Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: M. I. Ostrovskii
Title: Metric embeddings: bilipschitz and coarse embedddings into Banach spaces
Additional book information: de Gruyter Studies in Mathematics, Vol. 49, de Gruyter, Berlin, 2013, xii+372 pp., ISBN 978-3-11-026401-2, US$154.00.

References [Enhancements On Off] (What's this?)

  • [1] Israel Aharoni, Every separable metric space is Lipschitz equivalent to a subset of $ c^{+}_{0}$, Israel J. Math. 19 (1974), 284-291. MR 0511661 (58 #23471a)
  • [2] Sanjeev Arora, James R. Lee, and Assaf Naor, Euclidean distortion and the sparsest cut, J. Amer. Math. Soc. 21 (2008), no. 1, 1-21 (electronic). MR 2350049 (2009j:51005), https://doi.org/10.1090/S0894-0347-07-00573-5
  • [3] Patrice Assouad, Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans $ c_{0}$ (Israel J. Math. 19 (1974), 284-291), Israel J. Math. 31 (1978), no. 1, 97-100. MR 0511662 (58 #23471b)
  • [4] Tim Austin, Assaf Naor, and Yuval Peres, The wreath product of $ \mathbb{Z}$ with $ \mathbb{Z}$ has Hilbert compression exponent $ \frac {2}{3}$, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85-90. MR 2439428 (2009f:20060), https://doi.org/10.1090/S0002-9939-08-09501-4
  • [5] K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), no. 2, 137-172. MR 1159828 (93b:46025), https://doi.org/10.1007/BF01896971
  • [6] Keith Ball, The Ribe programme, Astérisque 352 (2013), Exp. No. 1047, viii, 147-159. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043-1058. MR 3087345
  • [7] Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166 (97d:01035)
  • [8] Florent Baudier, Metrical characterization of super-reflexivity and linear type of Banach spaces, Arch. Math. (Basel) 89 (2007), no. 5, 419-429. MR 2363693 (2009b:46019), https://doi.org/10.1007/s00013-007-2108-4
  • [9] F. Baudier and G. Lancien, Tight embeddability of proper and stable metric spaces, Anal. Geom. Metr. Spaces 3 (2015), 140-156. MR 3365754, https://doi.org/10.1515/agms-2015-0010
  • [10] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673 (2001b:46001)
  • [11] C. Bessaga and A. Pełczyński, On the topological classification of complete linear metric spaces., General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 87-90. MR 0145324 (26 #2855)
  • [12] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), no. 1-2, 46-52. MR 815600 (87b:46017), https://doi.org/10.1007/BF02776078
  • [13] J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986), no. 2, 222-230. MR 880292 (88e:46007), https://doi.org/10.1007/BF02766125
  • [14] J. Bourgain, V. Milman, and H. Wolfson, On type of metric spaces, Trans. Amer. Math. Soc. 294 (1986), no. 1, 295-317. MR 819949 (88h:46033), https://doi.org/10.2307/2000132
  • [15] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)
  • [16] Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123-160. MR 0139079 (25 #2518)
  • [17] Per Enflo, On the nonexistence of uniform homeomorphisms between $ L_{p}$-spaces, Ark. Mat. 8 (1969), 103-105. MR 0271719 (42 #6600)
  • [18] M. Fréchet, Sur quelques points du calcul fonctionel, Rend. Circ. Mat. Palermo Math. 22 (1906), 1-71.
  • [19] M. Fréchet, Les dimensions d'un ensemble abstrait, Mathematische Annalen 68 (1910), no. 2, 145-168.
  • [20] Maurice Fréchet, Les espaces abstraits, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1989 (French). Reprint of the 1928 original. MR 1189135 (93g:01098)
  • [21] G. Godefroy, G. Lancien, and V. Zizler, The non-linear geometry of Banach spaces after Nigel Kalton, Rocky Mountain J. Math. 44 (2014), no. 5, 1529-1583. MR 3295641, https://doi.org/10.1216/RMJ-2014-44-5-1529
  • [22] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [23] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295. MR 1253544 (95m:20041)
  • [24] M. Gromov, in: S. Ferry, A. Ranicki, J. Rosenberg (Eds.), Problems (4) and (5),, Novikov Conjectures, Index Theorems and Rigidity, Vol. 1 (Oberwolfach, 1993), 1995, p. 67.
  • [25] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), no. 3, 225-251. MR 675426 (84h:46026)
  • [26] William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206. MR 737400 (86a:46018), https://doi.org/10.1090/conm/026/737400
  • [27] William B. Johnson and N. Lovasoa Randrianarivony, $ l_p\ (p>2)$ does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1045-1050 (electronic). MR 2196037 (2006k:46026), https://doi.org/10.1090/S0002-9939-05-08415-7
  • [28] William B. Johnson and Gideon Schechtman, Diamond graphs and super-reflexivity, J. Topol. Anal. 1 (2009), no. 2, 177-189. MR 2541760 (2010k:52031), https://doi.org/10.1142/S1793525309000114
  • [29] M. I. Kadets, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Funkcional. Anal. i Priložen. 1 (1967), 61-70 (Russian).
  • [30] N. J. Kalton, Coarse and uniform embeddings into reflexive spaces, Q. J. Math. 58 (2007), no. 3, 393-414. MR 2354924 (2008m:46155), https://doi.org/10.1093/qmath/ham018
  • [31] N. J. Kalton, Lipschitz and uniform embeddings into $ \ell _\infty $, Fund. Math. 212 (2011), no. 1, 53-69. MR 2771588 (2012d:46038), https://doi.org/10.4064/fm212-1-4
  • [32] N. J. Kalton, The uniform structure of Banach spaces, Math. Ann. 354 (2012), no. 4, 1247-1288. MR 2992997, https://doi.org/10.1007/s00208-011-0743-3
  • [33] N. J. Kalton, Uniform homeomorphisms of Banach spaces and asymptotic structure, Trans. Amer. Math. Soc. 365 (2013), no. 2, 1051-1079. MR 2995383, https://doi.org/10.1090/S0002-9947-2012-05665-0
  • [34] N. J. Kalton, Examples of uniformly homeomorphic Banach spaces, Israel J. Math. 194 (2013), no. 1, 151-182. MR 3047066, https://doi.org/10.1007/s11856-012-0080-6
  • [35] N. J. Kalton and G. Lancien, Best constants for Lipschitz embeddings of metric spaces into $ c_0$, Fund. Math. 199 (2008), no. 3, 249-272. MR 2395263 (2009c:46024), https://doi.org/10.4064/fm199-3-4
  • [36] Gennadi Kasparov and Guoliang Yu, The coarse geometric Novikov conjecture and uniform convexity, Adv. Math. 206 (2006), no. 1, 1-56. MR 2261750 (2007g:58025), https://doi.org/10.1016/j.aim.2005.08.004
  • [37] Gennadi Kasparov and Guoliang Yu, The Novikov conjecture and geometry of Banach spaces, Geom. Topol. 16 (2012), no. 3, 1859-1880. MR 2980001, https://doi.org/10.2140/gt.2012.16.1859
  • [38] Vincent Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (2008), no. 3, 559-602 (French, with English and French summaries). MR 2423763 (2009f:22004), https://doi.org/10.1215/00127094-2008-029
  • [39] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263-287.
  • [40] J. Lindenstrauss, D. Preiss, and J. Tišer, Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces, Annals of Mathematics Studies, vol. 179, Princeton University Press, Princeton, NJ, 2012.
  • [41] Nathan Linial, Finite metric-spaces--combinatorics, geometry and algorithms, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 573-586. MR 1957562 (2003k:05045)
  • [42] Nathan Linial, Eran London, and Yuri Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), no. 2, 215-245. MR 1337355 (96e:05158), https://doi.org/10.1007/BF01200757
  • [43] J. Matoušek, On embedding expanders into $ l_p$ spaces, Israel J. Math. 102 (1997), 189-197.
  • [44] Jiří Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, 2002. MR 1899299 (2003f:52011)
  • [45] Bernard Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $ L^{p}$, Société Mathématique de France, Paris, 1974 (French). With an English summary; Astérisque, No. 11. MR 0344931 (49 #9670)
  • [46] Bernard Maurey, Type, cotype and $ K$-convexity, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1299-1332. MR 1999197 (2004g:46014), https://doi.org/10.1016/S1874-5849(03)80037-2
  • [47] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
  • [48] Manor Mendel and Assaf Naor, Scaled Enflo type is equivalent to Rademacher type, Bull. Lond. Math. Soc. 39 (2007), no. 3, 493-498. MR 2331580 (2008g:46023), https://doi.org/10.1112/blms/bdm016
  • [49] Manor Mendel and Assaf Naor, Metric cotype, Ann. of Math. (2) 168 (2008), no. 1, 247-298. MR 2415403 (2009d:46019), https://doi.org/10.4007/annals.2008.168.247
  • [50] Manor Mendel and Assaf Naor, Nonlinear spectral calculus and super-expanders, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 1-95. MR 3210176, https://doi.org/10.1007/s10240-013-0053-2
  • [51] Assaf Naor, An introduction to the Ribe program, Jpn. J. Math. 7 (2012), no. 2, 167-233. MR 2995229, https://doi.org/10.1007/s11537-012-1222-7
  • [52] Assaf Naor, Quantitative geometry, Proc. Natl. Acad. Sci. USA 110 (2013), no. 48, 19202-19205. MR 3153946, https://doi.org/10.1073/pnas.1320388110
  • [53] A. Naor and G. Schechtman, Metric $ {X}_p$ inequalities (2014), available at arXiv:1408.5819.
  • [54] A. Naor and G. Schechtman, Pythagorean powers of hypercubes (2015), available at arXiv:1501.05213.
  • [55] Piotr W. Nowak and Guoliang Yu, Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2012. MR 2986138
  • [56] M. I. Ostrovskii, Embeddability of locally finite metric spaces into Banach spaces is finitely determined, Proc. Amer. Math. Soc. 140 (2012), no. 8, 2721-2730. MR 2910760, https://doi.org/10.1090/S0002-9939-2011-11272-3
  • [57] Narutaka Ozawa, A note on non-amenability of $ {\mathcal {B}}(l_p)$ for $ p=1,2$, Internat. J. Math. 15 (2004), no. 6, 557-565. MR 2078880 (2005g:46135), https://doi.org/10.1142/S0129167X04002430
  • [58] J. Pelant, Embeddings into $ c\sb 0$, Topology Appl. 57 (1994), 259-269.
  • [59] M. Ribe, On uniformly homeomorphic normed spaces, Ark. Mat. 14 (1976), no. 2, 237-244. MR 0440340 (55 #13215)
  • [60] M. Ribe, Existence of separable uniformly homeomorphic nonisomorphic Banach spaces, Israel J. Math. 48 (1984), no. 2-3, 139-147. MR 770696 (86e:46015), https://doi.org/10.1007/BF02761159
  • [61] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247-262. MR 611763 (82i:57016)
  • [62] Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201-240. MR 1728880 (2000j:19005), https://doi.org/10.1007/s002229900032

Review Information:

Reviewer: Florent P. Baudier
Affiliation: Department of Mathematics, Texas A&M University
Email: florent@math.tamu.edu
Reviewer: William B. Johnson
Affiliation: Department of Mathematics, Texas A&M University
Email: johnson@math.tamu.edu
Journal: Bull. Amer. Math. Soc. 53 (2016), 495-506
MSC (2010): Primary 46B85; Secondary 05C12, 30L05, 46B20
DOI: https://doi.org/10.1090/bull/1523
Published electronically: February 2, 2016
Review copyright: © Copyright 2016 American Mathematical Society
American Mathematical Society