of telling Coq that the predecessor function is the function nat —
nat given by case analysis as

0 ifn=0, and

d =
predecessor(n) {m = (mt 1),

The definition of the predecessor function given above using match is a direct defi-
nition as described above in Section B3l It is also possible to define the predecessor
function via an indirect definition as follows:

Definition indirect_predecessor (n : nat) : nat.
Proof.

destruct n. exact 0. exact n.
Defined.

In the proof there are two new tactics. The first, destruct n, tells the Coq system
that we will reason by cases on the structure of n as a term of type nat. Coq
knows that, as a natural number, there are two cases, and in the first case there is
no hypothesis necessary (see Figure) because n is 0 in this case. At this stage,
we know that we would like the output of the function to be 0, and we tell Coq
this using the exact tactic. In general, if we enter exact z, this tells Coq that
the term we are looking for is ezactly the term x. Once we have entered exact 0,
Coq moves on to the second possibility: the term is a successor. Note that in
the list of hypotheses at this stage (see Figured]) the term n : nat is listed and so
superficially things are just as they were at the start of the proof. However, because
we earlier employed the destruct tactic, Coq knows that we must now give the
required output of the predecessor function when given the value S n. As such, we
enter exact n. Comparing predecessor and indirect_predecessor using the
Print command reveals that they are indeed identical terms. We will now turn to
several of the inductive types more closely related to the homotopy theoretic side
of things.

4.2. Fibrations and the total space of a fibration. Fibrations can be un-
derstood as a homotopy theoretic generalization of the notion of a fiber bundle.
Similarly, they can be understood as a homotopy theoretic version of Grothendieck
fibrations familiar from category theory and algebraic geometry. In particular, for

620 A. PELAYO AND M. A. WARREN

Start of proof after destruct n.

n : nat

nat nat

after exact 0.

n : nat

nat

FiGUure 4. Coq output during indirect definition of the predecessor function.

spaces, a fibration is a map
n: E— B

which possesses a certain homotopy-lifting property. In this case we would refer to
B as the base space and to E as the total space of the fibration. Given a point b
in B, the fiber over b, which we sometimes write as Ep, is just the preimage 7 *(b)
of b under the map 7. As mentioned in Section 2] above, fibrations correspond to
types which depend on parameters (so-called dependent types). In Coq, the way of
dealing with dependent types is somewhat different from the one sketched in Section
21l In particular, given a small type B : UU, a fibration over B is represented by
the corresponding term
E : B -> UU.
The idea that a fibration over a base space B can be represented as a map from B
into a suitable universe is a classical idea, especially in category theory where it is
a basic fact that Grothendieck fibrations over a category B correspond to pseudo-
functors from B into the 2-category of small categories. (These ideas are ubiquitous
in category theory, and a nice exposition can be found in the first section of [70].)
The idea behind this correspondence is that a fibration can be completely recov-
ered from its base space B together with its fibers by gluing the fibers together in
a coherent way in accordance with the structure of the base space. The same can
be accomplished in Coq by defining the total space of a fibration E : B -> UU as
an inductive type.

Inductive total {B :UU} (E : B -> UU) : UU :=
pair (x : B) (y : E x).

Intuitively, total E should be thought of as a space consisting of all pairs (b,e),
where b is a point of the base space B and e is a point of the fiber E b over b. In
the literature on type theory such total spaces are known as dependent sums and
are often denoted using summation notation as)" 5 F(x). From the point of view
of logic, the total space corresponds to existential quantification.

Fiber bundles £ — B are sometimes thought of as a “twisted” generalization
of direct products F' x B — B, and the fact that fibrations are a homotopical
generalization of this notion reveals itself type theoretically by the fact that the

HOMOTOPY TYPE THEORY 621

total space construction total is a generalization of the construction of direct
products of spaces A x B, which are given by

Definition dirprod { A B : UU } : UU := total (fun x : A => B).
Returning to total, we define a projection map total E -> B by

Definition pri1 { B : UU } { E : B -> UU } : total E -> B :=
fun z => match z with pair x y => x end.

This map serves to exhibit E as a fibration over B. In type theoretic notation, pri
is the projection my: > 5 F(x) — B.

5. THE PATH SPACE

As mentioned in Sections and [2.4] the type theoretic identity type is inter-
preted homotopy theoretically as the path space. The path space, and the corre-
sponding type in Coq, is so important that we will now carefully describe several
basic constructions involving it in the setting of Coq.

paths a b

F1GURE 5. The path space fibration paths a with the fiber over
a point b. In the base p is a (path) homotopy from f to g and in
the fiber it is a path from f to g.

In Coq, the path space paths is defined as
Notation paths := identity.

Here identity, like nat, is a built-in inductive type in the Coq system. We can
see how it is defined inductively using Print to find
Inductive identity (A : Type) (a : A) : A -> Type :=

identity_refl : identity a a.
That is, for each a : A, identity a is the fibration freely generated by a term
identity_refl a in the fiber over a.

We add the following line in order to introduce a slightly shorter notation for
the terms identity_refl:

Notation idpath := identity_refl.

622 A. PELAYO AND M. A. WARREN

That is, for a : A, idpath a : paths a a is the identity path based at a.

Recall that a path in a space A is a continuous function ¢ : I — A where I = [0, 1]
is the unit interval. We say that ¢ is a path from a point a of A to a point b of
A when ¢(0) = a and ¢(1) = b. Then the path space Al is the space of paths in
A, and it comes equipped with two maps 9,91 : AT — A given by 9;(p) := ¢(i)
for i = 0,1. The induced map (9, d;) : AT — A x A is a fibration which gives a
factorization of the diagonal A: A — A x A as

A———— Al
N
Ax A

where the first map A — A’ is a weak equivalence in the sense of homotopy theory
and the second is the fibration mentioned above. Here the first map A — A’ sends a
point a to the constant loop based at a. (That is, this first map is precisely idpath.)
One of the many important contributions of Quillen in [60] was to demonstrate that
it is in fact possible to do homotopy theory without the unit interval provided that
one has the structure of path spaces, weak equivalences, fibrations, and a few other
ingredients. This is part of the reason that, even though type theory does not
(without adding higher-inductive types or something similar) provide us with a
unit interval, it is still possible to work with homotopy theoretic structures type
theoretically.

5.1. Groupoid structure of the path space. We will now describe the groupoid
structure which the path space can endow on types. The connection between these
constructions and groupoids were first observed by Hofmann and Streicher [29].
First, given a path f from a to b in A we would like to be able to reverse this
path to obtain a path from b to a. For topological spaces this is easy because a path
¢ : I — A gives rise to an inverse path ¢’ given by ¢'(t) := ¢(1 —t), for 0 < ¢ < 1.

Definition pathsinv { A : UU } { ab : A} (£ : paths a b)
: paths b a.

Proof.
destruct f. apply idpath.

Defined.

Here recall that destruct allows us to argue by cases about terms of inductive
types. Here f is of type paths a b, which is inductive, and therefore this tactic
applies. In this case, there is only one case to consider: f is really the identity
path idpath a : paths a a. Because the inverse of the identity is the identity,
we then use apply idpath to complete the proof. (Note that we could also have
used exact (idpath a) instead of apply idpath here to obtain the same term.)
Next, given a path f as above together with another path g from b to ¢, we would
like to define the composite path from a to ¢ obtained by first traveling along f and
then traveling along g. This operation of path composition is defined as follows:

Definition pathscomp { A : UU } { abc : A} (f : paths a b)
(g : paths b ¢) : paths a c.

Proof.
destruct f. assumption.

Defined.

HOMOTOPY TYPE THEORY 623

Once again, the proof begins with destruct f which effectively collapses f to a
constant loop. In particular, the result of this is to change the ambient hypotheses
so that g is now of type paths a c (see Figure[dl). At this stage, the goal matches
the type of g, and we use assumption to let the Coq system choose g as the result
of composing g with the identity path.

after destruct f.
Start of proof

A:UU0 a:A b:A c: A
f : paths ab g : paths b ¢ A :UU a : A c: A
g : paths a ¢

paths a ¢
paths a ¢

FiGURE 6. Coq output during the definition of path composition.

One immediate consequence of this definition is that the unit law f o1, = f for
f :a— b holds on the nose in the sense that the terms pathscomp (idpath a) f
and f are identical in the strong = sense. On the other hand, the unit law 1,0 f = f
does not hold on the nose. Instead, it only holds up to the existence of a higher-
dimensional path as described in the following lemma:

Lemma isrunitalpathscomp { A : UU } { ab : A} (£ : paths a b)
: paths (pathscomp f (idpath b)) f.

Proof.
destruct f. apply idpath.

Defined.

The proof of this requires little comment (when f becomes itself an identity path,
the composite becomes, by the left-unit law mentioned above, an identity path).
The one thing to note is that here instead of Definition we have written Lemma.
Although there are some technical differences between these two ways of defining
terms, they are for us entirely interchangeable, and therefore we use the appella-
tion “Lemma” in keeping with the traditional mathematical distinction between
definitions and lemmas.

That fact is, up to the existence of higher-dimensional paths, composition
of paths is associative and the inverses given by pathsinv are inverses for
composition are recorded as the terms isassocpathscomp, islinvpathsinv, and
isrinvpathsinv. However, the descriptions of these terms are omitted in light of
the fact that they all follow the same pattern as the proof of isrunitalpathscomp.

5.2. The functorial action of a continuous map on a path. Classically, given
a continuous map f : A — B and a path ¢ : I — A in A, we obtain a corre-
sponding path in B by composition of continuous functions. Thinking of spaces as
oo-groupoids, this operation of going from the path ¢ in A to the path foy in B
is the functorial action of f on 1-cells of the co-groupoid A. In Coq, this action of
transporting a path in A to a path in B along a continuous map is given as follows:

624 A. PELAYO AND M. A. WARREN

Definition maponpaths { AB : UU } (£ : A->B) {aa : A}
(p: paths a a’) : paths (fa) (f a’).

Proof.
destruct p. apply idpath.

Defined.

The proof again follows the familiar pattern: when the path p is the identity path
on a, the result of applying f should be the identity path on f(a). We introduce
the following notation for maponpaths:

Notation "f ¢ p" := (maponpaths f p) (at level 30).

This is an example of a general mechanism in Coq for defining notations, but
discussion of this mechanism is outside of the scope of this article (the crucial point
here is that the value 30 tells how tightly the operation should bind).

FIGURE 7. Representation of maponpaths.

We leave it as an exercise for the reader to verify that the operation maponpaths
respects identity paths, as well as composition and inverses of paths.

6. TRANSPORT

Given a fibration 7 : £ — B together with a path f from b to 0’ in the base B,
there is a continuous function f, : E, — Ej from the fiber E}, of w over b to the
fiber Ey over b'. This operation f, of forward transport along a path (see Figure R)
is described in Coq as follows:

Definition transportf { B : UU } (E : B->UU) { b b’ : B }
(f : paths bb’>) : Eb -> E b’.

Proof.
intros e. destruct f. assumption.

Defined.

HOMOTOPY TYPE THEORY 625

E(b)

N E(b)
................ -y 1€

FIGURE 8. Forward transport.

For a path f as above, there is a corresponding operation f* : Ey, — Ey of backward
transport, and it turns out that f, and f* constitute a homotopy equivalence.

We will now briefly discuss homotopy and homotopy equivalence in the setting
of Coq before returning to forward and backward transport in Section 6.2.

6.1. Homotopy and homotopy equivalence. Recall that for continuous func-
tions f, g : A — B, a homotopy from f to g is given by a continuous map h : A — B!
such that

h

A B!
(f, g>\

B x B

commutes.
In Coq, the type of homotopies between functions f,g: A — B is given by

Definition homot { AB : UU } (f g : A ->B) :=
forall x :A, paths (£ x) (g x).

Here we encounter a new ingredient in Coq: the dependent product forall. le.,
forall x : B, E x is Coq’s way of writing the dependent product [[,. 5 E(x)
described in Section 222 One particular consequence of this is that if we are given
a term

s : (forall x : B, E x)

and another term b : B, then the term s can be applied to the term b : B to
obtain a term of type E b. The result of applying s to b is denoted by

s b : Eb.

Le,s b : E bis Coq’s way of writing the application app(s, b) : E(b) from Section
Below we have more to say about forall.

Now, a map f : A — B is a homotopy equivalence when there exists a map
f'+ B — A together with homotopies from f’ o f to 14 and from fo f’ to 1p.
In this case, we say that f’ is a homotopy inverse of f. Two spaces A and B are
said to have the same homotopy type when there exists a homotopy equivalence

f:A— B.

626 A. PELAYO AND M. A. WARREN

In Coq, we define the type of proofs that a map £ : A -> B is a homotopy
equivalence as follows:

Definition isheq { AB : UU } (£ : A -> B) :=
total (fun £’ : B -> A => dirprod
(homot (funcomp f’ f) (idfun _))
(homot (funcomp f f’) (idfun))).

Let us pause for a moment to consider the meaning of the type isheq. Intuitively,
isheq f is the type consisting of the data which one must provide in order to prove
that f is a homotopy equivalence. That is, a term of type isheq f consists of

e a continuous map £’ : B -> A,
e a homotopy from funcomp f’ £ to the identity on B,
e a homotopy from funcomp f £’ to the identity on A.

Indeed, by the definitions of total and dirprod the terms of isheq f can be re-
garded as a tuple of such data. In type theoretic notation, isheq f would therefore

be denoted by > 1.5, 4 (homot(f’ o f) 14) x (homot(fo f') 1).

6.2. Forward and backward transport. It turns out that, as mentioned above,
the backward transport map f* : Ep — Ej, is a homotopy inverse of forward
transport f.. Denote by transportb the backward transport term. It is often
convenient to break up the proofs of larger facts into smaller lemmas, and we will
do just this in order to show that transportf E f is a homotopy equivalence. In
particular, we begin by proving that f. o f* is homotopic to the identity 1g,,:

Lemma backandforth { B : UU } { E : B ->UU } { b b’ : B }
(f : paths bb’) (e : EDb’)
: homot (funcomp (transportb E f) (transportf E f))

(idfun _).
Proof.
intros x. destruct f. apply idpath.
Defined.

Next, we prove that f* o f. is homotopic to the identity 1p, as forthandback (we
omit the proof because it is identical to the proof of backandforth):

Lemma forthandback { B : UU } { E : B->UU } { b b’ : B}
(f : paths bb’) (e : EDb’)
: homot (funcomp (transportf E f) (transportb E f))
(idfun _).

Using these lemmas we can finally prove that transportf E f is a homotopy equiv-
alence.

Lemma isheqtransportf { B : UU } (E : B ->UU) { b b’ : B }
(f : paths b b’) : isheq (transportf E f).

Proof.
split with (transportb E f). split.
apply backandforth. apply forthandback.

Defined.

HOMOTOPY TYPE THEORY 627

t lit with; lit.
Start of proof after split wi spt

2 subgoals, subgoal 1
B : UU E : B ->UU b : B
b’ : B f : paths b b’

1 subgoals, subgoal 1
B : UU E : B -> 70U b : B
b’ : B f : paths b b’

homot (funcomp (transportb E f)

ish fEf
R (e / (transportf E £)) (idfun (E b?))

after apply backandforth

1 subgoals, subgoal 1
B : UU E: B ->1UU b: B
b’ : B f : paths b b’

homot (funcomp (transportf E f)
(transportb E f)) (idfun (E b))

F1cUure 9. Coq output during the proof that forward transport is
a homotopy equivalence.

There are several points to make about this proof. The initial goal is to supply
a term of type isheq (transportf E f). Now, this type is itself really of the
form
total (fun £’ : E b’ -> E b => dirprod

(homot (funcomp f’ (transportf E f)) (idfun (E b’)))

(homot (funcomp (transportf E f) f’) (idfun (E b))))

(you can see this in the proof by entering unfold isheq), and in general to con-
struct a term of type total E, for E : B -> UU, it suffices (by virtue of the def-
inition of total) to give a term b of type B together with a term of type E b.
This is captured in Coq by the command split with, and one should think of
split with b as saying to Coq that you will construct the required term using b
as the term of type B you are after. Upon using this command, the goal will auto-
matically be updated to E b. In this case, entering split with (transportb E f)
is the way to tell Coq that we take transportb E f to be the homotopy inverse of
transportf E f. So, after entering this command the new goal becomes

dirprod
(homot (funcomp (transportb E f) (transportf E f)) (idfun (E b’)))
(homot (funcomp (transportf E f) (transportb E f)) (idfun (E b)))

As with total E, in order to construct a term of type dirprod A B, it suffices to
supply terms of both types A and B. When given a goal of the form dirprod A B,
we use the split tactic to tell Coq that we will supply separately the terms of type
A and B individually (as opposed to providing a term by some other means). (See
Figure [@ for the result of applying both split with and split in the particular
proof we are considering.)

The final new ingredient from the proof of isheqtransportf is the appearance
of the tactic apply. When you have proved a result in Coq and you are later given
a goal which is a (more or less direct) consequence of that the result, then the tactic

628 A. PELAYO AND M. A. WARREN

apply will allow you to apply the result. In this case, the lemmas backandforth
and forthandback are exactly the lemmas required in order to prove the remaining
subgoals.

6.3. Paths in the total space. Using transport it is possible to give a complete
characterization of paths in the total space of a fibration E : B -> UU. Along these
lines, the following lemma gives sufficient conditions for the existence of a path in
the total space:

Lemma pathintotalfiber { B : UU } { E : B -> UU } { x y : total E }
(f : paths (pr1 x) (prly))
(g : paths (transportf E f (pr2 x)) (pr2y))
: paths x y.
Proof.
intros. destruct x as [x0 x1]. destruct y as [yO y1].
simpl in *. destruct f. destruct g. apply idpath.
Defined.
This lemma shows that, given points x and y of the total space, in order to construct
a path from x to y it suffices to provide the following data:

e a path f from pr1l x to prl y; and
e a path g from the result of transporting pr2 x along f to pr2 y.

This is illustrated in Figure [0 in the special case where x is the pair pair b e and
y is the pair pair b’ e’.

Regarding the proof of pathintotalfiber, note that the effect of applying
destruct x as [x0 x1] is that it tells Coq that we would like to consider
the case where x is really of the form pair x0 x1. The only new tactic here is
simpl in * which tells Coq to make any possible simplifications to the terms ap-
pearing in the goal or hypotheses. For example, in this case, Coq will simplify
(pr1 (pair x0 x1)) to xO.

E(b)

E(b)

FiGuRrE 10. Paths in the total space.

On the other hand, if we are given a path f from x to y in the total space, there
is an induced path in the base given by

Definition pathintotalfiberprl { B : UU } { E : B -> UU }
{xy: total E} (f : paths x y) : paths (prl1 x) (prl y)
= prl © f.

HOMOTOPY TYPE THEORY 629

Furthermore, we may transport pr2 x along pathintotalfiberprl f, and there
is a path from the resulting term to pr2 y:

Definition pathintotalfiberpr2 { B : UU + { E : B -> UU }

{xy: total E} (f : paths x y) : paths

(transportf E (pathintotalfiberprl f) (pr2 x)) (pr2 y).

Proof.

intros. destruct f. apply idpath.
Defined.
Finally, we prove that every path in the total space is homotopic to one obtained
using pathintotalfiber:

Lemma pathintotalfibercharacterization { B : UU } { E : B -> UU }
{xy : total E} (f : paths x y) : paths f
(pathintotalfiber
(pathintotalfiberprl f) (pathintotalfiberpr2 f)).
Proof.
intros. destruct f. destruct x as [x0 x1]. apply idpath.
Defined.

7. WEAK EQUIVALENCES AND HOMOTOPY EQUIVALENCES

In this section we introduce further basic homotopy theoretic notions including
the crucial notion of weak equivalence. Classically, weak equivalences are those
maps which induce isomorphisms on (all higher) homotopy groups. Here we work
with an alternative definition of weak equivalence given by Voevodsky which has the
advantage of not requiring homotopy groups. Between sufficiently nice spaces, weak
equivalences turn out to coincide with homotopy equivalences, and the main goal
of this section is to prove this fact in Coq. The Coq proofs in this section become
increasingly sophisticated, and accordingly we will begin to pass quickly over the
more basic features of the proofs while at the same time giving their mathematical
interpretations.

7.1. Contractibility. A space A is said to be contractible when the canonical map
A — 1 to the one point space is a homotopy equivalence. In Coq, the notion of
contractibility is captured by the following definition:

Definition iscontr (A : UU) :=
total (fun center : A => forall b : A, paths center b).

That is, a term of type iscontr A consists of the data required to prove that A is
contractible:

e a point center of A, which we will sometimes refer to as the center of
contraction; and
e a continuous assignment of, to each b : A, a path from center to b.

There are various facts about contractible spaces (e.g., 1 is contractible, contractible
spaces satisfy the principle of “proof irrelevance”, and so forth) which are ready
consequences of this definition. However, we will leave the investigation of such
matters to the reader and merely include one important fact about contractible
spaces: homotopy retracts of contractible spaces are contractible. That is, given
continuous functions 7 : A — B and s : B — A together with a homotopy p as

630 A. PELAYO AND M. A. WARREN

indicated in ()

if the space A is contractible, then so is the space B. Note that in (ZI]) we employ
the convention, familiar from higher-dimensional category theory, of indicating the
homotopy p by a double arrow =. In Coq:

Lemma iscontrretract { AB : UU } {r : A->B}{s :B->A7}
(p : homot (funcomp s r) (idfun _)) (is : iscontr A) : iscontr B.
Proof.
split with (r (prl is)). dintros b.
change b with (idfun B b). rewrite <- (p b). unfold funcomp.
apply maponpaths. apply (pr2 is).
Defined.

The output of Coq during the proof can be found in Figure [l First, we need
to provide a center of contraction for B. The center of contraction for A is the term
prl is. By entering split with (r (prl is)) we tell Coq to take the center
of contraction of B to be the term r (pril is). After this, the goal becomes

forall b : B, paths (r (prl is)) b

which is to say that we must prove that there is a path from r (pr1 is) to any
other point of B. Next, after using intros b, we enter the command

change b with (idfun B b)

to replace the term b in the goal with the equal term idfun B b. Observe that the
term p b has type

paths (funcomp s r b) (idfun B Db).

The tactic rewrite allows us to replace each occurrence of a term in the goal by a
term which is in the same path component. In this case, because p b is a path from
funcomp s r b to idfun B b, the result of rewriting with rewrite <- (p b) is
to replace each occurrence of idfun B b in the goal by funcomp s r b. Here the
backward arrow <- indicates that we are rewriting the path p b from right to left.

HOMOTOPY TYPE THEORY 631

after split with and intros after change b with...
A:UUB:UUr :A->Bs:B->A A:UUB:UUr :A->Bs:B->A
p : homot (funcomp s r) (idfun B) p : homot (funcomp s r) (idfun B)
is : iscontr A b:B is : iscontr A b : B
paths (r (pri is)) b paths (r (pr1 is)) (idfun B b)

after rewrite <- (p b) after unfold funcomp

A:UUB:UUr :A->Bs:B->A A:UUB:UUr :A->Bs:B->A
p : homot (funcomp s r) (idfun B) p : homot (funcomp s r) (idfun B)
is : iscontr A b:B is : iscontr A b : B
paths (r (prl is)) (funcomp s r b) paths (r (prl is)) (r (s b))

after apply maponpaths

A:UUB:UUr : A->Bs:B->A
p : homot (funcomp s r) (idfun B)
is : iscontr A b : B

paths (prl is) (s b)

FiGUurE 11. Coq output during the proof of iscontrretract.

Next, we use unfold funcomp to replace each occurrence of funcomp in the goal
by its definition. Then apply maponpaths tells Coq that we will use maponpaths
to construct the goal. Because Coq recognizes that the hypotheses of maponpaths
require us to provide a path the effect of this is to remove both applications of the
function r on both the right and left. Finally, the required path can be constructed
using pr2 is.

It is an immediate consequence of iscontrretract that spaces which are homo-
topy equivalent to contractible spaces are also contractible. This fact is captured
by the two definitions below.

Definition iscontrandheq { AB : UU } { £ : A -> B }
(p : isheq f) (is : iscontr A) : iscontr B :=
iscontrretract (prl (pr2 p)) is.

Definition iscontrandheqinv { AB : UU } { £ : A -> B }
(p : isheq £) (is : iscontr B) : iscontr A :=
iscontrretract (pr2 (pr2 p)) is.

7.2. Homotopy fibers. Given a map £ : A -> B and a point b of B, we define

the homotopy fiber of f over b as

Definition hfiber { AB : UU } (f : A->B) (b : B) : UU :=
total (fun x : A => paths (£ x) b).

632 A. PELAYO AND M. A. WARREN

The homotopy fiber of f over b is the homotopical analogue of the ordinary fiber
f71(b). So, a typical point of the homotopy fiber is a pair consisting of a point a
of A together with a path

fla) ——10

in B.

There are various reasons for considering homotopy fibers. Homotopy fibers play
a role for fibrations analogous to that played by ordinary fibers for fiber bundles.
For us, the interest in homotopy fibers comes from their presence in the definition
of weak equivalences given below.

From the point of view of category theory, the homotopy fiber of f over b is the
oo-groupoid version of the comma category (f | b). As in the categorical setting,
there are actions of the operation of taking the homotopy fiber over a fixed point
on maps over the base B. That is, given continuous maps f: A —- B, g: C — B
and h : A — C together with a homotopy p from g o h to f, there is an induced
map

hfiber f b — hfiber g b.

In Coq, this map is defined as

Definition hfiberact { ABC : UU }+ {f : A->B}{g:C->B1}
(h:A->C) (p : homot (funcomp h g) £) (b : B)
: hfiber £ b -> hfiber g b :=
fun a => pair (h (prl a)) (pathscomp (p (prl a)) (pr2 a)).

That is, hfiberact h p b sends an element

As a special case of this construction, when we are given a continuous map f: A —
B and g : B — C' together with a point ¢ of C, there is an induced map

hfiber (go f) ¢ — hfiber g ¢

obtained by applying hfiberact with the identity homotopy 140s. In Coq, this is
obtained as the following definition:

Definition maponhfiber { ABC : UU } (£ : A->B) (g :B ->C)

(c:C) : hfiber (funcomp f g) ¢ —> hfiber g c :=
fun a => pair (£ (prl a)) (pr2 a).

In the case where we have a homotopy retract as in (1) above, we obtain, a further

map

Definition secmaponhfiber { AB : UU } {r : A >B}{s : B > A}
(p : homot (funcomp s r) (idfun _)) (a : A)

b =>

)) (pr2 b)).

: hfiber s a -> hfiber (funcomp r s) a := fun
pair (s (prl b)) (pathscomp (s * (p (prl b)

HOMOTOPY TYPE THEORY 633

That is, secmaponhfiber sends
s(b) ———a

in hfiber s a to the term in hfiber (s or) a given by the composite path

s'p(b) i

s(r(s(b))) s(b) a.

It turns out that in this situation hfiber s a is a homotopy retract of
hfiber (sor) a:

secmaponhfiber p a
hfiber sa ——————— hfiber (sor)

lhflber s a\
hfiber s q maponhfiber r s a

Here, as in (), we indicate the existence of a homotopy in this diagram by a
double arrow =-. In Coq, this fact is captured by the following lemma:
Lemma secmaponhfiberissec {AB : UU} { r : A->B }+ {s : B ->A}
(p : homot (funcomp s r) (idfun _)) (a : A) : homot
(funcomp (secmaponhfiber p a) (maponhfiber r s a))

(idfun _).
Proof.
intros b. destruct b as [b i]. unfold funcomp, idfun in *. simpl.
apply (Cpathintotalfiber _ _ (pair (r (s b)) _) (pair b i) (p b)).

rewrite transportfandhfiber. unfold secmaponhfiber. simpl.
rewrite <- isassocpathscomp. rewrite islinvpathsinv. apply idpath.
Defined.
First, after the first application of the simpl tactic, we have simplified the goal and
hypotheses to the extent that we are now in the following situation.
A : UU
: UU
: A ->B
B > A
: homot (fun x : B =>r (s x)) (fun x : B => x)
: A
: B
: paths (s b) a

H o o n R W

paths (maponhfiber r s a (secmaponhfiber p a (pair b i)))
(pair b i)
Because we are asked to construct a path in a total space, we will make use of
pathintotalfiber. However, in order to help Coq understand exactly what we are
trying to do, we must provide some of the implicit arguments of pathintotalfiber
explicitly. This is accomplished here using the symbol @. The underscores are the
arguments which we leave for Coq to guess, and the other arguments are those
we are explicitly providing for Coq. That is, we are telling Coq that in order to
achieve the current goal, it suffices to construct using pathintotalfiber a path

634 A. PELAYO AND M. A. WARREN

frompair (r (s b)) _topair b i where the path fromr (s b) tob we
use is p b. After this, the goal becomes:
paths

(transportf (fun x : B => paths (s x) a) (p b)

(pr2 (pair (r (s b)) (pr2 (secmaponhfiber p a (pair b i))))))

(pr2 (pair b i))
Here, as is often the case, it is convenient to know that the result of applying
forward transport can be decomposed in a specific way. In this case it turns out
that for j a path from v to win B and a pathk : paths (s v) a,
transportf (fun x : B => paths (s x) a) j k

is homotopic (in the sense of path homotopy) to the composite path.

(s')7! k
Sw SvU a.

This fact is captured by the lemma transportfandhfiber which has a trivial proof
that we omit. Returning to the proof of secmaponhfiberissec, we rewrite using
transportfandhfiber and then simplify using unfold and simpl to arrive at the
goal

[

paths (pathscomp (pathsinv (s ‘ p b)) (pathscomp (s ‘ p b) 1)) i

which is an immediate consequence of associativity of path composition and the
fact that pathsinv is an inverse with respect to path composition.

In addition to maps acting via hfiberact, there is also an action of homotopies
on homotopy fibers. Namely, a homotopy from a map f : A — B to a map
g: A — B induces, for b: B, a map hfiber f b — hfiber g b as follows:
Definition hfiberandhomot { AB : UU } { £ g : A ->B } (b : B)

(p : homot £ g) : hfiber f b -> hfiber g b := fun a =>

pair (prl a) (pathscomp (pathsinv (p (prl a))) (pr2 a)).

That is to say, this map sends a term

fla) ———1

of hfiber f b to the term

of hfiber g b, where p, denotes the component of the homotopy p at a.
Similarly, there is a corresponding map

hfiber g b — hfiber f b
because the homotopy relation is symmetric.
Definition hfiberandhomotinv { AB : UU } { £f g : A ->B)} (b : B)
(p : homot £ g) : hfiber g b —> hfiber f b := fun a =>
pair (prl a) (pathscomp ((p (pria))) (pr2a)).
Finally, these two maps constitute a homotopy equivalence of spaces as the following
lemma confirms:

Lemma isheqhfiberandhomot { AB : UU } { £ g : A ->B } (b : B)
(p : homot £ g) : isheq (hfiberandhomot b p).

HOMOTOPY TYPE THEORY 635

We leave the proof of isheghfiberandhomot as an exercise for the reader (the proof
can also be found in the accompanying Coq file, which is available on the second
author’s website, http://mawarren.net).

7.3. Weak equivalences. Classically, a map f : A — B is a weak equivalence
when it induces isomorphisms on homotopy groups. However, we will give a defi-
nition, following Voevodsky [78], which makes sense without referring to homotopy
groups. In Section [.4] below we will show that these weak equivalences coincide,
for the “nice spaces” we are considering, with the homotopy equivalences (and
therefore also with the classical weak equivalences). We start with the definition:

Definition isweq { AB : UU > (f : A -> B) :=
(forall b : B, iscontr (hfiber f b)).

From the “propositions as types” point of view, the weak equivalences correspond
to the bijections. The space of weak equivalences from A to B is defined as follows:

Definition weq (A B : UU) := total (fun £ : A -> B => isweq f).

That is, a typical term of type weq A B is a pair consisting of a map £ : A -> B
together with a term of type isweq f. The most basic example of a weak equiva-
lence is the identity function idfun A : A -> A. It is straightforward to construct
the required proof that this is a weak equivalence. We denote by isweqidfun A
this term of type isweq (idfun A), and we then adopt the following definition:

Definition idweq (A : UU) := pair (idfun A) (isweqidfun A).

That is, idweq A is the representative of the identity function on A as a weak
equivalence.

Given amap f : A -> B together with a proof is : isweq f that it is a weak
equivalence, if we are given a point b : B, then there is a corresponding cen-
ter of contraction in the homotopy fiber of f over b given explicitly by the term
prl (is b). Because it is often convenient to make use the actual term of type
A corresponding to this center of contraction, we introduce the following nomencla-
ture:

Definition weqpreimage { AB : UU + { £ : A -> B } (is : isweq f)

(b:B) : A :=prl (prl (is b)).

That is, weqpreimage is b is the (homotopically) canonical element in the homo-
topy fiber of £ over b. Similarly, we name the path from f (weqpreimage is b)
to b as follows:
Definition weqpreimageeq { AB : UU } { £ : A -> B }
(is : isweq £) (b : B)
paths (£ (wegpreimage is b)) b := pr2 (prl (is b)).

That is, we have

wegpreimageeq is b

f(weqpreimage is b)
It is also clear from the definition of weqpreimage that if we are given any point
a : A and path g from (£ a) to b, there exists a path

. . wegpreimageumpl is b g
wegpreimage is b a,

636 A. PELAYO AND M. A. WARREN

since these both occur in the homotopy fiber over b. We leave the construction
of the term weqpreimageumpl to the reader. Finally, the operation of taking the
preimage is injective in the sense that if there is a path

g
wegpreimage is b ————— weqpreimage is ¥/,
then there exists an induced path weqpreimageump2 is g from b to b’.

7.4. Weak equivalences and homotopy equivalences. Given a weak equiva-
lence £ : A -> B, we construct a homotopy inverse of £ as follows:

Definition weqinv { AB : UU } (f : weq AB) : B > A :=
fun x => weqpreimage (pr2 f) x.

Using the observations from Section [[3] it is straightforward to prove the following
two lemmas:

Lemma weqinvislinv { AB : UU } (£ : weq A B)
homot (funcomp (weqinv f) (pr1 £)) (idfun _).

Lemma weqinvisrinv { AB : UU } (£ : weq A B)
homot (funcomp (prl f) (weqinv £)) (idfun _).

which together constitute the proof of:
Lemma weqtoheq { AB : UU } { £ : A > B } (is : isweq f) : isheq f.

Classically, it should be noted that the analogue of weqtoheq only applies in the
case of reasonably nice spaces. Interestingly, the proof of the converse of weqtoheq
is not entirely trivial. (Categorically, the proof of the converse makes crucial use of
the fact that categorical equivalences can be transformed into adjoint equivalences
as).)

The proof of the converse of weqtoheq can be broken up nicely into two lem-
mas. The first lemma states that, for a homotopy retract as in (1) above, if the
homotopy fiber of the composite s o r over a point a of A is contractible, then the
homotopy fiber of s over a is also contractible:

Lemma iscontrhfiberandhretract { AB : UU } { r : A -> B }

{s:B->A7%} (p: homot (funcomp s r) (idfun _)) (a : A)

iscontr (hfiber (funcomp r s) a) -> iscontr (hfiber s a).

Proof.

intros is.

apply (@iscontrretract (hfiber (funcomp r s) a) (hfiber s a)

(maponhfiber _ _ _) (secmaponhfiber p a)).

apply secmaponhfiberissec. assumption.

Defined.

As the Coq code shows, the proof of this fact is an immediate consequence of
iscontrretract and secmaponhfiberissec.

The second lemma states that if there is a homotopy from f : A — B to
f': A — B and the homotopy fiber of f’ over a point b : B is contractible,

HOMOTOPY TYPE THEORY 637

then the homotopy fiber of f over b is also contractible:

Lemma iscontrhfiberandhomot { AB : UU } { £ £2 : A -> B }
(h : homot £f £2) (b : B)
iscontr (hfiber f’ b) -> iscontr (hfiber f b).
Proof.
intros is. apply (iscontrandheqinv (isheghfiberandhomot b h)).
assumption.
Defined.

In this case the proof is an immediate consequence of the fact (iscontrandheqinv)
that being contractible is preserved by homotopy equivalences together with the fact
(isheghfiberandhomot) that homotopies induce homotopy equivalences of homo-
topy fibers.

Using these two lemmas we obtain the converse of weqtoheq called, following
Voevodsky, the Grad Theorem as follows:

Theorem gradth { AB : UU } { £ : A -> B } (is : isheq f)
: isweq f.
Proof.
intro b. destruct is as [£’ is].
apply (@iscontrhfiberandhretract B A f’ f (pr2 is)).
apply (@iscontrhfiberandhomot B _ (funcomp £’ f)
(idfun B) (prl is)).
apply isweqidfun.
Defined.

After applying intro b and destruct we find ourselves in the following situation.

A : UU
B : UU
f : A->B
f> : B > A

is : dirprod (homot (funcomp f’ f) (idfun B))
(homot (funcomp f f’) (idfun A))
b : B

iscontr (hfiber f b)

Because f’ is the homotopy inverse of £, by iscontrhfiberandhretract it then
suffices to show that the composite f o f’ has a contractible homotopy fiber over b.
This is the effect of the first apply, after which the Coq output is as follows.

A : UU
B : UU
f : A->B
f> : B> A

is : dirprod (homot (funcomp £’ f) (idfun B))
(homot (funcomp f f’) (idfun A))
b : B

iscontr (hfiber (funcomp f’ f) b)

638 A. PELAYO AND M. A. WARREN

We now observe that there is a homotopy from f o f’ to the identity function on
B, and therefore after applying iscontrhfiberandhomot, it remains only to prove
that the identity on B is a weak equivalences, which is precisely the content of
isweqidfun.

8. THE UNIVALENCE AXIOM AND SOME CONSEQUENCES

In this section we will describe a number of constructions and results which
are more closely related to the univalent approach. Because it would take us too
far afield in an introductory paper such as this, we will merely mention a number
of the results and display some of the corresponding Coq code. That is to say,
the development given here is not self-contained: there are many definitions and
lemmas we do not give that would be required in order to obtain all of the results
described here.

8.1. The Univalence Axiom. Before giving the explicit statement of the Univa-
lence Axiom, we will first require a map which turns a path in the universe UU into
a weak equivalence. For a change of pace, we give a direct definition of this map as
follows:
Definition eqweqmap { A B : UU } (p : paths A B) : weq A B

:= match p with idpath => (idweq _) end.

That is, eqweqmap is the map from the path space paths A B to the space weq A B
of weak equivalences induced by the operation of sending the identity path on A to
the identity weak equivalence idweq A on A.

We then define the type

Definition isweqeqweqmap := forall A B : UU, isweq (Qeqweqmap A B).

The Univalence Axiom then states that there is a term of type isweqeqweqmap.
This means that the type of identity paths from A to B in UU is equivalent to the
type of weak equivalences from A to B. One consequence of this is that the type
of weak equivalences from A to B is itself inductively generated in a suitable sense.
Indeed, this is the intuition behind a principle which is logically equivalent to the
Univalence Axiom and to which we now turn.

8.2. An equivalent formulation of the Univalence Axiom. The idea behind
this equivalent form of the Univalence Axiom, which can be seen easily by consid-
ering the semantic version of the Univalence Axiom (i.e., what the axiom says in
terms of models), states that the type of weak equivalences is inductively generated
by the terms of the form idweq A. In particular, they are inductively generated by
these terms in the same way that the path space construction paths is inductively
generated by the identity paths. Formally, we define the type
Definition weqindelim :=
forall E :

total (fun X : UU => total (fun Y : UU => weq X Y)) -> UU,
forall p : (forall X : UU, E (pair X (pair X (idweq X)))),
forall X Y : UU, forall £ : weq X Y, E (pair X (pair Y £)).

In type theoretic notation, weqindelim is the type

II 11 IT Il ex.wn

E:(ny,uweqXY)—)Z/{]y E(X,(X,1x)) X,Y:U frweq XY

HOMOTOPY TYPE THEORY 639

Intuitively, the space) vy, weq X Y has points given by the following data:

e small spaces X and Y
e weak equivalences f from X to Y.

Let us call this space B. Then, for a fibration £ — B over B, if there exists a proof
p (term) that each fiber E;, over identity weak equivalences 1x is inhabited, then
a term of type weqindelim E p yields a proof that every fiber Ey is inhabited.
Thinking of E as a “property” of weak equivalences, this states that in order to
prove that a property (definable type theoretically) of weak equivalences holds, it
suffices to prove that the property holds of identity weak equivalences. We refer to
this as induction on weak equivalences.

In order to prove that if the Univalence Axiom holds, then the induction principle
weqindelim also holds, we make use of the following lemma, the proof of which is
immediate.

Lemma weqindO
(E : total (fun X : UU => total (fun Y : UU => weq X
(p: (forall X : UU, E (pair X (pair X (idweq X)
(forall X Y : UU,

forall i : paths X Y, E (pair X (pair Y (eqwegmap i)))).

- =

In type theoretic notation, given E and p as in weqindelim above, weqindO gives
a term of type

H H E(X, (Y, equeqmap(i))).

X, YU i:Idy (X,Y)

IL.e., this lemma states that the induction principle in question holds for weak equiv-
alences of the form equweqmap(f) for f a path between small spaces. Using this, we
obtain the following:

Definition weqind (univ : isweqeqweqmap) : weqindelim :=
fun Ep A B £ =>
transportf (fun z => E (pair A (pair Bz)))
(weqegmaplinv univ f) (weqindO E p A B (weqegmap univ f)).

Here we are assuming that the Univalence Axiom holds. L.e., that there is a term
univ of type isweqeqweqmap. Then, given all of the data of the induction principle,
in order to obtain a proof that the fiber £ is inhabited we observe that, by weqind0,
there exists a term e in the

Eeqweqmap(weqeqmap(f)))

where weqeqmap is the homotopy inverse of eqwegmap, which exists by the fact that
we are assuming the Univalence Axiom. It then suffices to transfer e along the path
from eqweqmap(weqeqmap(f)) to f (here called weqegmaplinv).

We note that, when the Univalence Axiom holds, the following computation
principle corresponding to weqindelim also holds:

Definition weqindcomp (rec : weqgindelim) :=

forall E :

total (fun x : UU => total (funy : UU => weq x y)) —> UU,
forall p : (forall x : UU, E (pair x (pair x (idweq x)))),
forall x : UU, paths (rec E p x x (idweq x)) (p x).

640 A. PELAYO AND M. A. WARREN

Explicitly, we have the following theorem:
Theorem weqcomp (univ : isweqeqweqmap) : weqindcomp (weqind univ).

The proof of this is slightly involved, and we leave the details to the reader (they
can also be found in the companion Coq file for this tutorial). We refer to this
computation principle as the computation principle for weak equivalences.

It turns out that the converse implications also hold: in order to prove that the
Univalence Axiom holds, it suffices to show that there are terms rec : weqindelim
and reccomp : weqindcomp rec. That is, we have the following theorem:

Theorem univfromind {rec : weqindelim} (reccomp : weqindcomp rec)
isweqeqweqmap.

In order to prove this, it suffices, by the Grad Theorem, to prove that eqweqmap has
a homotopy inverse. To construct the homotopy inverse, we employ induction on
weak equivalences. That is, to construct a map from the space weq A B to the path
space paths A B, it suffices to be able to specify the image of an identity weak
equivalence. But these are clearly sent to the identity path. The fact that this
determines a homotopy inverse is then a consequence of the computation principle
for weak equivalences.

8.3. Function extensionality. Henceforth, we assume that the Univalence Axiom
holds. That is, we adopt the following:

Axiom univ : iswegeqwegmap.

In Coq, the command Axiom serves to introduce a new global hypothesis. In this
case, we assume given a proof univ of the Univalence Axiom. Note that, although a
good number do, not all of the facts we prove below require the Univalence Axiom
for their proofs. We will begin by briefly summarizing one of Voevodsky’s type
theoretic results regarding the Univalence Axiom.

One somewhat curious feature of type theory without the Univalence Axiom is
that the principle of Function Extensionality is not derivable. Although it can be
formulated in a number of ways, the principle of Function Extensionality should be
understood as stating that, for continuous maps f,g: A — B, paths from f to g in
the function space B4 correspond to homotopies from f to g.

Voevodsky [78] showed that Function Extensionality (and a number of closely
related principles) is a consequence of the Univalence Axiom. A sketch of the proof
written in the usual mathematical style can be found in Gambino [23]. We will not
describe the proof of Function Extensionality here. We merely mention that we
will make use of it in what follows. Explicitly, we make use of a term

funextsec : forall B : UU, forall E : B -> UU,
forall £ g : (forall x : B, E x),
isweq (pathtohtpysec f g).

This is a slightly more general form of Function Extensionality and implies the
more common version

Definition funextfun { AB : UU } (£ g : A -> B)
homot f g > paths £ g :=
weqinv (pair _ (funextsec A (fun z => B) f g)).

HOMOTOPY TYPE THEORY 641

8.4. Closure of h-levels under arbitrary products. We will now describe a
number of consequences of the Univalence Axiom concerning h-levels. First, we
give the definition of h-levels

Fixpoint isofhlevel (n : nat) (A : UU) :=
match n with
| 0 => iscontr A
| Sn => forall a b : A, isofhlevel n (paths a b)
end.
Here the operation Fixpoint tells Coq that we will define a function out of an
inductive type (in this case nat) recursively. So, the definition is saying that a type
A is of h-level 0 when it is contractible and it is of h-level (n + 1) when, for all
points a and b of A, the path space paths a b is of h-level n.
The h-levels satisfy an important property which we will refer to as the impredica-
tivity of h-levels: h-levels are closed under arbitrary products in the sense described
below [In the base case (for contractible spaces), this is proved as follows:

Lemma impredbase { B : UU } (E : B > UU)
(forall x : B, iscontr (E x)) -> iscontr (forall x : B, E x).

Intuitively, what this says is that given a fibration E over B, if every fiber E, is
contractible, then the space forall x : B, E x of sections of the fibration is also
contractible. We omit the proof, which is an immediate consequence of funextsec.

The following general principle of impredicativity of h-levels then follows by
induction:

Lemma impred (n : nat) : forall B : UU, forall E : B -> UU,
(forall x : B, isofhlevel n (E x))
-> isofhlevel n (forall x : B, E x).

Again, this lemma states that if all fibers E, are of h-level n, then so is the space
of sections of the fibration.

8.5. The total space and h-levels. Next, we would like to explain the behavior
of h-levels when it comes to forming the total space of a fibration. Assume given a
fibration £ — B over B. That is, we assume given a term E : B -> UU. Then, for
any points x and y, there is a weak equivalence between the path space paths x y
and the space which consists of pairs (f,g) consisting of paths f from 7 (z) to
m1(y) and paths g from f.(m2(z)) to m2(y) (see Section [@l above for more on this
idea). Using this fact, we obtain the following lemma:

Lemma totalandhlevel (n : mat) : forall B : UU, forall E : B -> UU,
forall is : isofhlevel n B,
forall is’ : (forall x : B, isofhlevel n (E x)),
isofhlevel n (total E).

The lemma states that if the base space B and all fibers E, are of h-level n, then so
is the total space. In the base case n = 0 this is straightforward. In the induction
case, we observe that, for any = and y in the total space,

isofhlevel n (paths x y)

SThere is another notion of impredicativity which is sometimes considered in logic and type
theory and should not be confused with this notion.

642 A. PELAYO AND M. A. WARREN

can be replaced by the Univalence Axiom and the weak equivalence mentioned
above by

isofhlevel n (
total (fun v : paths (prl x) (prly) =>
paths (transportf Ev (pr2 x)) (pr2y))).

But the induction hypothesis applies in this case, since we are now dealing with a
space of the form total ..., and so we are done.

8.6. The unit type and contractibility. The unit type unit corresponds to the
terminal object 1 in the category of spaces under consideration. It is the inductive
type with a single generator tt : unit. For any type A there is an induced map
tounit A : A -> unit.
It is a useful fact about contractible spaces that A is contractible if and only if
tounit A is a weak equivalence. We omit the straightforward proof of this equiva-
lence.

One fact about contractible spaces we will require is the fact that if A is con-
tractible, then so is the type iscontr A of proofs that A is contractible. This is
captured by the following lemma:

Lemma iscontrcontr { A : UU } (is : iscontr A)
iscontr (iscontr A).

By the Univalence Axiom and the characterization of contractible spaces mentioned
above, in order to prove this lemma it suffices to consider the case where A is the unit
type, which is more or less immediate. This proof reveals one important method
for using the Univalence Axiom: to prove something about a space A it suffices,
by the Univalence Axiom, to prove the same fact about an easier-to-manage space
which is weakly equivalent to A.

8.7. Some propositions. We think of types of h-level 1 as being propositions
(or truth-values) in the sense familiar to logicians. Following this intuition, we
introduce the notation

Notation isaprop := (isofhlevel 1).

Being a proposition is the same as being proof irrelevant. That is, P is a proposition
if and only if, for all terms p, g : P, there is a path from p to gq.

One important consequence of iscontrcontr is the fact that being contractible
is itself a proposition:
Lemma isapropiscontr (A : UU) : isaprop (iscontr A).

First, note that it is clear that a sufficient condition for being a proposition is being
contractible. So, given points p and ¢ of type iscontr A, it suffices to show that
the type iscontr A is itself contractible, which is by iscontrcontr.

As a consequence of impredicativity of h-levels together with isapropiscontr,
we obtain the following lemma:

Lemma isapropisweq { AB : UU } (£ : A -> B)
: isaprop (isweq f).

So being a weak equivalence is a property of a function. Again using impredicativity
of h-levels and isapropisweq, we obtain the following theorem:

Theorem isaxiomunivalence : isaprop (isweqeqweqmap) .

HOMOTOPY TYPE THEORY 643

That is, the type of the Univalence Axiom is a proposition, and therefore, assuming
that there exists a term univ of this type, the space of such terms is contractible.

Similarly, a straightforward argument shows that, for any space A, the type
isofhlevel n A is a proposition.

8.8. The h-levels of h-universes. We will now consider types of the form
total (fun x : UU => isofhlevel n x)

which correspond to the types of all small spaces of a fixed h-level n. That is, they
are what you might call h-universes. Ultimately, we will compute the h-levels of
h-universes. First we will develop some further basic facts about h-levels.

Note that if A is of h-level n, then a straightforward argument (using the discus-
sion of h-levels of total spaces above) shows that A is also of h-level (n + 1). That
is, the h-universes are cumulative. Next, observe that if B is of h-level (n+1), then
so is the space of weak equivalences WEq A B for any space A:

Lemma hlevelweqcodomain (n : nat) : forall A B : UU,

isofhlevel (S n) B —> isofhlevel (Sn) (weq A B).
Proof.

intros A B is. apply totalandhlevel. apply impred.

intros. apply is. intros. apply isaproptoisofhlevelSn.

apply isapropisweq.
Defined.
The proof is as follows. It suffices, by totalandhlevel, to prove separately that
both the function space A -> B and the space of proofs that an element f of the
function space is a weak equivalence are of h-level (n + 1). The former is by
impredicativity of h-levels and the latter is by isapropisweq.

Now, for each fixed n, there is a version of eqweqmap relativized to the h-universe
of type of h-level n:

Definition hlevelneqwegmap (n : nat)
(AB : total (fun x : UU => isofhlevel n x))
: paths AB -> weq (pr1 A) (prl1 B) :=
fun f => eqweqmap (pathintotalfiberprl f)

It turns out that, because isweq f is a proposition, this map is a weak equivalence:

Lemma isweghlevelneqwegmap (n : nat)
forall A B : total (fun x : UU => isofhlevel n x),
isweq (hlevelneqweqmap n A B).

Next, we observe that if both A and B are contractible, then so is the space of weak
equivalences from A to B:

Lemma iscontrandweq { A B : UU } (is : iscontr A)
(is’ : iscontr B) : iscontr (weq A B).

Finally, we observe that the h-universe of types of h-level n itself has h-level (n+1):

Theorem isofhlevelSnhn (n : nat) : isofhlevel (S n)
(total (fun x : UU => isofhlevel n x)).

The proof is as follows. First, note that if we are given A and B of type
total (fun x : UU => isofhlevel n x),

644 A. PELAYO AND M. A. WARREN

then these terms should themselves be thought of as pairs A = (4, p) and B = (B, q)
where p is a proof that A is of h-level n and ¢ is a proof that B is of h-level n.
Nonetheless, there is a weak equivalence between the type paths (4, p) (B, q) and
the type WEq A B and as such it suffices to construct a term of type

isofhlevel n (weq A B).

When n = 0 this is by iscontrandweq and in the case where n = m + 1 it is by
hlevelweqcodomain.

9. FUTURE DIRECTIONS

There are a number of exciting directions in homotopy type theory and univalent
foundations which are currently being pursued. We will briefly summarize several
of them.

First, there are a number of interesting theoretical questions surrounding the
Univalence Axiom which remain open. The most pressing of these questions is
the question of the “constructivity” of the Univalence Axiom posed by Voevodsky
in [77]. Voevodsky conjectured that, in the presence of the Univalence Axiom,
for every t : nat, there exists a numeral n : nat and a term of type Idp..(t,n).
Moreover, it is expected that there exists an algorithm which will return such data
when given a term ¢ of type nat. Additionally, there is the question of finding
additional models of the Univalence Axiom and characterizing such models (see,
e.g., [67]).

Secondly, it remains to be seen how much of modern homotopy theory can be for-
malized in type theory using either higher-inductive types or some other approach
(although a large amount of progress in this direction has already been made; see
[M). Indeed, there is still work to be done to arrive at a complete theoretical
understanding of higher-inductive types.

Finally, the formalization of ordinary (set level and higher-level) mathematics in
the univalent setting remains to be done. At present, a large amount of mathematics
has been formalized by Voevodsky in his Coq library. Additionally, together with
Voevodsky, the authors have been working on developing an approach to the theory
of integrable systems (using a notion of p-adic integrable system as a test case
motivated by the real theory [56]) in the univalent setting [57]. Ultimately, we
hope that it will be possible to formalize large amounts of modern mathematics
in the univalent setting, and that doing so will give rise to both new theoretical
insights and good numerical algorithms (extracted from code in a proof assistant
like Coq) which can be applied to real-world problems by applied mathematicians
(cf. [I] for more details on the current progress in this direction).

ACKNOWLEDGMENTS

We thank Pierre-Louis Curien, Marcelo Fiore, Edward Frenkel, Helmut Hofer,
and Vladimir Voevodsky for useful discussions on the topic of this paper. We also
thank Chris Kapulkin for several helpful comments on a preliminary draft. Finally,
we are grateful to the referees of this article for many valuable comments which

have improved the presentation. Syntax-higlighting was produced using the minted
LaTeX package.

HOMOTOPY TYPE THEORY 645

ABOUT THE AUTHORS

Alvaro Pelayo is associate professor at University of California San Diego. He
has done research in the areas of symplectic and spectral geometry, semiclassical
analysis, and Voevodsky’s program. He was a member of TAS during 2010-2013.

Michael A. Warren has carried out research in homotopy type theory and Vo-
evodsky’s program, as well as other research in category theory and logic. He was
a member of the TAS during 2011-2013.

(1]
2]

(3]

[10]

(11]

12]
13]
[14]
[15]
[16]

(17]

REFERENCES

Assorted authors, Univalent foundations of mathematics wiki, 2013, https://uf-ias-2012.
wikispaces.com.

Steve Awodey, Type theory and homotopy, Epistemology versus ontology, Log. Epistemol.
Unity Sci., vol. 27, Springer, Dordrecht, 2012, pp. 183-201, DOTI 10.1007/978-94-007-4435-6 9.
MR2962717

Steve Awodey, Pieter Hofstra, and Michael A. Warren, Martin-Léf complexes, Ann. Pure
Appl. Logic 164 (2013), no. 10, 928-956, DOI 10.1016/j.apal.2013.05.001. MR3069018
Steve Awodey, Alvaro Pelayo, and Michael A. Warren, Voevodsky’s univalence aziom
in homotopy type theory, Notices Amer. Math. Soc. 60 (2013), no. 9, 1164-1167, DOI
10.1090/n0oti1043. MR3113277

Steve Awodey and Michael A. Warren, Homotopy theoretic models of identity types, Math.
Proc. Cambridge Philos. Soc. 146 (2009), no. 1, 45-55, DOI 10.1017/S0305004108001783.
MR2461866(2010g:03020)

M. A. Batanin, Monoidal globular categories as a natural environment for the theory of
weak n-categories, Adv. Math. 136 (1998), no. 1, 39-103, DOI 10.1006/aima.1998.1724.
MR1623672//(99£:18010)

Hans Joachim Baues, Homotopy types, Handbook of algebraic topology, North-Holland, Am-
sterdam, 1995, pp. 1-72, DOI 10.1016/B978-044481779-2/50002-X. MR 1361886 (97¢:55005)
Benno van den Berg and Richard Garner, Types are weak w-groupoids, Proc. Lond. Math.
Soc. (3) 102 (2011), no. 2, 370-394, DOT 10.1112/plms/pdq026. MR2769118/(2011m:18010)
Yves Bertot and Pierre Castéran, Interactive theorem proving and program development,
Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2004.
Coq’Art: the calculus of inductive constructions; With a foreword by Gérard Huet and Chris-
tine Paulin-Mohring. MR2229784 (2007i:68001)

Ronald Brown, Topology and groupoids, BookSurge, LL.C, Charleston, SC, 2006. Third edition
of Elements of modern topology [McGraw-Hill, New York, 1968; MR0227979]; With 1 CD-
ROM (Windows, Macintosh and UNIX). MR2273730

N. G. de Bruijn, The mathematical language AUTOMATH, its usage, and some of its exten-
stons. 1970 Symposium on Automatic Demonstration (Versailles, 1968) pp. 29-61. Lecture
Notes in Mathematics, Vol. 125. Springer, Berlin, 1970. MR0267814|(42 #2716)

Eugenia Cheng, An w-category with all duals is an w-groupoid, Appl. Categ. Structures 15
(2007), no. 4, 439-453, DOI 10.1007/s10485-007-9081-8. MR2350215 |(2008g:18001)

A. Chlipala, Certified programming with dependent types, to appear. MIT Press. Currently
available online at http://adam.chlipala.net/cpdt/, 2012.

Alonzo Church, A set of postulates for the foundation of logic, Ann. of Math. (2) 34 (1933),
no. 4, 839-864, DOI 10.2307/1968702. MR1503136

Alonzo Church, A formulation of the simple theory of types, J. Symbolic Logic 5 (1940),
56-68. MR0001931//(1,321d)

Alonzo Church, The Calculi of Lambda-Conversion, Annals of Mathematics Studies, no. 6,
Princeton University Press, Princeton, N. J., 1941. MR0005274 (3,129b)

Denis-Charles Cisinski, Batanin higher groupoids and homotopy types, Categories in algebra,
geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Provi-
dence, RI, 2007, pp. 171-186, DOI 10.1090/conm/431/08272. MR2342828|(2008g:55032)

C. Coquand and T. Coquand, Structured type theory, Proceedings of the Workshop on Logical
Frameworks and Meta-Languages (LFM’99) (Paris), 1999.

https://uf-ias-2012.wikispaces.com
https://uf-ias-2012.wikispaces.com
http://www.ams.org/mathscinet-getitem?mr=2962717
http://www.ams.org/mathscinet-getitem?mr=3069018
http://www.ams.org/mathscinet-getitem?mr=3113277
http://www.ams.org/mathscinet-getitem?mr=2461866
http://www.ams.org/mathscinet-getitem?mr=2461866
http://www.ams.org/mathscinet-getitem?mr=1623672
http://www.ams.org/mathscinet-getitem?mr=1623672
http://www.ams.org/mathscinet-getitem?mr=1361886
http://www.ams.org/mathscinet-getitem?mr=1361886
http://www.ams.org/mathscinet-getitem?mr=2769118
http://www.ams.org/mathscinet-getitem?mr=2769118
http://www.ams.org/mathscinet-getitem?mr=2229784
http://www.ams.org/mathscinet-getitem?mr=2229784
http://www.ams.org/mathscinet-getitem?mr=2273730
http://www.ams.org/mathscinet-getitem?mr=0267814
http://www.ams.org/mathscinet-getitem?mr=0267814
http://www.ams.org/mathscinet-getitem?mr=2350215
http://www.ams.org/mathscinet-getitem?mr=2350215
http://adam.chlipala.net/cpdt/
http://www.ams.org/mathscinet-getitem?mr=1503136
http://www.ams.org/mathscinet-getitem?mr=0001931
http://www.ams.org/mathscinet-getitem?mr=0001931
http://www.ams.org/mathscinet-getitem?mr=0005274
http://www.ams.org/mathscinet-getitem?mr=0005274
http://www.ams.org/mathscinet-getitem?mr=2342828
http://www.ams.org/mathscinet-getitem?mr=2342828

646

(19]
[20]

(21]

(22]

(23]

[24]

(25]

[26]
27)

(28]

29]

(30]

(31]

(32]
(33]
(34]

(35]

(36]

37)

(38]
39]
[40]

[41]

(42]

A. PELAYO AND M. A. WARREN

Thierry Coquand and Gérard Huet, The calculus of constructions, Inform. and Comput. 76
(1988), no. 2-3, 95-120, DOI 10.1016,/0890-5401(88)90005-3. MR935892]/(89;:68096)

H. B. Curry, Functionality in combinatory logic, Proceedings of the National Academy of
Sciences 20 (1934), no. 11, 584-590.

Jean Dieudonné, A history of algebraic and differential topology 1900-1960, Modern
Birkhiuser Classics, Birkhduser Boston, Inc., Boston, MA, 2009. Reprint of the 1989 edi-
tion [MR0995842]. MR2509981

B. Eckmann and P. J. Hilton, Group-like structures in general categories. I. Multiplications
and comultiplications, Math. Ann. 145 (1961/1962), 227-255. MR0136642/(25 #108)

N. Gambino, The Univalence Axziom and Function Eztensionality, Oberwolfach Reports 8
(2011), no. 1, p. 625, Abstracts from the mini-workshop held February 27-March 5, 2011,
organized by Steve Awodey, Richard Garner, Per Martin-L6f and Vladimir Voevodsky.
Nicola Gambino and Richard Garner, The identity type weak factorisation system, Theo-
ret. Comput. Sci. 409 (2008), no. 1, 94-109, DOI 10.1016/j.tcs.2008.08.030. MR2469279
(2011d:03011)

R. Gordon, A. J. Power, and Ross Street, Coherence for tricategories, Mem. Amer. Math.
Soc. 117 (1995), no. 558, vi+81, DOI 10.1090/memo/0558. MR 1261589 (96j:18002)

A. Grothendieck, Pursuing Stacks, 1983.

Thomas C. Hales, Formal proof, Notices Amer. Math. Soc. 55 (2008), no. 11, 1370-1380.
MR2463990 (2010h:03012)

Martin Hofmann, On the interpretation of type theory in locally Cartesian closed categories,
Computer science logic (Kazimierz, 1994), Lecture Notes in Comput. Sci., vol. 933, Springer,
Berlin, 1995, pp. 427-441, DOI 10.1007/BFb0022273. MR 1471244

Martin Hofmann and Thomas Streicher, The groupoid interpretation of type theory, Twenty-
five years of constructive type theory (Venice, 1995), Oxford Logic Guides, vol. 36, Oxford
Univ. Press, New York, 1998, pp. 83-111. MR1686862

Pieter Hofstra and Michael A. Warren, Combinatorial realizability models of type theory, Ann.
Pure Appl. Logic 164 (2013), no. 10, 957-988, DOI 10.1016/j.apal.2013.05.002. MR3069019
W. A. Howard, The formulae-as-types notion of construction, To H. B. Curry: essays on
combinatory logic, lambda calculus and formalism, Academic Press, London-New York, 1980,
pp. 480—490. MR592816/(82g:03094)

The Univalent Foundations Program Institute for Advanced Study 2013, Homotopy type
theory: Univalent foundations of mathematics, 2013, http://homotopytypetheory.org/book.
A. Joyal, I. Moerdijk, and B. Toén, Advanced Course on Simplicial Methods in Higher Cat-
egories, Quaderns 45 (2008), no. 2.

Daniel M. Kan, On c. s. s. complezes, Amer. J. Math. 79 (1957), 449-476. MR0090047
(19,759e)

M. M. Kapranov and V. A. Voevodsky, co-groupoids and homotopy types (English, with
French summary), Cahiers Topologie Géom. Différentielle Catég. 32 (1991), no. 1, 29-46.
International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990). MR1130401
(93¢:55006)

C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky, Univalence in simplicial sets, in prepara-
tion, on the arXiv as arXiv:1203.2553, 2012.

U. Kohlenbach, Applied proof theory: proof interpretations and their use in mathemat-
ics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. MR2445721
(2009k:03003)

A. Kolmogoroff, Zur Deutung der intuitionistischen Logik (German), Math. Z. 35 (1932),
no. 1, 58-65, DOI 10.1007/BF01186549. MR 1545289

F. William Lawvere, Adjointness in foundations, Repr. Theory Appl. Categ. 16 (2006), 1-16.
Reprinted from Dialectica 23 (1969). MR2223032 (2007h:18004)

Tom Leinster, Higher operads, higher categories, London Mathematical Society Lecture Note
Series, vol. 298, Cambridge University Press, Cambridge, 2004. MR2094071//(2005h:18030)
D. Licata, A formal proof that the higher fundamental groups are abelian, blog post avail-
able at http://homotopytypetheory.org/2011/03/26/higher-fundamental-groups-are-
abelian/, 2011.

Jean-Louis Loday, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Al-
gebra 24 (1982), no. 2, 179-202, DOI 10.1016,/0022-4049(82)90014-7. MR651845/(83i:55009)

http://www.ams.org/mathscinet-getitem?mr=935892
http://www.ams.org/mathscinet-getitem?mr=935892
http://www.ams.org/mathscinet-getitem?mr=2509981
http://www.ams.org/mathscinet-getitem?mr=0136642
http://www.ams.org/mathscinet-getitem?mr=0136642
http://www.ams.org/mathscinet-getitem?mr=2469279
http://www.ams.org/mathscinet-getitem?mr=2469279
http://www.ams.org/mathscinet-getitem?mr=1261589
http://www.ams.org/mathscinet-getitem?mr=1261589
http://www.ams.org/mathscinet-getitem?mr=2463990
http://www.ams.org/mathscinet-getitem?mr=2463990
http://www.ams.org/mathscinet-getitem?mr=1471244
http://www.ams.org/mathscinet-getitem?mr=1686862
http://www.ams.org/mathscinet-getitem?mr=3069019
http://www.ams.org/mathscinet-getitem?mr=592816
http://www.ams.org/mathscinet-getitem?mr=592816
http://homotopytypetheory.org/book
http://www.ams.org/mathscinet-getitem?mr=0090047
http://www.ams.org/mathscinet-getitem?mr=0090047
http://www.ams.org/mathscinet-getitem?mr=1130401
http://www.ams.org/mathscinet-getitem?mr=1130401
http://www.ams.org/mathscinet-getitem?mr=2445721
http://www.ams.org/mathscinet-getitem?mr=2445721
http://www.ams.org/mathscinet-getitem?mr=1545289
http://www.ams.org/mathscinet-getitem?mr=2223032
http://www.ams.org/mathscinet-getitem?mr=2223032
http://www.ams.org/mathscinet-getitem?mr=2094071
http://www.ams.org/mathscinet-getitem?mr=2094071
http://www.ams.org/mathscinet-getitem?mr=651845
http://www.ams.org/mathscinet-getitem?mr=651845

[43]

[44]

(45]

[46]
(47)
(48]
[49]
[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]
(60]

(61]

(62]

(63]

[64]
(65]

(66]

HOMOTOPY TYPE THEORY 647

Jean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Hei-
delberg, 2012. MR2954392

Peter Lefanu Lumsdaine, Weak w-categories from intensional type theory, Log. Methods
Comput. Sci. 6 (2010), no. 3, 3:24, 19, DOI 10.2168/LMCS-6(3:24)2010. MR2720193
(2011k:03022)

P. L. Lumsdaine, Higher inductive types: a tour of the menagerie, blog post available
at http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-
menagerie/, 2011.

P. L. Lumsdaine, Model structures from higher inductive types, preprint, 2011.

Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton Uni-
versity Press, Princeton, NJ, 2009. MR2522659 (2010;:18001)

Saunders Mac Lane, Categories for the working mathematician, Springer-Verlag, New York-
Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR0354798 (50 #7275)

G. Maltsiniotis, Infini groupoides non stricts, d’apreés Grothendieck, preprint, 2007.

P. Martin-Lof, An intuitionistic theory of types: predicative part, Proceedings of the Logic
Colloquium (Bristol, July, 1973) (H. E. Rose and J. C. Shepherdson, eds.), Studies in Logic
and the Foundations of Mathematics, vol. 80, North-Holland, Amsterdam, 1975, pp. 73—-118.
Per Martin-Lof, Constructive mathematics and computer programming, Logic, methodology
and philosophy of science, VI (Hannover, 1979), Stud. Logic Found. Math., vol. 104, North-
Holland, Amsterdam, 1982, pp. 153-175, DOI 10.1016/S0049-237X(09)70189-2. MR682410
(85d:03112)

Per Martin-Lof, Intuitionistic type theory, Studies in Proof Theory. Lecture Notes, vol. 1,
Bibliopolis, Naples, 1984. Notes by Giovanni Sambin. MR769301)(86j:03005)

Per Martin-Lof, An intuitionistic theory of types, Twenty-five years of constructive type
theory (Venice, 1995), 127-172, Oxford Logic Guides, 36, Oxford University Press, New York,
1998. MR1686864

I. Moerdijk, Fiber bundles and univalence, preprint, available at www.pitt.edu/~krk56/
fiber_bundles_univalence.pdf, 2012.

Ieke Moerdijk and Jan-Alve Svensson, Algebraic classification of equivariant homotopy 2-
types. I, J. Pure Appl. Algebra 89 (1993), no. 1-2, 187-216, DOI 10.1016/0022-4049(93)90094-
A. MR1239560,(94j:55013)

Alvaro Pelayo and San Vu Ngoc, Symplectic theory of completely integrable Hamiltonian
systems, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 3, 409-455, DOI 10.1090/S0273-0979-
2011-01338-6. MR2801777//(20121:37097)

A. Pelayo, V. Voevodsky, and M. A. Warren, A univalent formalization of the p-adic numbers,
to appear in Math. Struct. in Comp. Science, preprint, on the arXiv as arXiv:1302.1207,
2013.

Benjamin C. Pierce, Types and programming languages, MIT Press, Cambridge, MA, 2002.
MR1887075/(2003h:68015)

H. Poincaré, Analysis situs, Journal de 1’'Ecole Polytechnique (ser 2) 1 (1895), 1-123.
Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-
Verlag, Berlin-New York, 1967. MR0223432(36 #6480)

B. Russell, The Principles of Mathematics, 1 ed., Cambridge University Press, Cambridge,
1903.

Dana Scott, Constructive wvalidity, Symposium on Automatic Demonstration (Versailles,
1968), Lecture Notes in Mathematics, Vol. 125, Springer, Berlin, 1970, pp. 237-275.
MRO0278905//(43 #4631)

R. A. G. Seely, Locally Cartesian closed categories and type theory, Math. Proc. Cam-
bridge Philos. Soc. 95 (1984), no. 1, 33-48, DOI 10.1017/S0305004100061284. MR727078
(86b:18008)

Jean-Pierre Serre, Homologie singuliére des espaces fibrés. Applications (French), Ann. of
Math. (2) 54 (1951), 425-505. MR0045386,(13,574g)

M. Shulman, A formal proof that mi(s') = =z, blog post available at http://
homotopytypetheory.org/2011/04/29/a-formal-proof-that-pilsl-is-z/, 2011.

M. Shulman, Homotopy type theory, VI, blog post available at http://golem.ph.utexas.
edu/category/2011/04/homotopy_type_theory_vi.html, 2011.

http://www.ams.org/mathscinet-getitem?mr=2954392
http://www.ams.org/mathscinet-getitem?mr=2720193
http://www.ams.org/mathscinet-getitem?mr=2720193
http://www.ams.org/mathscinet-getitem?mr=2522659
http://www.ams.org/mathscinet-getitem?mr=2522659
http://www.ams.org/mathscinet-getitem?mr=0354798
http://www.ams.org/mathscinet-getitem?mr=0354798
http://www.ams.org/mathscinet-getitem?mr=682410
http://www.ams.org/mathscinet-getitem?mr=682410
http://www.ams.org/mathscinet-getitem?mr=769301
http://www.ams.org/mathscinet-getitem?mr=769301
http://www.ams.org/mathscinet-getitem?mr=1686864
www.pitt.edu/~krk56/fiber_bundles_univalence.pdf
www.pitt.edu/~krk56/fiber_bundles_univalence.pdf
http://www.ams.org/mathscinet-getitem?mr=1239560
http://www.ams.org/mathscinet-getitem?mr=1239560
http://www.ams.org/mathscinet-getitem?mr=2801777
http://www.ams.org/mathscinet-getitem?mr=2801777
http://www.ams.org/mathscinet-getitem?mr=1887075
http://www.ams.org/mathscinet-getitem?mr=1887075
http://www.ams.org/mathscinet-getitem?mr=0223432
http://www.ams.org/mathscinet-getitem?mr=0223432
http://www.ams.org/mathscinet-getitem?mr=0278905
http://www.ams.org/mathscinet-getitem?mr=0278905
http://www.ams.org/mathscinet-getitem?mr=727078
http://www.ams.org/mathscinet-getitem?mr=727078
http://www.ams.org/mathscinet-getitem?mr=0045386
http://www.ams.org/mathscinet-getitem?mr=0045386
http://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/
http://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html

648

A. PELAYO AND M. A. WARREN

[67] M. Shulman, The wunivalence aziom for inverse diagrams, preprint, on the arXiv as

arXiv:1203.3253, 2012.

[68] C. Simpson, Homotopy types of strict 3-groupoids, preprint, on the arXiv as

arXiv:math/9810059, 1998.

[69] Carlos Simpson, Computer theorem proving in mathematics, Lett. Math. Phys. 69 (2004),

287-315, DOI 10.1007/s11005-004-0607-9. MR2104448 (2005{:03020)

[70] Ross Street, Cosmoi of internal categories, Trans. Amer. Math. Soc. 258 (1980), no. 2, 271—

318, DOI 10.2307/1998059. MR558176/(82a:18007)

[71] T. Streicher, Investigations into intensional type theory, Ph.D. thesis, Habilitation thesis,

Ludwig-Maximilians-University Munich, Munich.

[72] W. W. Tait, Constructive reasoning, Logic, Methodology and Philos. Sci. III (Proc.

Third Internat. Congr., Amsterdam, 1967), North-Holland, Amsterdam, 1968, pp. 185-199.
MRO0256877|/(41 #1533)

[73] Zouhair Tamsamani, Sur des notions de n-catégorie et m-groupoide non strictes via des

ensembles multi-simpliciauz (French, with English summary), K-Theory 16 (1999), no. 1,
51-99, DOI 10.1023/A:1007747915317. MR1673923 (99m:18007)

[74] The Coq Development Team, The coq proof assistant reference manual, 2012, Version 8.4.
[75] V. Voevodsky, A very short note on the homotopy A-calculus, Unpublished note, 2006.

[76] V. Voevodsky, Notes on type systems, Unpublished notes, 2009.

[77] V. Voevodsky, Univalent foundations project, Modified version of an NSF grant application,

2010.

[78] V. Voevodsky, Coq library, available at www.math.ias.edu/~vladimir, 2011.
[79] V. Voevodsky, Ezperimental library of univalent formalization of mathematics, to appear in

Math. Struct. Comp. Sci., preprint available on the arXiv as 1401.0053, 2014.

[80] M. A. Warren, Homotopy Models of Intensional Type Theory, Ph.D. thesis prospectus,

Carnegie Mellon University, 2006.

[81] M. A. Warren, Homotopy Theoretic Aspects of Constructive Type Theory, Ph.D. thesis,

Carnegie Mellon University, 2008.

[82] Michael A. Warren, The strict w-groupoid interpretation of type theory, Models, logics, and

higher-dimensional categories, CRM Proc. Lecture Notes, vol. 53, Amer. Math. Soc., Provi-
dence, RI, 2011, pp. 291-340. MR2867977

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA SAN DIEGO, 9500 GILMAN DRIVE

0112, LA JoLLA, CALIFORNIA 92093-0112

E-mail address: pelayo.alv@gmail.com

Los ANGELES, CALIFORNIA
E-mail address: mwarren@alumni.cmu.edu

http://www.ams.org/mathscinet-getitem?mr=2104448
http://www.ams.org/mathscinet-getitem?mr=2104448
http://www.ams.org/mathscinet-getitem?mr=558176
http://www.ams.org/mathscinet-getitem?mr=558176
http://www.ams.org/mathscinet-getitem?mr=0256877
http://www.ams.org/mathscinet-getitem?mr=0256877
http://www.ams.org/mathscinet-getitem?mr=1673923
http://www.ams.org/mathscinet-getitem?mr=1673923
www.math.ias.edu/~vladimir
http://www.ams.org/mathscinet-getitem?mr=2867977

	1. Introduction
	2. Origins, basic aspects, and current research
	2.1. The homotopy theoretic interpretation of type theory
	2.2. Dependent products
	2.3. Inductive types
	2.4. Groupoids
	2.5. The univalent model of type theory
	2.6. The univalent perspective
	2.7. Computational aspects
	2.8. Reasoning about spaces in type theory

	3. Basic Coq constructions
	3.1. The Coq proof assistant
	3.2. Types and terms in Coq
	3.3. A direct definition involving function spaces
	3.4. An indirect definition involving function spaces

	4. Some basic inductive types
	4.1. The inductive type of natural numbers
	4.2. Fibrations and the total space of a fibration

	5. The path space
	5.1. Groupoid structure of the path space
	5.2. The functorial action of a continuous map on a path

	6. Transport
	6.1. Homotopy and homotopy equivalence
	6.2. Forward and backward transport
	6.3. Paths in the total space

	7. Weak equivalences and homotopy equivalences
	7.1. Contractibility
	7.2. Homotopy fibers
	7.3. Weak equivalences
	7.4. Weak equivalences and homotopy equivalences

	8. The Univalence Axiom and some consequences
	8.1. The Univalence Axiom
	8.2. An equivalent formulation of the Univalence Axiom
	8.3. Function extensionality
	8.4. Closure of h-levels under arbitrary products
	8.5. The total space and h-levels
	8.6. The unit type and contractibility
	8.7. Some propositions
	8.8. The h-levels of h-universes

	9. Future directions
	Acknowledgments
	About the authors
	References

