Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Joe Diestel and Angela Spalsbury
Title: The joys of Haar measure
Additional book information: Graduate Studies in Mathematics, Vol. 150, American Mathematical Society, Providence, RI, xiv+320 pp., ISBN 978-1-4704-0935-7, US$65

References [Enhancements On Off] (What's this?)

  • [1] N. H. Bingham and A. J. Ostaszewski, The Steinhaus theorem and regular variation: de Bruijn and after, Indag. Math. (N.S.) 24 (2013), no. 4, 679-692. MR 3124800, https://doi.org/10.1016/j.indag.2013.05.002
  • [2] Krzysztof Chris Ciesielski and Joseph Rosenblatt, Restricted continuity and a theorem of Luzin, Colloq. Math. 135 (2014), no. 2, 211-225. MR 3229417, https://doi.org/10.4064/cm135-2-5
  • [3] V. G. Drinfeld, Finitely-additive measures on $ S^{2}$ and $ S^{3}$, invariant with respect to rotations, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 77 (Russian). MR 757256 (86a:28021)
  • [4] Lester Dubins, Morris W. Hirsch, and Jack Karush, Scissor congruence, Israel J. Math. 1 (1963), 239-247. MR 0165424 (29 #2706)
  • [5] G. A. Edgar and J. M. Rosenblatt, Difference equations over locally compact abelian groups, Trans. Amer. Math. Soc. 253 (1979), 273-289. MR 536947 (80i:39001), https://doi.org/10.2307/1998197
  • [6] Martin H. Ellis, Sweeping out under a collection of transformations, Math. Z. 165 (1979), no. 3, 213-221. MR 523122 (80d:28035), https://doi.org/10.1007/BF01437556
  • [7] P. Erdős, Remarks on some problems in number theory, Math. Balkanica 4 (1974), 197-202. Papers presented at the Fifth Balkan Mathematical Congress (Belgrade, 1974). MR 0429704 (55 #2715)
  • [8] L. Grabowski, A. Máthé, and O. Pikhurko, Measurable circle squaring, arXiv:1501.06122v1, January 25, 2015.
  • [9] Christopher Heil, Jayakumar Ramanathan, and Pankaj Topiwala, Linear independence of time-frequency translates, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2787-2795. MR 1327018 (96k:42039), https://doi.org/10.1090/S0002-9939-96-03346-1
  • [10] Paul D. Humke and Miklós Laczkovich, A visit to the Erdős problem, Proc. Amer. Math. Soc. 126 (1998), no. 3, 819-822. MR 1425126 (98e:28003), https://doi.org/10.1090/S0002-9939-98-04167-7
  • [11] M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem, J. Reine Angew. Math. 404 (1990), 77-117. MR 1037431 (91b:51034), https://doi.org/10.1515/crll.1990.404.77
  • [12] Peter A. Linnell and Michael J. Puls, Zero divisors and $ L^p(G)$. II, New York J. Math. 7 (2001), 49-58 (electronic). MR 1838472 (2002d:43003)
  • [13] G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233-235. MR 596890 (82b:28034), https://doi.org/10.1007/BF01295368
  • [14] R. Daniel Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, Mass., 1981. Mathematics from the Scottish Café; Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979. MR 666400 (84m:00015)
  • [15] A. J. Ostaszewski, Beyond Lebesgue and Baire III: Steinhaus' theorem and its descendants, Topology Appl. 160 (2013), no. 10, 1144-1154. MR 3056005, https://doi.org/10.1016/j.topol.2013.04.005
  • [16] John C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 2. MR 0393403 (52 #14213)
  • [17] Sophie Piccard, Sur des ensembles parfaits, Mém. Univ. Neuchâtel, vol. 16, Secrétariat de l'Université, Neuchâtel, 1942 (French). MR 0008835 (5,61n)
  • [18] Michael J. Puls, Zero divisors and $ L^p(G)$, Proc. Amer. Math. Soc. 126 (1998), no. 3, 721-728. MR 1415362 (98k:43001), https://doi.org/10.1090/S0002-9939-98-04025-8
  • [19] Joseph Rosenblatt, Linear independence of translations, Int. J. Pure Appl. Math. 45 (2008), no. 3, 463-473. MR 2418032 (2009e:43008)
  • [20] Joseph Rosenblatt, Linear independence of translations, J. Austral. Math. Soc. Ser. A 59 (1995), no. 1, 131-133. MR 1336456 (96f:42009)
  • [21] Dennis Sullivan, For $ n>3$ there is only one finitely additive rotationally invariant measure on the $ n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121-123. MR 590825 (82b:28035), https://doi.org/10.1090/S0273-0979-1981-14880-1
  • [22] H. Steinhaus,Sur les distances des points dans les ensembles de mesure positive, Fundamenta Math 1 (1920), 93-104.
  • [23] A. Tarski, Problème 38, Fundamenta Math 7 (1925), 381.
  • [24] Stan Wagon, The Banach-Tarski paradox, Encyclopedia of Mathematics and its Applications, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan Mycielski. MR 803509 (87e:04007)

Review Information:

Reviewer: Joseph Rosenblatt
Affiliation: Indiana University–Purdue University Indianapolis
Email: joserose@iupui.edu
Journal: Bull. Amer. Math. Soc. 52 (2015), 733-738
MSC (2010): Primary 43-02, 22-02; Secondary 43A05, 22D05
DOI: https://doi.org/10.1090/bull/1499
Published electronically: May 13, 2015
Review copyright: © Copyright 2015 American Mathematical Society
American Mathematical Society