Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Isabelle Gallagher, Laure Saint-Raymond and Benjamin Texier
Title: From Newton to Boltzmann: hard spheres and short-range potentials
Additional book information: Zürich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2013, xii+137 pp., ISBN 978-3-03719-129-3

References [Enhancements On Off] (What's this?)

  • [1] G. Basile, A. Nota, F. Pezzotti and M. Pulvirenti, Derivation of the Fick's law for the Lorentz model in a low density regime, to appear in Comm. Math. Phys.
  • [2] T. Bodineau, I. Gallagher and L. Saint-Raymond The Brownian motion as the limit of a deterministic system of hard spheres. arXiv:1305.3397.
  • [3] N. N. Bogolyubov. ``Problems of dynamical theory in statistical physics'', in Studies in Statistical Mechanics (J. de Boer and G. E. Uhlenbeck, Eds.), Interscience, New York, 1962.
  • [4] Carlo Cercignani, On the Boltzmann equation for rigid spheres, Transport Theory Statist. Phys. 2 (1972), no. 3, 211–225. MR 0449375, https://doi.org/10.1080/00411457208232538
  • [5] I. Gallagher, L. Saint-Raymond and B. Texier, Erratum to Chapter 5 of ``From Newton to Boltzmann: hard spheres and short-range potentials'', Zürich Adv. Lect. in Math. Ser., European Mathematical Society (EMS), Zürich, 2014.
  • [6] Harold Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. 2 (1949), 331–407. MR 0033674, https://doi.org/10.1002/cpa.3160020403
  • [7] Harold Grad, Principles of the kinetic theory of gases, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958, pp. 205–294. MR 0135535
  • [8] Francis Gordon King, BBGKY HIERARCHY FOR POSITIVE POTENTIALS, ProQuest LLC, Ann Arbor, MI, 1975. Thesis (Ph.D.)–University of California, Berkeley. MR 2625983
  • [9] Oscar E. Lanford III, Time evolution of large classical systems, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Springer, Berlin, 1975, pp. 1–111. Lecture Notes in Phys., Vol. 38. MR 0479206
  • [10] M. Pulvirenti, C. Saffirio, and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys. 26 (2014), no. 2, 1450001, 64. MR 3190204, https://doi.org/10.1142/S0129055X14500019
  • [11] M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. arXiv:1405.4676.
  • [12] Sergio Simonella, Evolution of correlation functions in the hard sphere dynamics, J. Stat. Phys. 155 (2014), no. 6, 1191–1221. MR 3207735, https://doi.org/10.1007/s10955-013-0905-7
  • [13] H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics, Springer-Verlag, Heidelberg, 1991.

Review Information:

Reviewer: Sergio Simonella
Affiliation: WIAS Berlin
Email: simonell@wias-berlin.de
Reviewer: Herbert Spohn
Affiliation: TU München
Email: spohn@ma.tum.de
Journal: Bull. Amer. Math. Soc. 52 (2015), 533-538
DOI: https://doi.org/10.1090/S0273-0979-2015-01488-6
Published electronically: February 19, 2015
Review copyright: © Copyright 2015 American Mathematical Society