Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Moduli spaces and macromolecules


Author: R. C. Penner
Journal: Bull. Amer. Math. Soc. 53 (2016), 217-268
MSC (2010): Primary 92-02, 92C40, 92C05, 30F60, 32G15, 53C05
DOI: https://doi.org/10.1090/bull/1524
Published electronically: February 3, 2016
MathSciNet review: 3474307
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Techniques from moduli spaces are applied to biological macromolecules. The first main result provides new a priori constraints on protein geometry discovered empirically and confirmed computationally. The second main result identifies up to homotopy the natural moduli space of several interacting RNA molecules with the Riemann moduli space of a surface with several boundary components in each fixed genus. Applications to RNA folding prediction are discussed. The mathematical and biological frameworks are surveyed and presented from first principles.


References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Conformal invariants: Topics in geometric function theory; Reprint of the 1973 original; With a foreword by Peter Duren, F. W. Gehring and Brad Osgood, AMS Chelsea Publishing, Providence, RI, 2010. MR 2730573 (2011m:30001)
  • [2] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton University Press, Princeton, NJ, 1960.
  • [3] The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2011. Edited by Gernot Akemann, Jinho Baik and Philippe Di Francesco. MR 2920518 (2012m:60007)
  • [4] Tatsuya Akutsu, Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots, Discrete Appl. Math. 104 (2000), no. 1-3, 45-62. Combinatorial molecular biology. MR 1781772 (2002f:92015), https://doi.org/10.1016/S0166-218X(00)00186-4
  • [5] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular biology of the cell, third edition, Garland Publishing, 1994.
  • [6] N. V. Alexeev, J. E. Andersen, R. C. Penner, P. G. Zograf, Enumeration of chord diagrams on many backbones and their non-orientable analogs, Adv. Math. 289 (2016), 1056-1081.
  • [7] Comprehensive survey and geometric classification of base triples in RNA structures, A. S. A. Almarken, A. I. Petrov, J. Stombaugh, C. L. Zirbel, N. B. Leontis, Nucleic Acids Research 40 (2012), 1407-1423.
  • [8] S. F. Altschul, M. S. Boguski, W. Gish, J. C. Wootton, Issues in searching molecular sequence databases, Nature Genetics 6 (1994), 119-129.
  • [9] Ebbe S. Andersen and Piotr Sułkowski, private communication (2015).
  • [10] Jørgen E. Andersen, Leonid O. Chekhov, R. C. Penner, Christian M. Reidys, and Piotr Sułkowski, Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces, Nuclear Phys. B 866 (2013), no. 3, 414-443. MR 2982079, https://doi.org/10.1016/j.nuclphysb.2012.09.012
  • [11] J. E. Andersen, L. O. Chekhov, R. C. Penner, C. M. Reidys, P.Sułkowski, Enumeration of RNA complexes via random matrix theory, Biochemical Society Transactions 41 (2013), 652-655.
  • [12] Jørgen E. Andersen, Fenix W. D. Huang, Robert C. Penner, and Christian M. Reidys, Topology of RNA-RNA interaction structures, J. Comput. Biol. 19 (2012), no. 7, 928-943. MR 2954836, https://doi.org/10.1089/cmb.2011.0308
  • [13] J. E. Andersen, R. C. Penner, C. M. Reidys, and M. S. Waterman, Topological classification and enumeration of RNA structures by genus, J. Math. Biol. 67 (2013), no. 5, 1261-1278. MR 3111990, https://doi.org/10.1007/s00285-012-0594-x
  • [14] Reinhold Baer, Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math. 159 (1928), 101-116 (German). MR 1581156, https://doi.org/10.1515/crll.1928.159.101
  • [15] D. Baker, and A. Sali, Protein structure prediction and structural genomics, Science 294 (2001), 93-96.
  • [16] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777 (85d:22026)
  • [17] O. M. Becker, A. D. Mackerell Jr., B. Roux, M. Watanabe, Computational biochemistry and biophysics, Marcel Dekker, 2001.
  • [18] F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. E. Meyer Jr., M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, M.Tasumi, The Protein Data Bank: a computer-based archival file for macromolecular structures, Journal of Molecular Biology 112 (1977), 535.
  • [19] Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300. MR 0348097 (50 #595)
  • [20] Lipman Bers, Quasiconformal mappings, with applications to differential equations, function theory and topology, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1083-1100. MR 0463433 (57 #3384)
  • [21] Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131-172. MR 621883 (82k:32050), https://doi.org/10.1090/S0273-0979-1981-14933-8
  • [22] D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980), no. 2, 109-157. MR 603127 (83j:81067), https://doi.org/10.1016/0196-8858(80)90008-1
  • [23] M. Bon, G. Vernizzi, H. Orland, A. Zee, Topological classification of RNA structures, Journal of Molecular Biology 379 (2008), 900-911.
  • [24] S. Brantl, Antisense-RNA regulation and RNA interference, Biochimica et Biophysica Acta-Gene Structure and Expression 1575 (2002), 15-25.
  • [25] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar diagrams, Comm. Math. Phys. 59 (1978), no. 1, 35-51. MR 0471676 (57 #11401)
  • [26] K. Burke, J. Werschnik, E. K. U. Gross, Time-dependent density functional theory: Past, present, and future, The Journal of Chemical Physics 123 (2005), 062206.
  • [27] A. J. Casson, D. P. Sullivan, M. A. Armstrong, C. P. Rourke, G. E. Cooke, The Hauptvermutung Book: a collection of papers on the topology of manifolds, edited by A. A. Ranicki, K-Monographs in Mathematics, 1996.
  • [28] Guillaume Chapuy, A new combinatorial identity for unicellular maps, via a direct bijective approach, Adv. in Appl. Math. 47 (2011), no. 4, 874-893. MR 2832383 (2012h:05032), https://doi.org/10.1016/j.aam.2011.04.004
  • [29] L. O. Chekhov, Genus-one corrections to multicut solutions of a matrix model, Teoret. Mat. Fiz. 141 (2004), no. 3, 358-374 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 141 (2004), no. 3, 1640-1653. MR 2141134 (2006d:81208), https://doi.org/10.1023/B:TAMP.0000049759.01361.79
  • [30] Leonid Chekhov and Bertrand Eynard, Hermitian matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys. 3 (2006), 014, 18 pp. (electronic). MR 2222762 (2007k:81144), https://doi.org/10.1088/1126-6708/2006/03/014
  • [31] Leonid Chekhov, Bertrand Eynard, and Nicolas Orantin, Free energy topological expansion for the 2-matrix model, J. High Energy Phys. 12 (2006), 053, 31 pp. (electronic). MR 2276699 (2007j:81200), https://doi.org/10.1088/1126-6708/2006/12/053
  • [32] C. Chothia and A. M. Lesk, The relation between the divergence of sequence and structure in proteins, EMBO Journal 5 (1986), 823-8266.
  • [33] P. Deligne and D. Mumford, Irreducibility of the space of curves of a given genus. Inst.Hautes Études Scientifique Publications Mathématique 36 (1979), 75-110.
  • [34] P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, $ 2$D gravity and random matrices, Phys. Rep. 254 (1995), no. 1-2, 133. MR 1320471 (96c:81191), https://doi.org/10.1016/0370-1573(94)00084-G
  • [35] F. J. Dyson, The $ S$ matrix in quantum electrodynamics, Physical Rev. (2) 75 (1949), 1736-1755. MR 0031388 (11,145b)
  • [36] M. G. dell'Erba, G. R. Zemba, Thermodynamics of a model for RNA folding, Physical Review E 79 (2009).
  • [37] D. B. A. Epstein, Curves on $ 2$-manifolds and isotopies, Acta Math. 115 (1966), 83-107. MR 0214087 (35 #4938)
  • [38] D. J. Evans and G. P. Morriss, Statistical mechanics of nonequilibrium liquids, Second Edition, Cambridge University Press, 2008.
  • [39] B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014), no. 3, 541-588. MR 3282995, https://doi.org/10.4310/CNTP.2014.v8.n3.a4
  • [40] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), no. 2, 347-452. MR 2346575 (2008m:14049), https://doi.org/10.4310/CNTP.2007.v1.n2.a4
  • [41] Bertrand Eynard, private communcation (2015).
  • [42] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125 (2012h:57032)
  • [43] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66-67, Société Mathématique de France, Paris, 1979.
  • [44] Alexei Finkelstein and Oleg Ptitsyn, Protein physics: a course of lectures, Academic Press, 2002.
  • [45] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. MR 2233852 (2009k:32011), https://doi.org/10.1007/s10240-006-0039-4
  • [46] L. R. Ford, Automorpic functions, American Mathematical Society, Chelsea Publishing 2004.
  • [47] I. Garg and N. Deo, RNA matrix model with external interactions and their asymptotic behaviors, Physical Review E 79, (2009).
  • [48] J. Georg and W. R. Hess, cis-Antisense RNA, another level of gene regulation in bacteria, Microbiology and Molecular Biology Reviews 75 (2011), 286-300.
  • [49] William M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557-607. MR 952283 (89m:57001), https://doi.org/10.1007/BF01410200
  • [50] Misha Gromov, Crystals, proteins, stability and isoperimetry, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 2, 229-257. MR 2774091 (2012a:92196), https://doi.org/10.1090/S0273-0979-2010-01319-7
  • [51] A. Grothendieck, Techniques de construction en géométrie analytique. I. Description axiomatique de l'espace de Teichmüller et de ses variantes, Séminaire Henri Cartan 13, Exposés 7/8 (Paris: Secrétariat Mathématique).
  • [52] Sergei Gukov and Piotr Sułkowski, A-polynomial, B-model, and quantization, J. High Energy Phys. 2 (2012), 070, front matter+56. MR 2996110
  • [53] Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. MR 954419 (89i:53029), https://doi.org/10.1090/conm/071/954419
  • [54] Hillary S. W. Han, Thomas J. X. Li, and Christian M. Reidys, Combinatorics of $ \gamma $-structures, J. Comput. Biol. 21 (2014), no. 8, 591-608. MR 3245228, https://doi.org/10.1089/cmb.2013.0128
  • [55] Sridhar Hannenhalli and Pavel A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J. ACM 46 (1999), no. 1, 1-27. MR 1692509 (2000j:92013), https://doi.org/10.1145/300515.300516
  • [56] John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215-249. MR 786348 (87f:57009), https://doi.org/10.2307/1971172
  • [57] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457-485. MR 848681 (87i:32031), https://doi.org/10.1007/BF01390325
  • [58] Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825 (99g:14031)
  • [59] C. Haslinger and P. F. Stadler, RNA structures with pseudo-knots, Bulletin of Mathematical Biology 61 (1999), 437-467.
  • [60] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449-473. MR 1174252 (93e:32023), https://doi.org/10.1016/0040-9383(92)90044-I
  • [61] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. (2) 136 (1964), B864-B871. MR 0180312 (31 #4547)
  • [62] K. Hoogsteen, The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine, Acta Crystllographica 16 (1963), 907-916.
  • [63] W. G. Hoover, Computational statistical mechanics, Elsevier, 1991.
  • [64] W. Hu, L. Lin, C. Yang, DGDFT: A massively parallel method for large scale density functional theory calculations, Journal of Chemical Physics 143 (2015), 124110.
  • [65] Fenix W. D. Huang, Markus E. Nebel, and Christian M. Reidys, Generation of RNA pseudoknot structures with topological genus filtration, Math. Biosci. 245 (2013), no. 2, 216-225. MR 3143418, https://doi.org/10.1016/j.mbs.2013.07.014
  • [66] F. Huang and C. M. Reidys, Shape of topological RNA structures, Math. Biosci. 270 (2015), part A, 57-65. MR 3425919
  • [67] F. Huang and C. M. Reidys, A topological framework for signed permutations, preprint (2015).
  • [68] John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Teichmüller theory, Matrix Editions, Ithaca, NY, 2006. MR 2245223 (2008k:30055)
  • [69] Kiyoshi Igusa, Combinatorial Miller-Morita-Mumford classes and Witten cycles, Algebr. Geom. Topol. 4 (2004), 473-520. MR 2077674 (2005g:57041), https://doi.org/10.2140/agt.2004.4.473
  • [70] H. Isambert and E. D. Siggia, Modeling RNA folding paths with pseudoknots: Application to hepatitis virus ribozyme, Proceedings of the National Academy of Sciences USA 97 (2000), 6515-6520.
  • [71] Emma Y. Jin and Christian M. Reidys, Combinatorial design of pseudoknot RNA, Adv. in Appl. Math. 42 (2009), no. 2, 135-151. MR 2493973 (2009k:92087), https://doi.org/10.1016/j.aam.2008.06.003
  • [72] N. C. Jones and P. A. Pevzner, An introduction to bioinformatics algorithms, MIT Press, 2004.
  • [73] W. Kabsch and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22 (1983), 2577-2637.
  • [74] S. Kaczanowski and P. Zielenkiewicz, Why similar protein sequences encode similar three-dimensional structures?, Theoretical Chemistry Accounts 125 (2010), 643-650.
  • [75] Daniel J. Kleitman, Proportions of irreducible diagrams, Studies in Appl. Math. 49 (1970), 297-299. MR 0266765 (42 #1668)
  • [76] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Volume I. Reprint of the 1963 original. Wiley Classics Library. A Wiley Interscience Publication. John Wiley & Sons, Inc., New York, 1996. MR 1393940 (97c:53001a)
  • [77] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. (2) 140 (1965), A1133-A1138. MR 0189732 (32 #7154)
  • [78] Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23. MR 1171758 (93e:32027)
  • [79] A. Leach, Molecular modeling: principles and applications, 2nd Edition, Prentice Hall, 2001.
  • [80] Thomas J. X. Li and Christian M. Reidys, The topological filtration of $ \gamma $-structures, Math. Biosci. 241 (2013), no. 1, 24-33. MR 3019691, https://doi.org/10.1016/j.mbs.2012.09.006
  • [81] N. B. Leontis and E. Westhof, Geometric nomenclature and classification of RNA base pairs, RNA 7 (2001), 499-512.
  • [82] R. B. Lyngsø and C. N. Pedersen, RNA pseudoknot prediction in energy-based models, Journal of Computational Biology 7 (2000), 409-427.
  • [83] M. Mariño, Les Houches lectures on matrix models and topological strings, In: Applications of Random Matrices in Physics (Les Houches Lecture Notes) NATO Sci. Ser. 221 (2005) Springer, New York, 319-378.
  • [84] M. A. Marti-Renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, A. Sali, Comparative protein structure modeling of genes and genomes, Annual Reviews of Biophysics and Biomolecular Structure 29 (2000), 291-325.
  • [85] Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906 (2006b:82001)
  • [86] Gabriele Mondello, Combinatorial classes on $ \overline {\mathcal {M}}_{g,n}$ are tautological, Int. Math. Res. Not. 44 (2004), 2329-2390. MR 2078260 (2005g:14056), https://doi.org/10.1155/S1073792804131462
  • [87] John W. Morgan, An introduction to gauge theory, Gauge theory and the topology of four-manifolds (Park City, UT, 1994), IAS/Park City Math. Ser., vol. 4, Amer. Math. Soc., Providence, RI, 1998, pp. 51-143. MR 1612968 (99c:53018)
  • [88] D. M. Mount, Bioinformatics: sequence and genome analysis, Second Edition, Cold Spring Harbor Laboratory Press, 2005.
  • [89] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • [90] S. Neidle, Principles of Nucleic Acid Structure, Elsevier, 2008.
  • [91] Jakob Nielsen, Surface transformation classes of algebraically finite type, Danske Vid. Selsk. Math.-Phys. Medd. 21 (1944), no. 2, 89. MR 0015791 (7,469c)
  • [92] Y. Ohta, H. Kodama, A. Sugiyama,M. Matsuoka, H. Doi, T. Tsuboi, J. E. Andersen, R. C. Penner, S. Ihara, $ SO(3)$ Rotation in the backbone reveals the shape of protein function, preprint (2012).
  • [93] Henri Orland and A. Zee, RNA folding and large $ N$ matrix theory, Nuclear Phys. B 620 (2002), no. 3, 456-476. MR 1877957 (2002k:92017), https://doi.org/10.1016/S0550-3213(01)00522-3
  • [94] Handbook of Teichmüller theory. Vol. I, IRMA Lectures in Mathematics and Theoretical Physics, vol. 11, European Mathematical Society (EMS), Zürich, 2007. Edited by Athanase Papadopoulos. MR 2284826 (2008e:32002)
  • [95] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1989.
  • [96] V. Pelechano and L. M. Steinmetz, Gene regulation by antisense transcription, Nature Reviews Genetics 14 (2013), 880-893.
  • [97] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299-339. MR 919235 (89h:32044)
  • [98] R. C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988), no. 1, 35-53. MR 918455 (89h:32045)
  • [99] R. C. Penner, Cell decomposition and compactification of Riemann's moduli space in decorated Teichmüller theory, Woods Hole mathematics, Ser. Knots Everything, vol. 34, World Sci. Publ., Hackensack, NJ, 2004, pp. 263-301. MR 2123371 (2006g:32018), https://doi.org/10.1142/9789812701398_0006
  • [100] R. C. Penner, Decorated Teichmüller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 793-820. MR 2104076 (2006a:32018)
  • [101] R. C. Penner, The structure and singularities of quotient arc complexes, J. Topol. 1 (2008), no. 3, 527-550. MR 2417441 (2009g:57030), https://doi.org/10.1112/jtopol/jtn006
  • [102] Robert C. Penner, Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012. With a foreword by Yuri I. Manin. MR 3052157
  • [103] R. C. Penner, Michael Knudsen, Carsten Wiuf, and Jørgen Ellegaard Andersen, Fatgraph models of proteins, Comm. Pure Appl. Math. 63 (2010), no. 10, 1249-1297. MR 2681473, https://doi.org/10.1002/cpa.20340
  • [104] R. C. Penner, E. S. Andersen, J. L. Jensen, A.K. Kantcheva, M. Bublitz, P. Nissen, A. M. H. Rasmussen, K. L.Svane, B. Hammer, R. Rezazadegan, N. C. Nielsen, J. T. Nielsen, J. E. Andersen, Hydrogen bond rotations as a uniform structural tool for analyzing protein architecture, Nature Communications 5 (2014).
  • [105] R. C. Penner Michael Knudsen, Carsten Wiuf, Jørgen E. Andersen, An algebro-topological description of protein domain structure, PLOS one (2011).
  • [106] R. C. Penner and Michael S. Waterman, Spaces of RNA secondary structures, Adv. Math. 101 (1993), no. 1, 31-49. MR 1239450 (94j:92006), https://doi.org/10.1006/aima.1993.1039
  • [107] Pavel A. Pevzner, Computational molecular biology, Computational Molecular Biology: An algorithmic approach; A Bradford Book, MIT Press, Cambridge, MA, 2000. MR 1790966 (2001i:92001)
  • [108] M. Pillsbury, H. Orland, A. Zee, Steepest descent calculation of RNA pseudoknots, Physical Reviews E 72 (2005).
  • [109] M. Pillsbury, J. A. Taylor, H. Orland, A. Zee, An algorithm for RNA pseudoknots, (2005), arXiv:cond-mat/0310505.
  • [110] Jing Qin and Christian M. Reidys, On topological RNA interaction structures, J. Comput. Biol. 20 (2013), no. 7, 495-513. MR 3085524, https://doi.org/10.1089/cmb.2012.0282
  • [111] T. Radó, Acta Scientiarum Mathematicarum Szegediensis, Uber den Begriffric ander Riemannschen Fläche, 2 (1925), 101-121.
  • [112] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press,1996.
  • [113] Christian Reidys, Combinatorial computational biology of RNA, Pseudoknots and neutral networks, Springer, New York, 2011. MR 2743128 (2012g:92013)
  • [114] C. M. Reidys and F. Huang. A stochastic context-free grammar for topological RNA pseudo-knot structures, preprint (2015).
  • [115] C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F. Stadler, M. E. Nebel, Topology and prediction of RNA pseudoknots, Bioinformatics 27 (2011), 1076-1085.
  • [116] C. M. Reidys and R. Wang, Shapes of RNA pseudoknot structures, Journal of Computational Biology 17 (2010), 1575-1590.
  • [117] E. Rivas and S. R. Eddy, A dynamic programming algorithm for rna structure prediction including pseudoknots, Journal of Molecular Biology 285 (1999), 2053-2068.
  • [118] Gian-Carlo Rota, private communication (1989).
  • [119] Gian-Carlo Rota, private communication (1992).
  • [120] Tamar Schlick, Molecular modeling and simulation: an interdisciplinary guide, Interdisciplinary Applied Mathematics, vol. 21, Springer-Verlag, New York, 2002. MR 1921061 (2003k:92001)
  • [121] J. Schwarz, Resuscitating superstring theory, New Scientist, 16 November 1987.
  • [122] R. P. Stanley, Catalan numbers, Cambridge University Press, 2015.
  • [123] Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423 (86a:30072)
  • [124] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. MR 956596 (89k:57023), https://doi.org/10.1090/S0273-0979-1988-15685-6
  • [125] A. A. Tseytlin, Sigma model renormalization group flow, ``central charge'' action, and Perelman's entropy, Phys. Rev. D 75 (2007), no. 6, 064024, 6. MR 2312176 (2008d:81150), https://doi.org/10.1103/PhysRevD.75.064024
  • [126] G. Vernizzi, H. Orland, A. Zee, Enumeration of RNA structures by matrix models, Physical Review Letters 94, 168103.
  • [127] B. Wallner and A. Elofsson, All are not equal: A benchmark of different homology modeling programs, Protein Science 14 (2005), 1315-1327.
  • [128] A. Warshel, Multiscale modeling of biological functions: from enzymes to molecular machines, Angewandte Chemie 12 (2014), 10020-10031.
  • [129] Arieh Warshel, private communication (2015).
  • [130] M. S. Waterman, An introduction computational biology, Chapman and Hall, New York, 1995.
  • [131] Michael S. Waterman, Secondary structure of single-stranded nucleic acids, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 167-212. MR 520559 (80d:92012)
  • [132] J. D. Watson and F. H. C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171 (1953), 737-738.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 92-02, 92C40, 92C05, 30F60, 32G15, 53C05

Retrieve articles in all journals with MSC (2010): 92-02, 92C40, 92C05, 30F60, 32G15, 53C05


Additional Information

R. C. Penner
Affiliation: Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France; and Departments of Mathematics and Physics Theory, California Institute of Technology, Pasadena, California 91125
Email: rpenner@ihes.fr; rpenner@caltech.edu

DOI: https://doi.org/10.1090/bull/1524
Keywords: Macromolecule, protein, RNA, surface, fatgraph, graph connection
Received by editor(s): August 24, 2015
Published electronically: February 3, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society