Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Two-point functions and their applications in geometry


Author: Simon Brendle
Journal: Bull. Amer. Math. Soc. 51 (2014), 581-596
MSC (2010): Primary 53C44; Secondary 53C42, 53A10
DOI: https://doi.org/10.1090/S0273-0979-2014-01461-2
Published electronically: May 12, 2014
MathSciNet review: 3237760
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The maximum principle is one of the most important tools in the analysis of geometric partial differential equations. Traditionally, the maximum principle is applied to a scalar function defined on a manifold, but in recent years more sophisticated versions have emerged. One particularly interesting direction involves applying the maximum principle to functions that depend on a pair of points. This technique is particularly effective in the study of problems involving embedded surfaces.

In this survey, we first describe some foundational results on curve shortening flow and mean curvature flow. We then describe Huisken's work on the curve shortening flow where the method of two-point functions was introduced. Finally, we discuss several recent applications of that technique. These include sharp estimates for mean curvature flow as well as the proof of Lawson's 1970 conjecture concerning minimal tori in $ S^3$.


References [Enhancements On Off] (What's this?)

  • [1] F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277-292. MR 0200816 (34 #702)
  • [2] Steven J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Differential Geom. 34 (1991), no. 2, 491-514. MR 1131441 (93a:58036)
  • [3] Ben Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012), no. 3, 1413-1418. MR 2967056, https://doi.org/10.2140/gt.2012.16.1413
  • [4] B. Andrews and H. Li, Embedded constant mean curvature tori in the three-sphere, preprint (2012).
  • [5] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243-268. MR 0250205 (40 #3445)
  • [6] Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277-304 xii (French, with English summary). MR 0262881 (41 #7486)
  • [7] Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J., 1978. MR 485012 (82c:49035)
  • [8] Simon Brendle, Embedded minimal tori in $ S^3$ and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177-190. MR 3143888, https://doi.org/10.1007/s11511-013-0101-2
  • [9] Simon Brendle, Alexandrov immersed minimal tori in $ S^3$, Math. Res. Lett. 20 (2013), no. 3, 459-464. MR 3162839
  • [10] Simon Brendle, Embedded Weingarten tori in $ S^3$, Adv. Math. 257 (2014), 462-475. MR 3187655, https://doi.org/10.1016/j.aim.2014.02.025
  • [11] Simon Brendle, Minimal surfaces in $ S^3$: a survey of recent results, Bull. Math. Sci. 3 (2013), no. 1, 133-171. MR 3061135, https://doi.org/10.1007/s13373-013-0034-2
  • [12] S. Brendle, A sharp bound for the inscribed radius under mean curvature flow, arxiv:1309.1459
  • [13] S. Brendle, An inscribed radius estimate for mean curvature flow in Riemannian manifolds, arxiv:1310.3439
  • [14] S. Brendle and G. Huisken, Mean curvature flow with surgery of mean convex surfaces in $ \mathbb{R}^3$, arxiv:1309.1461
  • [15] J. Choe and M. Soret, New minimal surfaces in $ S^3$ desingularizing the Clifford tori, arxiv:1304.3184
  • [16] Tobias H. Colding and William P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. MR 1683966 (2002b:49072)
  • [17] Tobias H. Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR 2780140
  • [18] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 0164306 (29 #1603)
  • [19] M. E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), no. 2, 357-364. MR 742856 (85i:52004), https://doi.org/10.1007/BF01388602
  • [20] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69-96. MR 840401 (87m:53003)
  • [21] Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285-314. MR 906392 (89b:53005)
  • [22] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. MR 664497 (84a:53050)
  • [23] Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153-179. MR 862046 (87m:53055)
  • [24] Richard S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 201-222. MR 1369140 (96k:58043)
  • [25] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7-136. MR 1375255 (97e:53075)
  • [26] Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. MR 1456308 (99e:53049)
  • [27] R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hypersurfaces, arxiv:1304.0926
  • [28] R. Haslhofer and B. Kleiner, On Brendle's estimate for the inscribed radius under mean curvature flow, arxiv:1309.3231
  • [29] Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1-38. MR 0298593 (45 #7645)
  • [30] Gerhard Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266. MR 772132 (86j:53097)
  • [31] Gerhard Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), no. 1, 285-299. MR 1030675 (90m:53016)
  • [32] Gerhard Huisken, A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), no. 1, 127-133. MR 1656553 (99m:58052)
  • [33] Gerhard Huisken and Carlo Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70. MR 1719551 (2001c:53094), https://doi.org/10.1007/BF02392946
  • [34] Gerhard Huisken and Carlo Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009), no. 1, 137-221. MR 2461428 (2010a:53138), https://doi.org/10.1007/s00222-008-0148-4
  • [35] Nikolaos Kapouleas, Doubling and desingularization constructions for minimal surfaces, Surveys in geometric analysis and relativity, Adv. Lect. Math. (ALM), vol. 20, Int. Press, Somerville, MA, 2011, pp. 281-325. MR 2906930
  • [36] Nikolaos Kapouleas and Seong-Deog Yang, Minimal surfaces in the three-sphere by doubling the Clifford torus, Amer. J. Math. 132 (2010), no. 2, 257-295. MR 2654775 (2011f:53014), https://doi.org/10.1353/ajm.0.0104
  • [37] H. Karcher, U. Pinkall, and I. Sterling, New minimal surfaces in $ S^3$, J. Differential Geom. 28 (1988), no. 2, 169-185. MR 961512 (89j:53050)
  • [38] H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187-197. MR 0238229 (38 #6505)
  • [39] H. Blaine Lawson Jr., Complete minimal surfaces in $ S^{3}$, Ann. of Math. (2) 92 (1970), 335-374. MR 0270280 (42 #5170)
  • [40] H. Blaine Lawson Jr., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183-187. MR 0287447 (44 #4651)
  • [41] H. B. Lawson, Jr., Lectures on minimal submanifolds, Publish or Perish, Berkeley CA (1980).
  • [42] J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of $ R^{n}$, Comm. Pure Appl. Math. 26 (1973), 361-379. MR 0344978 (49 #9717)
  • [43] Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409 (87j:53012)
  • [44] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arxiv:0211159
  • [45] G. Perelman, Ricci flow with surgery on three-manifolds, arxiv:0303109
  • [46] G. Perelman, Finite extinction time for solutions to the Ricci flow on certain three-manifolds, arxiv:0307245
  • [47] Oscar M. Perdomo, Embedded constant mean curvature hypersurfaces on spheres, Asian J. Math. 14 (2010), no. 1, 73-108. MR 2726595 (2012a:53113), https://doi.org/10.4310/AJM.2010.v14.n1.a5
  • [48] Weimin Sheng and Xu-Jia Wang, Singularity profile in the mean curvature flow, Methods Appl. Anal. 16 (2009), no. 2, 139-155. MR 2563745 (2011c:53163), https://doi.org/10.4310/MAA.2009.v16.n2.a1
  • [49] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417 (87a:49001)
  • [50] Leon Simon, The minimal surface equation, Geometry, V, Encyclopaedia Math. Sci., vol. 90, Springer, Berlin, 1997, pp. 239-272. MR 1490041 (99b:53014)
  • [51] James Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. MR 0233295 (38 #1617)
  • [52] Brian White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000), no. 3, 665-695 (electronic). MR 1758759 (2001j:53098), https://doi.org/10.1090/S0894-0347-00-00338-6
  • [53] Brian White, The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003), no. 1, 123-138 (electronic). MR 1937202 (2003g:53121), https://doi.org/10.1090/S0894-0347-02-00406-X
  • [54] B. White, Subsequent singularities in mean-convex mean curvature flow, arxiv:1103.1469
  • [55] Brian White, Topological change in mean convex mean curvature flow, Invent. Math. 191 (2013), no. 3, 501-525. MR 3020169, https://doi.org/10.1007/s00222-012-0397-0

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 53C44, 53C42, 53A10

Retrieve articles in all journals with MSC (2010): 53C44, 53C42, 53A10


Additional Information

Simon Brendle
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305

DOI: https://doi.org/10.1090/S0273-0979-2014-01461-2
Received by editor(s): February 17, 2014
Published electronically: May 12, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society