
Teichmüller theory is an amazing subject, richly connected to geometry, topology, dynamics, analysis and algebra.

These words of Thurston, from his preface to [33], certainly apply to the study of Teichmüller curves.

1. Translation surfaces

Topologically, the surface of a coffee cup is the same as that of a bagel; it is also the same as a square with opposite sides identified by translating one to another. This representation of a torus even inherits a complex structure from the Euclidean \mathbb{R}^2, making it a Riemann surface of genus 1. Furthermore, dz induces a holomorphic 1-form (also called an Abelian differential).

There is an inverse process, even in the general genus case. Given a Riemann surface X and a holomorphic 1-form ω with set of zeros Σ, integration defines local coordinates on $X \setminus \Sigma$. Transition functions originate from change of basepoint and are thus translations. This then allows the Euclidean structure of the plane to be induced onto $X \setminus \Sigma$. The Euclidean structure can be extended to all of X, but at the cost of introducing singularities; these are cone singularities with angles that are found to be integral multiples of 2π. The result is a translation surface, (X, ω).

For explicit examples in genus 2, take two regular pentagons, glue them along one edge, and then identify opposite sides by translation. Both this and identifying a regular decagon’s opposite sides by translation give genus 2 surfaces. However, the first has a single cone singularity of angle 6π, whereas the second has two singular points, each of angle 4π. These translation surfaces correspond to the (smooth compact) surface of complex equation $y^2 = x^5 - 1$ with respective 1-forms dx/y and xdx/y [1, 13, 75].

The affine diffeomorphisms of a translation surface (X, ω) are those self-homeomorphisms of X sending Σ to itself that are diffeomorphisms on $X \setminus \Sigma$; equivalently, these are locally affine maps whose linear parts are constant. The linear parts form the Veech group $\text{SL}(X, \omega) \subset \text{SL}_2(\mathbb{R})$, which Veech [75] showed to be a (non-cocompact) Fuchsian group.
2. TEICHMÜLLER CURVES

In the case of genus \(g = 1 \), the integration of \(\omega \) defines a global map from \(X \) to \(\mathbb{C} \) modulo the lattice that is the image of first integral homology. This is in fact a biholomorphic map. We can normalize the lattice so that it is generated by 1 and \(\tau \in \mathbb{H} \), where \(\mathbb{H} \) is the upper half-plane. The normalization depends on a choice of generators for the lattice. Since generating pairs differ by elements of \(\text{SL}_2(\mathbb{Z}) \), one finds that \(M_1 = \text{SL}_2(\mathbb{Z}) \backslash \mathbb{H} \) has its points in one-to-one correspondence with the biholomorphic equivalence classes of complex tori. That is, \(M_1 \) is a (coarse) moduli space for Riemann surfaces of genus 1. (For technical reasons, one should mark a point on each torus, and speak of \(M_{1,1} \); as well, a full introduction would necessarily include a discussion of quadratic holomorphic forms.)

For general genus, the Riemann moduli space \(M_g \) is a singular complex space which is similarly a coarse moduli space of compact Riemann surfaces of genus \(g \). In the 1940s, Teichmüller introduced the use of quasi-conformal maps to study a simply connected (ramified) covering space of \(M_g \), which now carries his name and is denoted \(\mathcal{T}_g \). Biholomorphic maps are conformal; they send local small circles to circles. Any Riemann surface of fixed genus \(g \) can be mapped to any other by means of quasi-conformal maps; these send circles to ellipses. Teichmüller sketched how any isotopy class of quasi-conformal maps has the appropriate measurement of local eccentricity minimized by a map that is locally affine with respect to flat structures on the respective surfaces, and used this to define a distance on \(\mathcal{T}_g \). Royden \[70\] showed that \(M_g \) is the quotient of \(\mathcal{T}_g \) by the group of Teichmüller isometries; in particular the Teichmüller metric descends to \(M_g \). A Teichmüller curve, defined by Veech \[75\], is an algebraic curve in \(M_g \) that is geodesic with respect to the Teichmüller metric. In genus 1 there is exactly one Teichmüller curve—\(M_1 \) itself.

3. TEICHMÜLLER CURVES EXIST, BUT ARE RARE

Post-composition with any element of \(\text{SL}_2(\mathbb{R}) \) of the coordinate functions of a translation surface gives again a translation surface, with genus and singularity type preserved. There results an \(\text{SL}_2(\mathbb{R}) \)-action on the bundle \(\Omega M_g \) of holomorphic 1-forms over moduli space. Veech \[75\] showed that the \(\text{SL}_2(\mathbb{R}) \)-orbit of \((X, \omega)\) projects to a Teichmüller curve exactly when \(\text{SL}(X, \omega) \) is as large as possible; that is, when it is a lattice. One then says that \((X, \omega)\) is a Veech surface. The Veech dichotomy \[76\] states that if \((X, \omega)\) is a Veech surface then its flat dynamics are in a sense optimal (the straight line flow in any direction is either periodic or it is uniquely ergodic). Smillie (see \[76\]) showed that the \(\text{SL}_2(\mathbb{R}) \)-orbit of \((X, \omega)\) is closed if and only if \((X, \omega)\) is a Veech surface. For a further list of equivalent properties to \((X, \omega)\) being a Veech surface, see \[72,79\].

Veech \[75\] gave examples showing that there is at least one (algebraically primitive) Teichmüller curve in \(\Omega M_g \) for each \(g \). Bouw and Möller \[7\] showed that each non-cocompact triangle Fuchsian group is realized, up to finite index, as a Veech group; their construction recovers Veech’s examples as well as those of his student Ward \[80\].

The trace field of \((X, \omega)\) is the field extension of \(\mathbb{Q} \) given by adjoining the trace of every element in \(\text{SL}(X, \omega) \). Call \((X, \omega)\) arithmetic if it is a Veech surface whose trace field is \(\mathbb{Q} \) itself. Gutkin and Judge \[27\] showed that every arithmetic surface is a cover of a torus, with possible ramification above one point. These so-called square-tiled surfaces (also known as origami) are dense in \(\Omega M_g \), and provide key
Specific examples in the theory \cite{25, 29}. Schmith"usen \cite{71} gave an algorithm for computing the Veech group in this setting. In general, computing $\text{SL}(X, \omega)$ given (X, ω) is difficult; results and algorithms in this direction are in \cite{77, 6, 8, 66}. The determination of the $\text{SL}_2(\mathbb{R})$-orbits of square-tiled surfaces remains open in general; for $g = 2$, see \cite{36} and \cite{50}.

Ellenberg and McReynolds \cite{14} adapted algebro-geometric arguments about certain Hurwitz spaces (moduli spaces of ramified covers) to show that every algebraic curve defined over \mathbb{Q} is birationally equivalent to a Teichmüller curve; the isomorphism classification of Teichmüller curves remains open. They also showed that a large collection of lattice subgroups of $\text{SL}(2, \mathbb{Z})$ are realized as Veech groups. Rigidity arguments show that every Teichmüller curve is defined over \mathbb{Q}, \cite{56} and \cite{57, 63}.

Non-arithmetic Veech surfaces are rare. Aside from the $g = 1$ setting, almost every (X, ω) has trivial Veech group \cite{61}. The passage from Euclidean billiard to translation surface \cite{39} is one motivation for the study of Teichmüller dynamics—see \cite{42}, and \cite{12} for a recent overview; Kenyon and Smillie \cite{40} and Puchta \cite{68} show that only three non-isosceles acute rational angled triangles give Veech surfaces. The space ΩM_g is partitioned into strata, identified by multiplicity of zeros of 1-forms, hence by the partitions of $2g - 2$ into positive integers. For example, the double pentagon and decagon surface give points in $\Omega M_2(2)$ and $\Omega M_2(1, 1)$, respectively. McMullen \cite{53} proved that there is only one non-arithmetic Teichmüller curve from $\Omega M_2(1, 1)$; it arises from the decagon surface. Thereafter, Möller \cite{59} showed that for all g there are only finitely many appropriately primitive Teichmüller curves from the so-called hyperelliptic component of $\Omega M_g(g - 1, g - 1)$. Bainbridge and Möller \cite{5} show that this is also true for the stratum $\Omega M_g(3, 1)$, and they conjecture that finitude holds for all of ΩM_3. Most experts now seem to expect that the finitude of primitive Teichmüller curves holds for all strata other than $\Omega M_2(2)$.

If a Veech group has a hyperbolic element (equivalently, (X, ω) has an affine pseudo-Anosov diffeomorphism \cite{73}), then \cite{40} showed that adjoining to \mathbb{Q} the trace of this single element already gives the full trace field of the surface. This can be viewed as an obstruction to realizability as a Veech group \cite{32}. Hubert and Lanneau \cite{81} (see also \cite{10}) showed that the existence of (appropriately distinct) parabolic elements implies that the trace field is totally real, thus that all of the field embeddings into \mathbb{C} actually lie in \mathbb{R}. It remains unknown which number fields are realized as trace fields. However, Calta and Smillie \cite{10} introduced the notion of periodic direction field, which they proved is equal to the trace field of (X, ω) given the presence of a hyperbolic element in $\text{SL}(X, \omega)$, while also showing that every totally real number field is realized as a periodic direction field. Infinitely generated Veech groups exist \cite{37, 49}. A long standing question is if there exists any (X, ω) whose Veech group is cyclic hyperbolic; Hubert, Lanneau, and Möller \cite{85} ruled out a particularly promising candidate.

4. Genus 2 and Jacobians

A breakthrough in the study of Teichmüller curves in genus 2 occurred when, independently, Calta \cite{9} and McMullen \cite{48} showed that there are infinitely many non-arithmetic Teichmüller curves in M_2. Calta used so-called period coordinates to describe the corresponding Veech surfaces; see \cite{81} for a revisiting of this approach.
in the setting of linear submanifolds. McMullen’s approach relied on showing that the Jacobian variety of X has extra structure whenever (X, ω) of genus 2 has an affine pseudo-Anosov diffeomorphism.

For X of genus g, the holomorphic 1-forms form a g-dimensional vector space $\Omega(X)$. Given $\omega \in \Omega(X)$, each of the real and imaginary parts of ω is a real harmonic 1-form and thus uniquely defines a real first cohomology class and in fact, $\omega \mapsto [\text{Re}(\omega)]$ identifies $\Omega(X)$ with $H^1(X, \mathbb{R})$. Using the duality of homology and cohomology, one then defines the Jacobian variety $J(X)$ of X as the complex torus given by $\Omega^*(X)/H_1(X, \mathbb{Z})$. The intersection form on $H_1(X, \mathbb{Z})$ arising from the intersection of curves on X induces a symplectic form on $\Omega^*(X)$ and thus on (the tangent space at the zero point of) $J(X)$. The existence of this form is tantamount to an embedding into projective space; that is, $J(X)$ is a principally polarized Abelian variety.

Any affine diffeomorphism acts on $H^1(X, \mathbb{R})$ so as to preserve $\text{Stable}(\omega)$, the \mathbb{R}-span of the classes defined by the real and imaginary parts of ω. It also gives rise to a linear endomorphism of $H_1(X, \mathbb{Z})$ whose real extension to $\Omega^*(X)$ is self-adjoint; McMullen [48] showed that when $g = 2$, this extension is complex linear and an endomorphism of $J(X)$ results. The trace field of (X, ω) then has a subring that acts as endomorphisms on the Jacobian; since the field is totally real, one says that $J(X)$ has real multiplication by this field. This key insight allowed McMullen to deeply explore the genus 2 setting in a series of papers, including [48]–[54]. In particular, he identified all Teichmüller curves in genus 2, showing that each lies on some Hilbert modular surface, and he also gave a full determination of the ergodic $\text{SL}_2(\mathbb{R})$-invariant probability measures on ΩM_2.

5. TEICHMÜLLER DYNAMICS AND THE HODGE BUNDLE

Let $\Omega_1M_g \subset \Omega M_g$ correspond to translation surfaces of area one, $\text{SL}_2(\mathbb{R})$ also acts here. The Teichmüller flow is given by the action of the diagonal matrices $g_t = \text{diag}(e^t, e^{-t})$. On translation surfaces, this contracts the vertical direction while expanding the horizontal. Independently, Masur [46] and Veech [74] showed that there is a natural finite measure on each stratum of Ω_1M_g, and that the Teichmüller flow is ergodic on each component with respect to this measure. Eskin and Okounkov [19] and Eskin, Okounkov, and Pandharipande [20] determined the precise measure of each stratum by a Hurwitz space approach and the fact that arithmetic translation surfaces are appropriately dense.

Especially due to applications to interval exchange transformations, a main goal of Teichmüller dynamics is to fully understand the quality of mixing of Teichmüller flow for all $\text{SL}_2(\mathbb{R})$-invariant probability measures on ΩM_g. Despite the fact that Teichmüller space is in a sense completely inhomogeneous [70], analogies to the dynamics of homogeneous spaces provide insight that has allowed for astounding progress. A decade after McMullen’s [54] treatment of the genus 2 case, Eskin and Mirzakhani [17] show that finite ergodic $\text{SL}_2(\mathbb{R})$-invariant measures are of Lebesgue class and supported on affine varieties; Eskin, Mirzakhani, and Mohammadi [18] show that the closures of $\text{SL}_2(\mathbb{R})$-orbits are affine manifolds; and Filip [21,22] shows that these closures are algebraic varieties defined over number fields, thus generalizing the aforementioned results for Teichmüller curves. For more on these results and the flurry of work they have inspired see [82]. Finiteness results for primitive
Teichmüller curves in certain strata based on these results include those of [47] and [45].

Almost contemporaneously, Eskin, Kontsevich, and Zorich [15] culminated a 15-year project showing the rationality of the sum of the Lyapunov exponents for Teichmüller flow on the Hodge bundle over any connected component of a stratum. The (real) Hodge (normed vector) bundle over $\Omega_1 M_g$ is the C^∞-bundle whose fibers are $H^1(X, \mathbb{R})$ with the Hodge norm: $||v||^2 = \frac{1}{i} \int_X \omega \wedge \overline{\omega}$, where $\omega \in \Omega(X)$ has real part whose class is v. The Teichmüller flow can be lifted by parallel transport to give a flow on the Hodge bundle $v \mapsto G_{tKZ}(v), t \in \mathbb{R}$. Writing this flow in terms of transition matrices shows it to be a cocycle, called the Kontsevich–Zorich cocycle. By a theorem of Oseledets, the ergodicity of the Teichmüller flow with respect to the standard measure implies that there is a measurable decomposition $H^1(X, \mathbb{R}) = \bigoplus_{i=1}^k \mathcal{E}_i(\omega)$ depending on the point (X, ω) such that for non-zero $v \in \mathcal{E}_i(\omega)$, we have $||G_{tKZ}(v)|| = \exp(\lambda_i t + o(t))$. Relabelling and listing these Lyapunov exponents with multiplicity, the symplectic structure gives that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{2g}$, with $\lambda_{2g-i-1} = -\lambda_i$ and the first g values being all non-negative. (And thus, the rationality result is for the sum of these first g exponents!)

The subspace comprised of the Stable(\omega) is indeed stable under the flow: it accounts for $1 = \lambda_1 = -\lambda_{2g}$. This project of Eskin, Kontsevich, and Zorich has been central to the developments in the field; significant steps toward the result of [15] were made by Forni [23] showing positivity of λ_g, and Avila and Viana [3] proving the Zorich–Kontsevich conjecture that all of the Lyapunov exponents are non-zero and distinct. The long list of related works includes those of Eskin, Masur, and Zorich [16], Rafi [69], and Avila, Matheus, and Yoccoz [2].

6. HODGE BUNDLE OVER A TEICHMÜLLER CURVE

Möller [57] characterized Teichmüller curves in terms of the variation of Hodge structure. In naive terms, above each point b in the Teichmüller curve $B \subset M_g$ is a curve X, and we can form a bundle with fiber over b being $H^1(X, \mathbb{R})$. Möller showed that there is a decomposition of $H^1(X, \mathbb{R})$, preserved under the monodromy action of $\pi_1(B, b)$, of the form $M \oplus \bigoplus_{j=1}^r L_j$ with the L_j vector spaces of dimension 2 that are appropriately Galois conjugates of Stable(\omega) over the associated trace field K. One of the implications is that the Jacobians of the curves fibering over B each has an r-dimensional Abelian subvariety that has real multiplication by K, a direct generalization of McMullen’s genus 2 result.

This sophisticated use of modern algebraic geometry is key to many later developments. In particular, it allowed Möller [58] to prove a result underpinning many finiteness results: If (X, ω) is a Veech surface, then the formal difference of two zeros of ω defines a torsion element (that is, an element of finite order with respect to the group structure) in $\mathcal{G}(X)$. The characterization is a central ingredient in the aforementioned Bouw and Möller realization result [7]. It also leads to ways to evaluate the sum of Lyapunov exponents for Teichmüller flow restricted to a Teichmüller curve (or rather its canonical lift to $\Omega_1 M_g$) in terms of invariants of the L_j [7], and in terms of intersection data in the Deligne–Mumford compactification \overline{M}_g (11), see also [15]. Using this latter approach, Chen and Möller [11] show that for small genus, all primitive Teichmüller curves arising from the same stratum ΩM_g have the same Lyapunov exponents.
7. Kobayashi curves

The Schwarz–Pick Lemma states that any holomorphic mapping from the unit disk to itself is distance-decreasing with respect to the hyperbolic metric. Should the composition of two such maps be distance-preserving, then of course each must be. Hence, to show that a map is an isometry, it suffices to exhibit a second holomorphic map for which the composition is an isometry. Analogous arguments for holomorphic maps between complex manifolds are possible by using Kobayashi metrics, since the distance-decreasing property holds here as well. (The Kobayashi pseudo-metric on a complex manifold is the largest pseudo-metric such that every holomorphic map from the unit disk is distance-decreasing. When this pseudo-metric is non-degenerate, one has a metric. The unit disk’s Kobayashi metric agrees with its hyperbolic metric.) A Kobayashi curve is an algebraic curve that is geodesic with respect to the Kobayashi metric on some complex manifold. Royden proved that on T_g, the Kobayashi metric agrees with the Teichmüller metric. Thus, any Teichmüller curve is a Kobayashi curve in M_g.

Fixing a symplectic basis of integral homology and a correspondingly normalized basis of holomorphic 1-forms on a Riemann surface X, integration gives its period matrix, a complex $g \times g$ matrix whose imaginary part is positive definite. The space of all such matrices is the Siegel upper half-space, S_g, whose quotient by the real symplectic group gives the coarse moduli space of principally polarized Abelian varieties, A_g. When $g = 1$, this is the upper half-plane, and just as in that case, there is an expression of the general Siegel upper half-space as a bounded symmetric convex domain in an appropriate C^n, and it follows that it carries a Kobayashi metric (as opposed to this being merely a pseudo-metric). Kra and later McMullen show that the Teichmüller disk of any holomorphic 1-form is sent by the Torelli map (associating period matrix to Riemann surface) isometrically into S_g with its Kobayashi metric. It follows that a Teichmüller curve in M_g, arising from some (X, ω), gives a Kobayashi curve in A_g.

Overly simplifying, a Shimura curve is an algebraic curve uniformized by a Fuchsian group arising appropriately from a quaternion algebra. Shimura curves in A_g are totally geodesic with respect to the Bergman metric and they are also Kobayashi curves. Möller and Viehweg characterize all Kobayashi curves in A_g, showing rigidity. Möller shows that for $g \neq 5$ there are exactly two Teichmüller curves (those given in [25, 29]), that are simultaneously Shimura curves.

8. Kobayashi curves on Hilbert modular surfaces

One way to generalize the construction of the modular surface M_1 is to consider the quotient of the n-fold product \mathbb{H}^n by $\text{SL}_2(\mathcal{O}_K)$, where \mathcal{O}_K is the ring of algebraic integers of a totally real number field K with $n = [K : \mathbb{Q}]$. There are thus n distinct embeddings of K into \mathbb{R}, each of which induces an injection of $\text{SL}_2(\mathcal{O}_K)$ into $\text{SL}_2(\mathbb{R})$. When $n = 1$, the singularities of the quotient are removable, and one can also compactify by adding a cusp point. For $n = 2$, Hirzebruch showed how to resolve quotient singularities and the singularities introduced when compactifying. This allowed a school about him to deeply study the arithmetic, geometry, and topology of these Hilbert modular surfaces; see [26] and [30]. In particular, Hirzebruch and Zagier gave a construction of classical modular forms by taking the intersection numbers of twisted diagonals, the projection to $\mathbb{H}^2/\text{SL}_2(\mathcal{O}_K)$ of $z \mapsto (Mz, M^\sigma z)$, where $M \in \text{GL}_2^+(K)$ and M^σ denotes the matrix obtained by letting the non-trivial
Galois group element of K/\mathbb{Q} act on the entries of M. Franke [24] and Hausmann [28] completed a classification of these curves. The Kobayashi geodesics of \mathbb{H}^2 are the graphs of holomorphic functions from \mathbb{H} to itself (and the image of such under interchange of coordinates), and it follows that the twisted diagonals are Kobayashi curves on their Hilbert modular surfaces.

McMullen’s identification of Teichmüller curves in M_2 shows that for each there is a discriminant D such that each of the corresponding Jacobians has endomorphism ring containing a copy of \mathcal{O}_D, the order (that is, the finite index subring of the full ring of algebraic integers of a real quadratic field) of discriminant D. A coarse moduli space for principally polarized Abelian surfaces $A_\tau = \mathbb{C}^2/(\mathcal{O}_D \oplus \mathcal{O}_D^\vee)$ with real multiplication by \mathcal{O}_D is given by $X_D = (\mathbb{H} \times \mathbb{H})/SL(\mathcal{O}_D \oplus \mathcal{O}_D^\vee)$, where $O_D^\vee = \{\alpha/\sqrt{D} | \alpha \in \mathcal{O}_D\}$ is the inverse different of \mathcal{O}_D, and $SL(\mathcal{O}_D \oplus \mathcal{O}_D^\vee)$ is the appropriate automorphism group. Given a Teichmüller curve in M_2, after appropriate normalization of the associated Veech groups, there is a modular embedding $\phi: \mathbb{H} \to \mathbb{H}$ intertwining the action of $SL(X,\omega)$ and its Galois conjugate so that the quotient of $\mathbb{H} \times \phi(\mathbb{H})$ descends so as to give a copy of the Teichmüller curve on X_D. Since the universal cover \mathbb{H} of a Teichmüller curve coming from an Abelian differential (X,ω) maps isometrically with respect to Kobayashi metrics by the Torelli map to Siegel space, and this map does factor through (id_H,ϕ), the distance-decreasing property shows that the Teichmüller curve on X_D is Kobayashi geodesic.

One can deform a translation surface (X,ω) with multiple zeros by changing the distances between some of these; this change in relative periods when made rigorous is a key ingredient to understanding the topology of strata and their boundaries [16]. In the genus 2 setting, McMullen [55] determines a foliation of X_D whose initial ingredient is given a (X,ω) to fix its absolute periods and allow relative periods to vary. In particular this provided a way for Bainbridge [4] to define appropriate cycles on X_D so as to calculate the Euler characteristics of the Teichmüller curves in M_2, even though the uniformizing groups, the Veech groups, remain unknown in general. (Further topological data is calculated in [67].) Among other results, Bainbridge explicitly showed that the second Lyapunov exponent, λ_2, for any Teichmüller curve is constant within each of the two strata; see [15] for another proof of this.

Using explicit algebraic models of Hilbert modular surfaces, Kumar and Mukamel [44] find explicit equations for a large number of Teichmüller curves, exposing intriguing geometry.

Möller and Zagier [64] develop a theory of ϕ-twisted modular forms on Hilbert modular surfaces (where ϕ is a modular embedding), and in particular express the Teichmüller curves on X_D in equations involving derivatives of theta functions. Möller [62] applied the approach of [64] to give equations for the curves on X_D coming from McMullen’s [52] Prym variety construction of Teichmüller curves in M_g, with $g = 3, 4$. It is now the Prym varieties of the parametrized curves that have real multiplication, but in general these Abelian surfaces are not principal polarized. However, there is still an appropriate Hilbert modular surface upon which these give Kobayashi curves. Möller poses the challenge to determine all Kobayashi curves on each X_D.

9. Twisted Teichmüller curves and the book under review

In direct analogy with the twisted diagonals, a twisted Teichmüller curve is the projection to X_D of $z \mapsto (Mz, M^\sigma \phi(z))$, where $z \mapsto (z, \phi(z))$ projects to a
Teichmüller curve and once again $M \in \text{GL}_2^+(K)$. As Weiß easily shows, any such twist of a Kobayashi geodesic in \mathbb{H}^2 is again Kobayashi, thus giving many new examples of Kobayashi curves. One of his most interesting observations is that the second Lyapunov exponent is invariant under twisting. This allows him to apply results about λ_2 of Bainbridge and of Chen and Möller to show that the curves arising on X_D from McMullen’s Prym construction are not twists of the Teichmüller curves from M_2.

Much of this book is devoted to the use of Fuchsian group theory and algebraic number theory to achieve, for certain classes of D, results on the number, volume, and Euler characteristic of distinct twists, thus generalizing results of Franke and Hausmann. The author raises but leaves open the highly interesting question of what the intersection numbers of twisted Teichmüller curves may be.

The book is an elaboration of Weiß’s Ph.D. dissertation (under the direction of Möller) and can be compared to three other similar publications cited within it. The Bonner Mathematische Schriften publications of Franke [24] and Hausmann [28] each present fundamental results about curves on Hilbert modular surfaces, while tersely presenting background and merely hinting at motivation; they are written in fairly formal German and this, along with their limited distribution, gives the work of Weiß, and the Karlsruhe IT dissertation by Kappes [38], a real advantage as to accessibility. (That said, a price is paid in elegance and formality of language. Indeed, the book under review suffers from a high frequency of clumsily worded English.) Both Kappes and Weiß give more motivation, also giving clear summaries of the necessary background, although Weiß’s treatment of the background of Lyapunov exponents is perhaps too terse. In an appendix, Weiß presents a clear proof that Hilbert modular surfaces are indeed coarse moduli spaces for Abelian surfaces with real multiplication by the appropriate ring. This is the sort of service to the profession that one gladly sees in a published thesis—this well-known result did not have an easily found proof in accessible form.

Quibbles arise with almost any book. Oddly enough, Weiß never quite presents a proof that McMullen’s Teichmüller curves are Kobayashi geodesic on the X_D (cf. p. 44). He overstates Möller’s result on the extent of real multiplication of $\mathcal{F}(X)$ above a Teichmüller curve (p. 125). There is the occasional typographical error, such as on p. 24 where the uniformization theorem is attributed a date some half a century too early.

There remain many interesting questions in this area, and one can easily imagine that, just as [24] and [28], these more recent dissertation monographs will be cited for decades to come.

References

Thomas A. Schmidt

Oregon State University

E-mail address: toms@math.orst.edu