Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Topology through the centuries: Low dimensional manifolds


Author: John Milnor
Journal: Bull. Amer. Math. Soc. 52 (2015), 545-584
MSC (2010): Primary 57N05, 57N13; Secondary 01A55, 01A60
DOI: https://doi.org/10.1090/bull/1507
Published electronically: July 1, 2015
MathSciNet review: 3393347
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note will provide a lightning tour through the centuries, concentrating on the study of manifolds of dimension 2, 3, and 4. Further comments and more technical details about many of the sections may be found in the Appendix.


References [Enhancements On Off] (What's this?)

  • 1. S. I. Adyan [1955],
    Algorithmic unsolvability of problems of recognition of certain properties of groups (Russian), Dokl. Akad. Nauk SSSR (N.S.) 103, 533-535. MR 0081851 (18,455e)
  • 2. J. W. Alexander [1915],
    A proof of the invariance of certain constants of Analysis situs, Trans. Amer. Math. Soc. 16, no. 2, 148-154. MR 1501007
  • 3. J. W. Alexander [1922],
    A proof and extension of the Jordan-Brouwer separation theorem, Trans. Amer. Math. Soc. 23, no. 4, 333-349. MR 1501206
  • 4. J. W. Alexander [1924],
    On the subdivision of $ 3$-space by a polyhedron, Proc. Nat. Acad. Sci. 10, 6-8.
  • 5. J. W. Alexander [1928],
    Topological invariants of knots and links, Trans. Amer. Math. Soc. 30, no. 2, 275-306. MR 1501429
  • 6. P. Alexandroff and H. Hopf [1935],
    Topologie, Springer, Berlin.
  • 7. L. Bieberbach [1911],
    Über die Bewegungsgruppen der Euklidischen Räume I, Math. Ann. 70, no. 3, 297-336. MR 151123
  • 8. L. Bieberbach [1912],
    Über die Bewegungsgruppen der Euklidischen Räume $ ($Zweite Abhandlung.$ )$ Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann. 72, no. 3, 400-412. MR 1511704
  • 9. A. Borel [1981],
    Commensurability classes and volumes of hyperbolic $ 3$-manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 8, no. 1, 1-33. MR 616899 (89j:22008)
  • 10. J. Cannon [1978],
    The recognition problem: What is a topological manifold? Bull. Amer. Math. Soc. 84, no. 5, 832-866. MR 0494113 (58 #13043)
  • 11. A. Casson [1986],
    Three lectures on new-infinite constructions in $ 4$-dimensional manifolds, Á la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, pp. 201-244. MR 900253
  • 12. A. Clebsch [1865],
    Ueber diejenigen ebenen Curven, deren Coordinaten rationale Functionen eines Parameters sind, J. reine ang. Math. 64, 43-65.
    http://www.maths.ed.ac.uk/$ \sim $aar/papers/clebschgenus.pdf
  • 13. R. H. Crowell and R. H. Fox [1963],
    Introduction to knot theory (Reprint of the 1963 original), Graduate Texts in Mathematics, no. 57, Springer-Verlag, New York-Heidelberg. MR 0445489 (56 #3829)
  • 14. S. De Michelis and M. Freedman [1992],
    Uncountably many exotic $ ~{\mathbb{R}}^4$'s in standard $ 4$-space,
    J. Diff. Geom. 35, no. 1, 219-254. MR 1152230 (93d:57036)
  • 15. J. Dieudonné [1988],
    A history of algebraic and differential topology. 1900-1960, Birkhäuser Boston, Boston. MR 995842 (90g:01029)
  • 16. S. Donaldson [1983a],
    Self-dual connections and the topology of smooth $ 4$-manifolds, Bull. Amer. Math. Soc. 8, no. 1, 81-83. MR 682827 (84e:57016)
  • 17. S. Donaldson [1983b],
    An application of gauge theory to four-dimensional topology, J. Diff. Geom. 18, no. 2, 279-315. MR 710056 (85c:570015)
  • 18. S. Donaldson and P. Kronheimer [1990],
    The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York.MR 1079726 (92a:57036)
  • 19. W. Dyck [1888],
    Beiträge zur Analysis situs, Ein- und zweidimensionale Mannigfaltigkeiten (German), Math. Ann. 32, no. 4, 457-512. MR 1510522
    https://eudml.org/doc/157390
  • 20. F. Enriques [1905],
    Sulla proprietà caratteristica delle superficie algebriche irregolari, Rend. Accad. Sci. Bologna, 9, 5-13.
  • 21. M. H. Freedman [1979],
    A fake $ ~S^3\times {\mathbb{R}}$, Ann. of Math. (2) 110, no. 1, 177-201. MR 541336 (80j:57029)
  • 22. M. H. Freedman [1982],
    The topology of four-dimensional manifolds, J. Diff. Geom. 17, no. 3, 357-453. MR 679066 (84b:57006)
  • 23. M. H. Freedman [1984],
    There is no room to spare in four-dimensional space, Notices Amer. Math. Soc. 31, no. 1, 3-6. MR 728340 (85k:57012)
  • 24. M. Freedman and F. Quinn [1990],
    The topology of $ 4$-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ. MR 1201584 (94b:57021)
  • 25. M. Freedman, R. Gompf, S. Morrison and K. Walker [2010],
    Man and machine thinking about the smooth $ 4$-dimensional Poincaré conjecture, Quantum Topol. 1, no 2, 171-208. MR 2657647 (2011f:57061)
  • 26. A. Friedman [1922],
    Über die Krümmung des Raumes, Z. Physik 10, 377-386.
  • 27. R. Friedman and J. Morgan [1989],
    Complex versus differentiable classification of algebraic surfaces, Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987). Topology Appl. 32, no. 2, 135-139. MR 1007985 (90f:57039)
  • 28. C. F. Gauss [1833],
    Zur mathematischen Theorie der electrodynamischen Wirkung, Königliche Gesellschaft der Wissenschaften zu Göttingen 5, 602-629.
  • 29. H. Gieseking [1912],
    Analytische Untersuchungen über topologische Gruppen, Thesis, Muenster.
  • 30. R. Gompf [1983],
    Three exotic $ {\bf R}^{4}$'s and other anomalies, J. Diff. Geom. 18, no. 2, 317-328. MR 710057 (85b:57038)
  • 31. R. Gompf [1993],
    An exotic menagerie, J. Diff. Geom. 37, no. 1, 199-223. MR 1198606 (93k:57041)
  • 32. C. Gordon and J. Luecke [1989],
    Knots are determined by their complements, J. Amer. Math. Soc. 2, no. 2, 371-415. MR 965210 (90a:57006a)
  • 33. J. Gray [2013],
    Henri Poincaré, a scientific biography, Princeton University Press, Princeton, NJ. (See p. 230.) MR 2986502
  • 34. M. Gromov [1979-1980],
    Hyperbolic manifolds $ ($according to Thurston and Jørgensen$ )$, Séminaire Bourbaki, Vol. 1979/80, Lecture Notes in Mathematics, vol. 842, Springer, Berlin-New York, pp. 40-53 (available through Numdam). MR 636516 (84b:53046)
  • 35. W. Haken [1962],
    Über das Homöomorphieproblem der $ 3$-Mannigfaltigkeiten. I, Math. Z. 80, 89-120. MR 0160196 (28 #3410)
  • 36. R. Hamilton [1982],
    Three-manifolds with positive Ricci curvature,
    J. Diff. Geom. 17, no. 2, 255-306. MR 664497 (84a:53050)
  • 37. P. Heegaard [1898],
    Forstudier til en topologisk teori for algebraiske Sammenhäng, Copenhagen, det Nordiske Forlag Ernst Bojesen.

    http://www.maths.ed.ac.uk/$ \sim $aar/papers/heegaardthesis.pdf http://www.maths.ed.ac.uk/$ \sim $aar/papers/heegaardenglish.pdf
  • 38. J. Hempel [1976],
    $ 3$-manifolds, Ann. of Math. Studies, No. 86, Princeton University Press, Princeton, NJ; University of Tokyo, Tokyo. MR 0415619 (54 #3702)
  • 39. F. Hirzebruch [1966],
    Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin.
  • 40. F. Hirzebruch [1999],
    Emmy Noether and topology$ :$ the heritage of Emmy Noether (Ramat-Gan, 1996), 57-65, Israel Math. Conf. Proc., 12, Bar-Ilan Univ., Ramat Gan, 1999. MR 1665435 (2000c:01032)
  • 41. F. Hirzebruch and M. Kreck [2009],
    On the concept of genus in topology and complex analysis, Notices Amer. Math. Soc., 56, no. 6, 713-719. MR 2536790 (2010h:57030)
  • 42. H. Hopf [1925],
    Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95, no. 1, 313-319.
  • 43. W. Jaco and P. Shalen [1978],
    ``A new decomposition theorem for irreducible sufficiently-large $ 3$-manifolds'', Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford University, Stanford, CA, 1976), Proc. Sympos. Pure Math., XXXII, Amererican Mathematical Society, Providence, R.I., pp. 71-84. MR 520524 (80j:57008)
  • 44. I. M. James (editor) [1999],
    History of Topology, North-Holland, Amsterdam. MR 1674906 (2000g:00032)
  • 45. K. Johannson [1979],
    Homotopy equivalences of $ 3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin. MR 551744 (82c:57005)
  • 46. T, Jørgensen [1977],
    Compact $ 3$-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106, no. 1, 61-72. MR 0450546 (56 #8840)
  • 47. M. Kervaire and J. Milnor [1960],
    Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Internat. Congress Math., 1958, pp. 454-458, Cambridge University Press, New York. MR 0121801 (22 #12531); Also in Collected Papers of John Milnor: III. Differential topology, American Mathematical Society, Providence, RI, 2007, pp. 243-247. MR 2307957 (2008h:01022)
  • 48. M. Kervaire and J. Milnor [1963],
    Groups of homotopy spheres. I, Ann. of Math. (2) 77, 504-537. MR 0148075 (26 #5584); Also in Collected Papers of John Milnor: III. Differential topology, American Mathematical Society, Providence, RI, 2007, pp. 89-122. MR 2307957 (2008h:01022)
  • 49. R. Kirby [1989],
    The topology of $ 4$-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin. MR 1001966 (90j:57012)
  • 50. R. Kirby and L. Siebenmann [1969],
    On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75, 742-749. MR 0242166 (39 #3500)
  • 51. R. Kirby and L. Siebenmann [1977],
    Foundational essays on topological manifolds, smoothings, and triangulations. With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, NJ. MR 0645390 (58 #31082)
  • 52. O. A. Laudal and R. Piene (editors) [2002],
    The legacy of Niels Henrik Abel, Springer-Verlag, Berlin. MR 2074480 (2005a:00019)
  • 53. S. Lefschetz [1924],
    L'Analysis situs et la géometrie algébrique, Gauthier-Villars, Paris. MR 0033557 (11,456c)
  • 54. S. Lhuilier and J. Gergonne [1812-1813],
    Mémoire sur la polyédrométrie $ \cdots $, Ann. Math. Pures et Appl. (= Ann. de Gergonne) 3, 169-189.
    http://www.numdam.org/item?id=AMPA_1812-1813__3__169_0
  • 55. W. B. R. Lickorish [1997],
    An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York. MR 1472978 (98f:57015)
  • 56. J. B. Listing [1862],
    Der Census räumlicher Complexe oder Verallgemeinerung des Euler'schen Satzes von den Polyedern, Abhandlungen königlichen Gesellschaft der Wissenschaften zu Göttingen 10, 97-180.
    http://www.maths.ed.ac.uk/$ \sim $aar/papers/listing2.pdf
  • 57. C. Manolescu [2014],
    An introduction to knot Floer homology, ArXiv:1401.7107.
  • 58. A. A. Markov, Jr. [1958],
    The insolubility of the problem of homeomorphy (Russian), Dokl. Akad. Nauk SSSR 121, 218-220. MR 0097793 (20 #4260)
  • 59. J. Milnor [1958],
    ``On simply connected $ 4$-manifolds'', in Symposium Internacional de Topología Algebraica $ ($International Symposium on Algebraic Topology$ )$, Universidad Nacional Autónoma de México and UNESCO, Mexico City, pp. 122-128. MR 0103472 (21 #2240); Also in Collected Papers of John Milnor: IV. Homotopy, homology and manifolds, American Mathematical Society, Providence, RI, 2009, pp. 151-157. MR 2590677 (2011g:01020)
  • 60. J. Milnor [1962],
    A unique decomposition theorem for $ 3$-manifolds. Amer. J. Math., 84, 1-7. MR 0142125 (25 #5518); Also in Collected Papers of John Milnor: II. The fundamental group, American Mathematical Society, Providence, RI, 1995, pp. 237-243. MR 2569311
  • 61. J. Milnor [1987],
    The work of M. H. Freedman, Proc. Internat. Congr. Math., Berkeley, CA, 1986, pp. 13-15. MR 934211 (89d:01064); Also in Collected Papers of John Milnor: IV. Homotopy, homology and manifolds, American Mathematical Society, Providence, RI, 2009, pp. 321-323. MR 2590677 (2011g:01020)
  • 62. J. Milnor [2011],
    Differential topology forty-six years later, Notices Amer. Math. Soc., 58, no. 6, 804-809. MR 2839925 (2012i:57001)
  • 63. J. Milnor and D. Husemoller [1973],
    Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. Springer-Verlag, New York-Heidelberg. MR 0506372 (58 #22129)
  • 64. A. F. Möbius [1863],
    Theorie der elementaren Verwandtschaft, Berichte Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig 15, 18-57.
    http://www.maths.ed.ac.uk/$ \sim $aar/papers/mobiussurf.pdf
  • 65. E. Moise [1952],
    Affine structures in $ 3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56, 96-114. MR 0048805 (14,72d)
  • 66. J. Morgan [2003],
    ``Definition of the Seiberg-Witten (SW) invariants of $ 4$-manifolds'', Low dimensional topology, New Stud. Adv. Math., vol. 3, International Press, Somerville, MA, pp. 1-11. MR 2052242
  • 67. J. Morgan and G. Tian [2007],
    Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA. MR 2334563 (2008d:57020)
  • 68. J. Morgan and G. Tian [2014],
    The geometrization conjecture, Clay Mathematics Monographs, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA. MR 3186136
  • 69. G. D. Mostow [1968],
    Quasi-conformal mappings in $ n$-space and the rigidity of the hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math., 34, 53-104. MR 0236383 (38 #4679)
  • 70. W. Neumann and D. Zagier [1985],
    Volumes of hyperbolic $ 3$-manifolds, Topology 24, no. 3, 307-332. MR 815482 (87j:57008)
  • 71. C. D. Papakyriakopoulos [1957],
    On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66, 1-26. MR 0090053 (19,761a)
  • 72. E. Picard and G. Simart [1897, 1906],
    Théorie des fonctions algébriques de deux variables indépendantes I and II, Gauthier-Villars, Paris.
  • 73. H. Poincaré [1900],
    Second complément à l'analysis situs, Proc. London Math. Soc. 32, no. 1, 277-308 (Oeuvres 6, 338-370).
  • 74. H. Poincaré [1902],
    Quatriéme complément à l'analysis situs, Journ. de Math. 8, 169-214 (Oeuvres 6, 397-434).
  • 75. H. Poincaré [1904],
    Cinquième complément à l'analysis situs, Rend. Palermo 18, 45-110 (Oeuvres 6, 435-498). Also see Papers on topology: Analysis situs and its five supplements, translated and introduced by J. Stillwell, History of Mathematics, vol. 37, American Mathematical Society, Providence, RI, and London Mathematical Society, London, 2010. MR 2723194 (2011j:01017)
  • 76. J. C. Pont [1974],
    Petite enfance de la topologie algébrique (French), Enseignement Math. (2) 20 111-126. MR 0373806 (51 #10006)
  • 77. G. Prasad [1973],
    Strong rigidity of $ \mathbf {Q}$-rank $ 1$ lattices, Invent. Math. 21, 255-286. MR 0385005 (52 #5875)
  • 78. T. Radó [1924],
    Über den Begriff der Riemannschen Fläche, Acta Sc. Math. Szeged 2, 101-121.
  • 79. B. Riemann [1857],
    Theorie der Abel'schen Functionen, J. reine ang. Math 54. (See pages 89 and 97 of the following.) https://ia700400.us.archive.org/16/items/bernardrgesamm00riemric/
    bernardrgesamm00riemrich.pdf
  • 80. R. Riley [2013],
    A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31, no. 2, 104-115. MR 3057120
  • 81. V. Rokhlin [1952],
    New results in the theory of four-dimensional manifolds (Russian), Dokl. Akad. Nauk SSSR (N.S.) 84, 221-224. MR 0052191 (14,573b)
  • 82. V. Rokhlin [1958],
    Relations between characteristic classes of four-dimensional manifolds (Russian), Kolomen. Ped. Inst. Uč. Zap. Ser. Fiz.-Mat. 2, no. 1, 3-17. MR 0133138 (24 #A2972)
  • 83. D. Rolfsen [1976],
    Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA. MR 0515288 (58 #24236)
  • 84. D. Salamon [1999],
    Spin geometry and Seberg-Witten invariants, at
    http://www.math.ethz.ch/$ \sim $salamon/PREPRINTS/witsei.pdf.
  • 85. A. Scorpan [2005],
    The wild world of $ 4$-manifolds, American Mathematical Society, Providence, RI. MR 2136212 (2006h:57018)
  • 86. H. Seifert and W. Threlfall [1934],
    Lehrbuch der Topologie, Teubner, Leipzig. (English translation, Academic Press 1980).
  • 87. J.-P. Serre [1970],
    Cours d'arithmétique (French), Collection SUP: ``Le Mathématicien'', vol. 2, Presses Universitaires de France, Paris. MR 0255476 (41 #138)
  • 88. S. Smale [1961],
    Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74, 391-406. MR 0137124 (25 #580)
  • 89. J. Stallings [1962],
    The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58, 481-488. MR 0149457 (26 #6945)
  • 90. C. Taubes [1987],
    Gauge theory on asymptotically periodic $ 4$-manifolds, J. Diff. Geom. 25, no. 3, 363-430. MR 882829 (88g:58176)
  • 91. W. Thurston [1980],
    The geometry and topology of three-manifolds, Princeton University Lecture Notes, available at
    http://www.msri.org/publications/books/gt3m.
  • 92. W. Thurston [1982],
    Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6, no. 3, 357-381. MR 648524 (83h:57019)
  • 93. W. Thurston [1997],
    Three-dimensional geometry and topology. Vol. 1 (Edited by Silvio Levy), Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ. MR 1435975 (97m:57016)
  • 94. F. Waldhausen [1968],
    On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87, 56-88. MR 0224099 (36 #7146)
  • 95. J. H. C. Whitehead [1949a],
    On simply connected, $ 4$-dimensional polyhedra, Comment. Math. Helv. 22, 48-92. MR 0029171 (10,559d)
  • 96. J. H. C. Whitehead [1949b],
    Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55, 213-245. MR 0030759 (11,48b)
  • 97. D. Zagier [1986],
    Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent. Math. 83, no. 2, 285-301. MR 818354 (87e:11069)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 57N05, 57N13, 01A55, 01A60

Retrieve articles in all journals with MSC (2010): 57N05, 57N13, 01A55, 01A60


Additional Information

John Milnor
Affiliation: Institute for Mathematical Sciences, Stony Brook University, New York
Email: jack@math.sunysb.edu

DOI: https://doi.org/10.1090/bull/1507
Published electronically: July 1, 2015
Dedicated: Based on the Abel Lecture at the 2014 International Congress of Mathematicians in Seoul
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society