Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Francesco Maggi
Title: Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory
Additional book information: Cambridge Studies in Advanced Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2012, xvii+454 pp., ISBN 978-1-107-02103-7, US $89.99

References [Enhancements On Off] (What's this?)

  • [1] Frederick J. Almgren Jr. and Elliott H. Lieb, Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Ann. of Math. (2) 128 (1988), no. 3, 483–530. MR 970609,
  • [2] Enrico Bombieri, Régularité des hypersurfaces minimales, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 353, 111–121 (French). MR 3077122
  • [3] R. Caccioppoli, Sulle coppie di funzioni a variazione limitata, Rendiconti dell'Accademia di Scienze Fisiche e Matematiche di Napoli, 3 (in Italian) 34: 83-88, (1928).
  • [4] Ennio De Giorgi, Su una teoria generale della misura (𝑟-1)-dimensionale in uno spazio ad 𝑟 dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191–213 (Italian). MR 0062214,
  • [5] Ennio De Giorgi, Nuovi teoremi relativi alle misure (𝑟-1)-dimensionali in uno spazio ad 𝑟 dimensioni, Ricerche Mat. 4 (1955), 95–113 (Italian). MR 0074499
  • [6] Ennio De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33–44 (Italian). MR 0098331
  • [7] E. De Giorgi, Frontiere Orientate di Misura Minima, Seminario di Matematica della Scuola Normale Superiore di Pisa. Editrice Technico Scientifica, Pisa (1960).
  • [8] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [9] P. Mattila, Fourier analysis and Hausdorff dimension (in preparation).
  • [10] Christopher Marlowe, Dido, Queen of Carthage, circa 1593. Reprint available from Classic Reprint Series.
  • [11] Frank Morgan, Geometric measure theory, 4th ed., Elsevier/Academic Press, Amsterdam, 2009. A beginner’s guide. MR 2455580
  • [12] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
  • [13] Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR 0500557,
  • [14] F. White, Pressure Distribution in a Fluid, Fluid Mechanics. New York: McGraw-Hill. pp. 63-107, (2008).

Review Information:

Reviewer: Alex Iosevich
Affiliation: Department of Mathematics, University of Rochester
Journal: Bull. Amer. Math. Soc. 53 (2016), 167-171
MSC (2010): Primary 28A75
Published electronically: June 10, 2015
Review copyright: © Copyright 2015 American Mathematical Society
American Mathematical Society