Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Alexander Brudnyi and Yuri Brudnyi
Title: Methods of geometric analysis in extension and trace problems. Volume 1
Additional book information: Monographs in Mathematics, Vol. 102, Birkhäuser/Springer Basel AG, Basel, 2012, xxiv+560 pp., ISBN 978-3-0348-0208-6, US$129

Authors: Alexander Brudnyi and Yuri Brudnyi
Title: Methods of geometric analysis in extension and trace problems. Volume 2
Additional book information: Monographs in Mathematics, Vol. 103, Birkhäuser/Springer Basel AG, Basel, 2012, xx+414 pp., ISBN 978-3-0348-0211-6, US$129

References [Enhancements On Off] (What's this?)

  • [1] Keith Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), no. 2, 137-172. MR 1159828 (93b:46025), https://doi.org/10.1007/BF01896971
  • [2] Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), no. 2, 329-352. MR 1953261 (2004h:58009), https://doi.org/10.1007/s00222-002-0255-6
  • [3] L. E. J. Brouwer, Über die Erweiterung des Definitionsbereichs einer stetigen Funktion, Math. Ann. 79 (1918), no. 3, 209-211 (German). MR 1511921, https://doi.org/10.1007/BF01458203
  • [4] Yuri A. Brudnyĭ and Pavel A. Shvartsman, A linear extension operator for a space of smooth functions defined on a closed subset in $ {\bf R}^n$, Dokl. Akad. Nauk SSSR 280 (1985), no. 2, 268-272 (Russian). MR 775048 (86f:46031)
  • [5] Yuri A. Brudnyi and Pavel A. Shvartsman, The traces of differentiable functions to closed subsets of $ {\bf R}^n$, Function spaces (Poznań, 1989) Teubner-Texte Math., vol. 120, Teubner, Stuttgart, 1991, pp. 206-210. MR 1155176
  • [6] Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, Internat. Math. Res. Notices 3 (1994), 129 ff., approx. 11 pp. (electronic). MR 1266108 (95c:58018), https://doi.org/10.1155/S1073792894000140
  • [7] Yuri Brudnyi and Pavel Shvartsman, The Whitney problem of existence of a linear extension operator, J. Geom. Anal. 7 (1997), no. 4, 515-574. MR 1669235 (2000a:46051), https://doi.org/10.1007/BF02921632
  • [8] Yuri Brudnyi and Pavel Shvartsman, The trace of jet space $ J^k\Lambda ^\omega $ to an arbitrary closed subset of $ \mathbf {R}^n$, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1519-1553. MR 1407483 (98i:58010), https://doi.org/10.1090/S0002-9947-98-01872-8
  • [9] Yuri Brudnyi and Pavel Shvartsman, Whitney's extension problem for multivariate $ C^{1,\omega }$-functions, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487-2512 (electronic). MR 1814079 (2002b:46052), https://doi.org/10.1090/S0002-9947-01-02756-8
  • [10] Yuri Brudnyi and Pavel Shvartsman, Stability of the Lipschitz extension property under metric transforms, Geom. Funct. Anal. 12 (2002), no. 1, 73-79. MR 1904557 (2003c:54027), https://doi.org/10.1007/s00039-002-8237-9
  • [11] Charles L. Fefferman, A sharp form of Whitney's extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509-577. MR 2150391 (2006h:58008), https://doi.org/10.4007/annals.2005.161.509
  • [12] Charles Fefferman, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoamericana 21 (2005), no. 1, 313-348. MR 2155023 (2006h:58009), https://doi.org/10.4171/RMI/424
  • [13] Charles Fefferman, The structure of linear extension operators for $ C^m$, Rev. Mat. Iberoam. 23 (2007), no. 1, 269-280. MR 2351135 (2009c:41003), https://doi.org/10.4171/RMI/495
  • [14] Charles Fefferman, The $ C^m$ norm of a function with prescribed jets. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 275-421. MR 2514339 (2011d:46050), https://doi.org/10.4171/RMI/570
  • [15] Charles Fefferman, Extension of $ \mathsf {C}^{m,\omega }$-smooth functions by linear operators, Rev. Mat. Iberoam. 25 (2009), no. 1, 1-48. MR 2514337 (2010k:46029), https://doi.org/10.4171/RMI/568
  • [16] Charles Fefferman, The $ C^m$ norm of a function with prescribed jets I, Rev. Mat. Iberoam. 26 (2010), no. 3, 1075-1098. MR 2789377 (2012b:46050), https://doi.org/10.4171/RMI/628
  • [17] Charles Fefferman, Nearly optimal interpolation of data in $ {\rm C}^2(\mathbb{R}^2)$. Part I, Rev. Mat. Iberoam. 28 (2012), no. 2, 415-533. MR 2916966
  • [18] Charles Fefferman and Bo'az Klartag, Fitting a $ C^m$-smooth function to data. I, Ann. of Math. (2) 169 (2009), no. 1, 315-346. MR 2480607 (2011g:58011), https://doi.org/10.4007/annals.2009.169.315
  • [19] Charles Fefferman and Bo'az Klartag, Fitting a $ C^m$-smooth function to data. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 49-273. MR 2514338 (2011f:58020), https://doi.org/10.4171/RMI/569
  • [20] Charles Fefferman, Arie Israel, and Garving K. Luli, The structure of Sobolev extension operators, Rev. Mat. Iberoam. 30 (2014), no. 2, 419-429. MR 3231204, https://doi.org/10.4171/RMI/787
  • [21] Charles L. Fefferman, Arie Israel, and Garving K. Luli, Sobolev extension by linear operators, J. Amer. Math. Soc. 27 (2014), no. 1, 69-145. MR 3110796, https://doi.org/10.1090/S0894-0347-2013-00763-8
  • [22] Charles Fefferman, Arie Israel, and Garving K. Luli, Fitting a Sobolev function to data, arXiv:1411.1786, 2014.
  • [23] Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1-124; erratum, insert to 6 (1958), no. 2 (French). MR 0101294 (21 #107)
  • [24] Arie Israel, A bounded linear extension operator for $ L^{2,p}(\mathbb{R}^2)$, Ann. of Math. (2) 178 (2013), no. 1, 183-230. MR 3043580, https://doi.org/10.4007/annals.2013.178.1.3
  • [25] William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206. MR 737400 (86a:46018), https://doi.org/10.1090/conm/026/737400
  • [26] Mojźesz David Kirszbraun,
    Über die zusammenziehende und lipschitzsche transformationen,
    Fund. Math., 22:77-108, 1934.
  • [27] Urs Lang and Viktor Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997), no. 3, 535-560. MR 1466337 (98d:53062), https://doi.org/10.1007/s000390050018
  • [28] Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625-3655. MR 2200122 (2006m:53061), https://doi.org/10.1155/IMRN.2005.3625
  • [29] Erwan Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space, Geom. Funct. Anal. 19 (2009), no. 4, 1101-1118. MR 2570317 (2011c:46163), https://doi.org/10.1007/s00039-009-0027-1
  • [30] Henri Lebesgue, Sur le probléme de Dirichlet, Rend. Circ. Mat. Palermo, 24:371-402, 1907.
  • [31] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837-842. MR 1562984, https://doi.org/10.1090/S0002-9904-1934-05978-0
  • [32] Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165-197. MR 2239346 (2007k:46017), https://doi.org/10.1215/S0012-7094-06-13415-4
  • [33] Pavel Shvartsman, Sobolev $ W^1_p$-spaces on closed subsets of $ {\bf R}^n$, Adv. Math. 220 (2009), no. 6, 1842-1922. MR 2493183 (2010b:46077), https://doi.org/10.1016/j.aim.2008.09.020
  • [34] Heinrich Tietze, Über funktionen, die auf einer abgeschlossenen menge stetig sind, J. Reine Angew. Math., 145:9-14, 1915.
  • [35] Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262-295 (German). MR 1512258, https://doi.org/10.1007/BF01208659
  • [36] Frederick A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. 49 (1943), 100-108. MR 0008251 (4,269d)
  • [37] Frederick A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83-93. MR 0011702 (6,203e)
  • [38] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63-89. MR 1501735, https://doi.org/10.2307/1989708
  • [39] Hassler Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), no. 2, 369-387. MR 1501749, https://doi.org/10.2307/1989844

Review Information:

Reviewer: Garving K. Luli
Affiliation: University of California, Davis
Email: kluli@math.ucdavis.edu
Journal: Bull. Amer. Math. Soc. 53 (2016), 143-149
MSC (2010): Primary 46E40, 53C23, 54E40, 58C20
DOI: https://doi.org/10.1090/bull/1496
Published electronically: May 20, 2015
Review copyright: © Copyright 2015 American Mathematical Society
American Mathematical Society