Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

An overview of periodic elliptic operators


Author: Peter Kuchment
Journal: Bull. Amer. Math. Soc. 53 (2016), 343-414
MSC (2010): Primary 35B27, 35J10, 35J15, 35Q40, 35Q60, 47F05, 58J05, 81Q10; Secondary 32C99, 35C15, 47A53, 58J50, 78M40
DOI: https://doi.org/10.1090/bull/1528
Published electronically: April 6, 2016
MathSciNet review: 3501794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The article surveys the main topics, techniques, and results of the theory of periodic operators arising in mathematical physics and other areas. Close attention is paid to studying analytic properties of Bloch and Fermi varieties, which significantly influence most spectral features of such operators.

The approaches described are applicable not only to the standard model example of Schrödinger operator with periodic electric potential $ -\Delta +V(x)$, but to a wide variety of elliptic periodic equations and systems, equations on graphs, $ \overline {\partial }$-operator, and other operators on abelian coverings of compact bases.

Important applications are mentioned. However, due to the size restrictions, they are not dealt with in detail.


References [Enhancements On Off] (What's this?)

  • [1] M. J. Ablowitz and P. A. Clarkson, Nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, UK, 2001.
  • [2] T. Adachi and T. Sunada, Density of states in spectral geometry, Comment. Math. Helv. 68 (1993), no. 3, 480-493. MR 1236765 (94k:58149), https://doi.org/10.1007/BF02565831
  • [3] S. Agmon, On positive solutions of elliptic equations with periodic coefficients in $ {\bf R}^n$, spectral results and extensions to elliptic operators on Riemannian manifolds, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7-17. MR 799327 (87a:35060), https://doi.org/10.1016/S0304-0208(08)73672-7
  • [4] S. Agmon, Lectures on elliptic boundary value problems, AMS Chelsea Publishing, Providence, RI, 2010. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr.; Revised edition of the 1965 original. MR 2589244 (2011c:35004)
  • [5] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl. (9) 77 (1998), no. 2, 153-208 (English, with English and French summaries). MR 1614641 (99d:35017), https://doi.org/10.1016/S0021-7824(98)80068-8
  • [6] G. Allaire, C. Conca, and M. Vanninathan, The Bloch transform and applications, Actes du 29ème Congrès d'Analyse Numérique: CANum'97 (Larnas, 1997), ESAIM Proc., vol. 3, Soc. Math. Appl. Indust., Paris, 1998, pp. 65-84 (electronic). MR 1642454 (2000a:35006), https://doi.org/10.1051/proc:1998040
  • [7] V. I. Arnold, Ordinary differential equations, MIT Press, Cambridge, Mass.-London, 1978. Translated from the Russian and edited by Richard A. Silverman. MR 0508209 (58 #22707)
  • [8] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szucs]. MR 947141 (89h:58049)
  • [9] V. I. Arnold, On the teaching of mathematics, Uspekhi Mat. Nauk 53 (1998), no. 1(319), 229-234 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 1, 229-236. MR 1618209 (99k:00011), https://doi.org/10.1070/rm1998v053n01ABEH000005
  • [10] F. M. Arscott, Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, Vol. 66. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0173798 (30 #4006)
  • [11] N. W. Ashcroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, New York-London, 1976.
  • [12] D. Auckly, J. Corbin, and P. Kuchment, On parseval frames of Wannier functions, in preparation (2015).
  • [13] L. Auslander, I. Gertner, and R. Tolimieri, The finite Zak transform and the finite Fourier transform, Radar and sonar, Part II, IMA Vol. Math. Appl., vol. 39, Springer, New York, 1992, pp. 21-35. MR 1223150 (95b:65162), https://doi.org/10.1007/978-1-4684-7832-7_3
  • [14] L. Auslander and R. Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. MR 0414785 (54 #2877)
  • [15] M. Avellaneda and F.-H. Lin, Un théorème de Liouville pour des équations elliptiques à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 5, 245-250 (French, with English summary). MR 1010728 (90j:35072)
  • [16] J. E. Avron and B. Simon, Analytic properties of band functions, Ann. Physics 110 (1978), no. 1, 85-101. MR 0475384 (57 #14992)
  • [17] M. Babillot, Théorie du renouvellement pour des chaînes semi-markoviennes transientes, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 4, 507-569 (French, with English summary). MR 978023 (90h:60082)
  • [18] M. Babillot, Asymptotics of Green functions on a class of solvable Lie groups, Potential Anal. 8 (1998), no. 1, 69-100. MR 1608646 (99g:60133), https://doi.org/10.1023/A:1017991923947
  • [19] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997), no. 1-2, 16-43. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part II (Zürich, 1995). MR 1441595 (98h:82028)
  • [20] G. Barbatis and L. Parnovski, Bethe-Sommerfeld conjecture for pseudodifferential perturbation, Comm. Partial Differential Equations 34 (2009), no. 4-6, 383-418. MR 2530702 (2010d:35253), https://doi.org/10.1080/03605300902769006
  • [21] D. Bättig, A directional compactification of the complex Fermi surface and isospectrality, Séminaire sur les Équations aux Dérivées Partielles, 1989-1990, École Polytech., Palaiseau, 1990, pp. Exp. No. IV, 11. MR 1073179 (91m:58160)
  • [22] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330 (82h:35001)
  • [23] F. Bentosela, P. Duclos, and P. Exner, Absolute continuity in periodic thin tubes and strongly coupled leaky wires, Lett. Math. Phys. 65 (2003), no. 1, 75-82. MR 2019393 (2004k:81119), https://doi.org/10.1023/A:1027362115133
  • [24] Ju. M. Berezanskiĭ, Expansions in eigenfunctions of selfadjoint operators, Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. MR 0222718 (36 #5768)
  • [25] F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and its Applications (Soviet Series), vol. 66, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1983 Russian edition by Yu. Rajabov, D. A. Leĭtes and N. A. Sakharova and revised by Shubin; With contributions by G. L. Litvinov and Leĭtes. MR 1186643 (93i:81001)
  • [26] G. Berkolaiko and A. Comech, Symmetry and Dirac points in graphene spectrum, arXiv:1412.8096 (2014).
  • [27] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208
  • [28] B. A. Bernevig, Topological insulators and topological superconductors, Princeton University Press, Princeton, NJ, 2013. With Taylor L. Hughes. MR 3185492
  • [29] M. V. Berry and M. Wilkinson, Diabolical points in the spectra of triangles, Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 15-43. MR 738925 (85e:81021)
  • [30] H. Bethe and A. Sommerfeld, Elektronentheorie der metalle, Handbuch der Physik (H. Geiger and K. Scheel, eds.), vol. 24,2, Springer, 1933, This nearly 300-page chapter was later published as a separate book: Elektronentheorie der Metalle (Springer, 1967), pp. 333-622.
  • [31] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 972342 (89k:32011)
  • [32] E. Bierstone and P. D. Milman, A simple constructive proof of canonical resolution of singularities, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 11-30. MR 1106412 (92h:32053), https://doi.org/10.1007/978-1-4612-0441-1_2
  • [33] M. Sh. Birman, On a discrete spectrum in gaps of a second-order perturbed periodic operator, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 89-92 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 158-161. MR 1142222 (92m:47090), https://doi.org/10.1007/BF01079605
  • [34] M. Sh. Birman, The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations, Boundary value problems, Schrödinger operators, deformation quantization, Math. Top., vol. 8, Akademie Verlag, Berlin, 1995, pp. 334-352. MR 1389015 (97d:47055)
  • [35] M. Sh. Birman, The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential, Algebra i Analiz 8 (1996), no. 1, 3-20. MR 1392011 (97h:47047)
  • [36] M. Sh. Birman, The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. II. Nonregular perturbations, Algebra i Analiz 9 (1997), no. 6, 62-89. MR 1610239 (99h:47054)
  • [37] M. Sh. Birman, On the homogenization for periodic operators in a neighborhood of an edge of an internal gap, Algebra i Analiz 15 (2003), no. 4, 61-71. MR 2068979 (2006i:35010)
  • [38] M. Sh. Birman and T. A. Suslina, A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1-40 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 2, 203-232. MR 1702587 (2000i:35026)
  • [39] M. Sh. Birman and T. A. Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71-107. MR 1882692 (2003f:35220)
  • [40] M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1-108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639-714. MR 2068790 (2005k:47097), https://doi.org/10.1090/S1061-0022-04-00827-1
  • [41] M. Sh. Birman and T. A. Suslina, Homogenization of a multidimensional periodic elliptic operator in a neighborhood of an edge of an inner gap, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 36 [35], 60-74, 309 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 136 (2006), no. 2, 3682-3690. MR 2120232 (2005j:35006), https://doi.org/10.1007/s10958-006-0192-9
  • [42] M. Sh. Birman and T. A. Suslina, The limiting absorption principle and the homogenization procedure for periodic elliptic operators, Funktsional. Anal. i Prilozhen. 42 (2008), no. 4, 105-108 (Russian); English transl., Funct. Anal. Appl. 42 (2008), no. 4, 336-339. MR 2492431 (2010f:35016), https://doi.org/10.1007/s10688-008-0047-x
  • [43] M. Sh. Birman, T. A. Suslina, and R. G. Shterenberg, Absolute continuity of the two-dimensional Schrödinger operator with delta potential concentrated on a periodic system of curves, Algebra i Analiz 12 (2000), no. 6, 140-177 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 12 (2001), no. 6, 983-1012. MR 1816514 (2002k:35227)
  • [44] M. Sh. Birman and T. A. Suslina, The periodic Dirac operator is absolutely continuous, Integral Equations Operator Theory 34 (1999), no. 4, 377-395. MR 1702229 (2000h:47068), https://doi.org/10.1007/BF01272881
  • [45] M. Sh. Birman and T. A. Suslina, Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum, Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl., vol. 108, Birkhäuser, Basel, 1999, pp. 13-31. MR 1708785 (2000g:81049)
  • [46] M. Sh. Birman and T. A. Suslina, On the absolute continuity of the periodic Schrödinger and Dirac operators with magnetic potential, Differential equations and mathematical physics (Birmingham, AL, 1999), AMS/IP Stud. Adv. Math., vol. 16, Amer. Math. Soc., Providence, RI, 2000, pp. 41-49. MR 1764740
  • [47] M. Sh. Birman and T. A. Suslina, Absolute continuity of the spectrum of the periodic operator of elasticity theory for constant shear modulus, Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), vol. 2, Kluwer/Plenum, New York, 2002, pp. 69-74. MR 1971990 (2004c:35296), https://doi.org/10.1007/978-1-4615-0701-7_4
  • [48] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1-96 (German). MR 0015185 (7,382d)
  • [49] D. I. Borisov and K. V. Pankrashkin, On the extrema of band functions in periodic waveguides, Funktsional. Anal. i Prilozhen. 47 (2013), no. 3, 87-90 (Russian); English transl., Funct. Anal. Appl. 47 (2013), no. 3, 238-240. MR 3154842
  • [50] D. Borisov and K. Pankrashkin, Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones, J. Phys. A 46 (2013), no. 23, 235203, 18. MR 3064364, https://doi.org/10.1088/1751-8113/46/23/235203
  • [51] L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Theory of brillouin zones and symmetry properties of wave functions in crystals, Phys. Rev. 50 (1936), 58-67.
  • [52] O. Bratteli, P. E. T. Jørgensen, and D. W. Robinson, Spectral asymptotics of periodic elliptic operators, Math. Z. 232 (1999), no. 4, 621-650. MR 1727545 (2000k:35223), https://doi.org/10.1007/PL00004773
  • [53] L. Brillouin, Wave propagation in periodic structures. Electric filters and crystal lattices, Dover Publications, Inc., New York, N. Y., 1953. 2d ed. MR 0052978 (14,704a)
  • [54] L. Brillouin and M. Parodi, Propagation des ondes dans les milieux périodiques, Masson et Cie, Paris; Dunod, Paris, 1956 (French). MR 0079952 (18,170f)
  • [55] R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), no. 4, 581-598. MR 656213 (84j:58131), https://doi.org/10.1007/BF02566228
  • [56] B. M. Brown, M. S. P. Eastham, and K. M. Schmidt, Periodic differential operators, Operator Theory: Advances and Applications, vol. 230, Birkhäuser/Springer Basel AG, Basel, 2013. MR 2978285
  • [57] B. M. Brown, V. Hoang, M. Plum, and I. G. Wood, Floquet-Bloch theory for elliptic problems with discontinuous coefficients, Spectral theory and analysis, Oper. Theory Adv. Appl., vol. 214, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 1-20. MR 2808460 (2012i:35067), https://doi.org/10.1007/978-3-7643-9994-8_1
  • [58] J. Brüning, P. Exner, and V. A. Geyler, Large gaps in point-coupled periodic systems of manifolds, J. Phys. A 36 (2003), no. 17, 4875-4890. MR 1984016 (2005f:81080), https://doi.org/10.1088/0305-4470/36/17/314
  • [59] J. Brüning and T. Sunada, On the spectrum of gauge-periodic elliptic operators, Astérisque 210 (1992), 6, 65-74. Méthodes semi-classiques, Vol. 2 (Nantes, 1991). MR 1221352 (94j:58170)
  • [60] J. Brüning and T. Sunada, On the spectrum of periodic elliptic operators, Nagoya Math. J. 126 (1992), 159-171. MR 1171598 (93f:58235)
  • [61] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Periodic nanostructures for photonics, Physics Reports 444 (2007), no. 3-6, 101-202.
  • [62] K. Busch, S. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, The Wannier function approach to photonic crystal circuits, Journal of Physics: Condensed Matter 15 (2003), no. 30, R1233.
  • [63] J. Callaway, Energy band theory, Pure and Applied Physics, Vol. 16, Academic Press, New York-London, 1964. MR 0162578 (28 #5776)
  • [64] S.-N. Chow, K. Lu, and J. Mallet-Paret, Floquet theory for parabolic differential equations, J. Differential Equations 109 (1994), no. 1, 147-200. MR 1272403 (95c:35116), https://doi.org/10.1006/jdeq.1994.1047
  • [65] S.-N. Chow, K. Lu, and J. Mallet-Paret, Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal. 129 (1995), no. 3, 245-304. MR 1328478 (96c:35070), https://doi.org/10.1007/BF00383675
  • [66] S.-I. Chu, Nonperturbative approaches to atomic and molecular multiphoton (half-collision) processes in intense laser fields, Multiparticle quantum scattering with applications to nuclear, atomic and molecular physics (Minneapolis, MN, 1995) IMA Vol. Math. Appl., vol. 89, Springer, New York, 1997, pp. 343-387. MR 1487928 (98i:81291), https://doi.org/10.1007/978-1-4612-1870-8_13
  • [67] F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568 (97k:58183)
  • [68] E. A. Coddington and R. Carlson, Linear ordinary differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1450591 (99j:34001)
  • [69] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338 (16,1022b)
  • [70] T. H. Colding and W. P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725-747. MR 1491451 (98m:53052), https://doi.org/10.2307/2952459
  • [71] Y. Colin de Verdière, Sur les singularités de van Hove génériques, Mém. Soc. Math. France (N.S.) 46 (1991), 99-110 (French). Analyse globale et physique mathématique (Lyon, 1989). MR 1125838 (92h:35160)
  • [72] Y. Colin de Verdière and Th. Kappeler, On double eigenvalues of Hill's operator, J. Funct. Anal. 86 (1989), no. 1, 127-135. MR 1013936 (91b:34143), https://doi.org/10.1016/0022-1236(89)90067-0
  • [73] J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251-270. MR 0391792 (52 #12611)
  • [74] C. Conca, R. Orive, and M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal. 33 (2002), no. 5, 1166-1198 (electronic). MR 1897707 (2003d:35015), https://doi.org/10.1137/S0036141001382200
  • [75] C. Conca, R. Orive, and M. Vanninathan, Bloch approximation in homogenization on bounded domains, Asymptot. Anal. 41 (2005), no. 1, 71-91. MR 2124894 (2006g:35011)
  • [76] C. Conca, J. Planchard, and M. Vanninathan, Fluids and periodic structures, RAM: Research in Applied Mathematics, vol. 38, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1995. MR 1652238 (99k:73094)
  • [77] C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math. 57 (1997), no. 6, 1639-1659. MR 1484944 (98j:35017), https://doi.org/10.1137/S0036139995294743
  • [78] C. Conca and M. Vanninathan, Fourier approach to homogenization problems, ESAIM Control Optim. Calc. Var. 8 (2002), 489-511. A tribute to J. L. Lions. MR 1932961 (2003j:35017), https://doi.org/10.1051/cocv:2002048
  • [79] L. J. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979 (92b:22007)
  • [80] A. P. Cracknell, The Fermi surfaces of metals, Taylor & Francis, London, 1971.
  • [81] A. P. Cracknell and K. S. Wong, The Fermi surface, Claredon Press, Oxford, 1973.
  • [82] R. V. Craster, J. Kaplunov, E. Nolde, and S. Guenneau, Bloch dispersion and high frequency homogenization for separable doubly-periodic structures, Wave Motion 49 (2012), no. 2, 333-346. MR 2890754, https://doi.org/10.1016/j.wavemoti.2011.11.005
  • [83] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643 (88g:35003)
  • [84] B. E. J. Dahlberg and E. Trubowitz, A remark on two-dimensional periodic potentials, Comment. Math. Helv. 57 (1982), no. 1, 130-134. MR 672849 (84h:35119), https://doi.org/10.1007/BF02565850
  • [85] Ju. L. Daleckiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith; Translations of Mathematical Monographs, Vol. 43. MR 0352639 (50 #5126)
  • [86] L. I. Danilov, On the spectrum of the Dirac operator in $ {\bf R}^n$ with periodic potential, Teoret. Mat. Fiz. 85 (1990), no. 1, 41-53 (Russian, with English summary); English transl., Theoret. and Math. Phys. 85 (1990), no. 1, 1039-1048 (1991). MR 1083951 (92a:35119), https://doi.org/10.1007/BF01017245
  • [87] L. I. Danilov, Resolvent estimates and the spectrum of the Dirac operator with a periodic potential, Teoret. Mat. Fiz. 103 (1995), no. 1, 3-22 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 103 (1995), no. 1, 349-365. MR 1470934 (98f:35112), https://doi.org/10.1007/BF02069779
  • [88] L. I. Danilov, On the spectrum of the two-dimensional periodic Dirac operator, Teoret. Mat. Fiz. 118 (1999), no. 1, 3-14 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 118 (1999), no. 1, 1-11. MR 1702856 (2000h:35117), https://doi.org/10.1007/BF02557191
  • [89] L. I. Danilov, Absolute continuity of the spectrum of a periodic Dirac operator, Differ. Uravn. 36 (2000), no. 2, 233-240, 287 (Russian, with Russian summary); English transl., Differ. Equ. 36 (2000), no. 2, 262-271. MR 1773794 (2001f:47082), https://doi.org/10.1007/BF02754212
  • [90] L. I. Danilov, On the spectrum of the periodic Dirac operator, Teoret. Mat. Fiz. 124 (2000), no. 1, 3-17 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 124 (2000), no. 1, 859-871. MR 1821309 (2002b:81028), https://doi.org/10.1007/BF02551063
  • [91] L. I. Danilov, On the absolute continuity of the spectrum of a periodic Schrödinger operator, Mat. Zametki 73 (2003), no. 1, 49-62 (Russian, with Russian summary); English transl., Math. Notes 73 (2003), no. 1-2, 46-57. MR 1993539 (2004f:35130), https://doi.org/10.1023/A:1022169916738
  • [92] L. I. Danilov, On the spectrum of the two-dimensional periodic Schrödinger operator, Teoret. Mat. Fiz. 134 (2003), no. 3, 447-459 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 134 (2003), no. 3, 392-403. MR 2001818 (2004j:35210), https://doi.org/10.1023/A:1022605623235
  • [93] L. I. Danilov, On the nonexistence of eigenvalues in the spectrum of a generalized two-dimensional periodic Dirac operator, Algebra i Analiz 17 (2005), no. 3, 47-80 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 3, 409-433. MR 2167843 (2006m:35261), https://doi.org/10.1090/S1061-0022-06-00911-3
  • [94] L. I. Danilov, On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator, J. Phys. A 42 (2009), no. 27, 275204, 20. MR 2512122 (2010f:81090), https://doi.org/10.1088/1751-8113/42/27/275204
  • [95] L. I. Danilov, On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators, J. Phys. A 43 (2010), no. 21, 215201, 13. MR 2644606 (2011i:81056), https://doi.org/10.1088/1751-8113/43/21/215201
  • [96] L. I. Danilov, On absolute continuity of the spectrum of a 3D periodic magnetic Dirac operator, Integral Equations Operator Theory 71 (2011), no. 4, 535-556. MR 2854864, https://doi.org/10.1007/s00020-011-1906-z
  • [97] E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), no. 3, 277-301. MR 513906 (80c:81110)
  • [98] V. I. Derguzov, A mathematical investigation of periodic cylindrical wave guides. I, II, Vestnik Leningrad. Univ. No. 13, Mat. Meh. Astronom. Vyp. 3 (1972), 32-40, 149; ibid. No. 19 Mat. Meh. Astronom. Vyp. 3 (1972), 14-20, 145 (Russian, with English summary). MR 0340856 (49 #5606)
  • [99] V. I. Derguzov, Linear equations with periodic coefficients and their applications to wave guide systems, Ph.D. thesis, Leningrad, 1975, (In Russian).
  • [100] V. I. Derguzov, On the discrete spectrum of a periodic boundary value problem connected with the study of periodic waveguides, Sibirsk. Mat. Zh. 21 (1980), no. 5, 27-38, 189 (Russian). MR 592214 (82g:78023)
  • [101] E. I. Dinaburg, Ya. G. Sinai, and A. B. Soshnikov, Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations, Comm. Math. Phys. 189 (1997), no. 2, 559-575. MR 1480033 (98j:81079), https://doi.org/10.1007/s002200050217
  • [102] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, Fascicule XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722 (20 #1234)
  • [103] P. Djakov and B. Mityagin, Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal. 195 (2002), no. 1, 89-128. MR 1934354 (2003k:34167), https://doi.org/10.1006/jfan.2002.3975
  • [104] P. Djakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4(370), 77-182 (Russian, with Russian summary); English transl., Russian Math. Surveys 61 (2006), no. 4, 663-766. MR 2279044 (2007i:47054), https://doi.org/10.1070/RM2006v061n04ABEH004343
  • [105] P. Djakov and B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. Partial Differ. Equ. 6 (2009), no. 2, 95-165. MR 2542499 (2010g:47089), https://doi.org/10.4310/DPDE.2009.v6.n2.a1
  • [106] N. Do, On the quantum graph spectra of graphyne nanotubes, Anal. Math. Phys. 5 (2015), no. 1, 39-65. MR 3305430, https://doi.org/10.1007/s13324-014-0069-x
  • [107] Ngoc T. Do and P. Kuchment, Quantum graph spectra of a graphyne structure, Nanoscale Systems: Mathematical Modeling, Theory and Applications 2 (2013), no. 1, 107-123.
  • [108] Ngoc T. Do, P. Kuchment, and B. Ong. On resonant spectral gap opening in quantum graph networks arXiv:1601.04774 (2016), to appear.
  • [109] Ngoc T. Do, P. Kuchment, and F. Sottile, On the generic structure of spectral edges for periodic difference operators, In preparation (2015).
  • [110] W. Dörfler, A. Lechleiter, M. Plum, G. Schneider, and C. Wieners, Photonic crystals: Mathematical analysis and numerical approximation, Oberwolfach SEminars, vol. 42.
  • [111] J. P. Dowling, Photonic and acoustic band-gap bibliography, +http://phys.lsu.edu/+ + jdowling/pbgbib.html+.
  • [112] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Integrable systems. I [MR0842910 (87k:58112)], Dynamical systems, IV, Encyclopaedia Math. Sci., vol. 4, Springer, Berlin, 2001, pp. 177-332. MR 1866633, https://doi.org/10.1007/978-3-662-06791-8_3
  • [113] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Topological and algebraic geometry methods in contemporary mathematical physics, Classic Reviews in Mathematics and Mathematical Physics, vol. 2, Cambridge Scientific Publishers, Cambridge, 2004. MR 2187099 (2006f:37002)
  • [114] N. Dunford and J. T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163 (90g:47001b)
  • [115] V. V. Dyakin and S. I. Petrukhnovskiĭ, Some geometric properties of Fermi surfaces, Dokl. Akad. Nauk SSSR 264 (1982), no. 5, 1117-1119 (Russian). MR 672029 (84h:81120)
  • [116] V. V. Dyakin and S. I. Petrukhnovskiĭ, On the discreteness of the spectrum of some operator pencils connected with the periodic Schrödinger equation, Teoret. Mat. Fiz. 74 (1988), no. 1, 94-102 (Russian, with English summary); English transl., Theoret. and Math. Phys. 74 (1988), no. 1, 66-72. MR 940464 (89k:35163), https://doi.org/10.1007/BF01018212
  • [117] M. S. P. Eastham, The spectral theory of periodic differential equations, Texts in Mathematics (Edinburgh), Scottish Academic Press, Edinburgh; Hafner Press, New York, 1973. MR 3075381
  • [118] M. S. P. Eastham and H. Kalf, Schrödinger-type operators with continuous spectra, Research Notes in Mathematics, vol. 65, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667015 (84i:35107)
  • [119] D. V. Efremov and M. A. Shubin, The spectral asymptotics of elliptic operators of Schrödinger type on a hyperbolic space, J. Soviet Math. 60 (1992), no. 5, 1637-1662. MR 1181097 (94d:58145), https://doi.org/10.1007/BF01097529
  • [120] L. Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. MR 0285849 (44 #3066)
  • [121] D. M. Elton, The Bethe-Sommerfield conjecture for the 3-dimensional periodic Landau operator, Rev. Math. Phys. 16 (2004), no. 10, 1259-1290. MR 2114599 (2005k:81070), https://doi.org/10.1142/S0129055X04002242
  • [122] A. Enyanshin and A. Ivanovskii, Graphene allotropes: stability, structural and electronic properties from df-tb calculations, Phys. Status Solidi (B) 248 (2011), 1879-1883.
  • [123] G. Eskin, Inverse spectral problem for the Schrödinger equation with periodic vector potential, Comm. Math. Phys. 125 (1989), no. 2, 263-300. MR 1016872 (91a:35052)
  • [124] G. Eskin, Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, Séminaire sur les Équations aux Dérivées Partielles, 1988-1989, École Polytech., Palaiseau, 1989, pp. Exp. No. XIII, 6. MR 1032289 (91a:58193)
  • [125] G. Eskin, J. Ralston, and E. Trubowitz, Isospectral periodic potentials on $ {\bf R}^n$, Inverse problems (New York, 1983) SIAM-AMS Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1984, pp. 91-96. MR 773705
  • [126] G. Eskin, J. Ralston, and E. Trubowitz, The multidimensional inverse spectral problem with a periodic potential, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 45-56. MR 741038 (85k:58079), https://doi.org/10.1090/conm/027/741038
  • [127] G. Eskin, J. Ralston, and E. Trubowitz, On isospectral periodic potentials in $ {\bf R}^{n}$. II, Comm. Pure Appl. Math. 37 (1984), no. 6, 715-753. MR 762871 (86e:35109b), https://doi.org/10.1002/cpa.3160370602
  • [128] L. Euler, De integratione aequationum differentialium altiorum gradum, Miscellanea berol. 7 (1743), 193-242.
  • [129] P. Exner and R. L. Frank, Absolute continuity of the spectrum for periodically modulated leaky wires in $ \mathbb{R}^3$, Ann. Henri Poincaré 8 (2007), no. 2, 241-263. MR 2314447 (2008a:81063), https://doi.org/10.1007/s00023-006-0307-3
  • [130] P. Exner, P. Kuchment, and B. Winn, On the location of spectral edges in $ \mathbb{Z}$-periodic media, J. Phys. A 43 (2010), no. 47, 474022, 8. MR 2738117 (2011m:81113), https://doi.org/10.1088/1751-8113/43/47/474022
  • [131] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325 (41 #1976)
  • [132] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Topologically protected states in one-dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. USA 111 (2014), no. 24, 8759-8763. MR 3263410, https://doi.org/10.1073/pnas.1407391111
  • [133] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Bifurcations of edge states - topologically protected and non-protected - in continuous 2d honeycomb structures, +arXiv:1509.+ +08957+ (2015).
  • [134] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, arXiv:1506.06111 (2015).
  • [135] C. L. Fefferman and M. I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc. 25 (2012), no. 4, 1169-1220. MR 2947949, https://doi.org/10.1090/S0894-0347-2012-00745-0
  • [136] C. L. Fefferman and M. I. Weinstein, Wave packets in honeycomb structures and two-dimensional Dirac equations, Comm. Math. Phys. 326 (2014), no. 1, 251-286. MR 3162492, https://doi.org/10.1007/s00220-013-1847-2
  • [137] J. Feldman, H. Knörrer, and E. Trubowitz, The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math. 100 (1990), no. 2, 259-300. MR 1047135 (91m:35167), https://doi.org/10.1007/BF01231187
  • [138] J. Feldman, H. Knörrer, and E. Trubowitz, Perturbatively unstable eigenvalues of a periodic Schrödinger operator, Comment. Math. Helv. 66 (1991), no. 4, 557-579. MR 1129797 (92k:35067), https://doi.org/10.1007/BF02566665
  • [139] J. Feldman, H. Knörrer, and E. Trubowitz, There is no two-dimensional analogue of Lamé's equation, Math. Ann. 294 (1992), no. 2, 295-324. MR 1183408 (93m:35133), https://doi.org/10.1007/BF01934328
  • [140] The Fermi Surface Database, http://www.phys.ufl.edu/fermisurface/.
  • [141] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56 (1996), no. 1, 68-88. MR 1372891 (97g:35122), https://doi.org/10.1137/S0036139994263859
  • [142] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math. 56 (1996), no. 6, 1561-1620. MR 1417473 (98f:35012), https://doi.org/10.1137/S0036139995285236
  • [143] A. Figotin and P. Kuchment, Spectral properties of classical waves in high-contrast periodic media, SIAM J. Appl. Math. 58 (1998), no. 2, 683-702 (electronic). MR 1617610 (99f:47061), https://doi.org/10.1137/S0036139996297249
  • [144] N. Filonov, Second-order elliptic equation of divergence form having a compactly supported solution, J. Math. Sci. (New York) 106 (2001), no. 3, 3078-3086. Function theory and phase transitions. MR 1906035 (2003h:35047), https://doi.org/10.1023/A:1011379807662
  • [145] N. Filonov, Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys. 240 (2003), no. 1-2, 161-170. MR 2004984 (2004i:35293), https://doi.org/10.1007/s00220-003-0904-7
  • [146] N. Filonov and I. Kachkovskii, On the structure of band edges of 2d periodic elliptic operators, preprint arXiv:1510.04367 (2015).
  • [147] N. Filonov and F. Klopp, Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others, Doc. Math. 9 (2004), 107-121 (electronic). MR 2054982 (2005i:35045a)
  • [148] N. Filonov and F. Klopp, Erratum to: ``Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others'' [Doc. Math. 9 (2004), 107-121], Doc. Math. 9 (2004), 135-136. MR 2054984 (2005i:35045b)
  • [149] N. Filonov and F. Klopp, Absolutely continuous spectrum for the isotropic Maxwell operator and coefficients that are periodic in some directions and decay in others, Comm. Math. Phys. 258 (2005), no. 1, 75-85. MR 2166840 (2006f:35197), https://doi.org/10.1007/s00220-005-1303-z
  • [150] N. Filonov and A. V. Sobolev, Absence of the singular continuous component in the spectrum of analytic direct integrals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 36 [35], 298-307, 313 (English, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 136 (2006), no. 2, 3826-3831. MR 2120804 (2005m:47040), https://doi.org/10.1007/s10958-006-0203-x
  • [151] N. E. Firsova, The Riemann surface of a quasimomentum, and scattering theory for a perturbed Hill operator, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 51 (1975), 183-196, 220 (Russian). Mathematical questions in the theory of wave propagation, 7. MR 0417858 (54 #5906)
  • [152] N. E. Firsova, On the global quasimomentum in solid state physics, Mathematical methods in physics (Londrina, 1999) World Sci. Publ., River Edge, NJ, 2000, pp. 98-141. MR 1775625 (2002f:81151)
  • [153] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ecole Norm. 12 (1883), no. 2, 47-89.
  • [154] G. B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028 (98c:43001)
  • [155] R. L. Frank, On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators, Doc. Math. 8 (2003), 547-565 (electronic). MR 2029173 (2004k:35286)
  • [156] R. L. Frank and R. G. Shterenberg, On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering, Doc. Math. 9 (2004), 57-77 (electronic). MR 2054980 (2005b:35044)
  • [157] L. Friedlander, On the spectrum of the periodic problem for the Schrödinger operator, Comm. Partial Differential Equations 15 (1990), no. 11, 1631-1647. MR 1079606 (92i:35092a), https://doi.org/10.1080/03605309908820740
  • [158] L. Friedlander, Erratum to: ``On the spectrum of the periodic problem for the Schrödinger operator'', Comm. Partial Differential Equations 16 (1991), no. 2-3, 527-529. MR 1104109 (92i:35092b)
  • [159] L. Friedlander, On the density of states of periodic media in the large coupling limit, Comm. Partial Differential Equations 27 (2002), no. 1-2, 355-380. MR 1886963 (2003d:35194), https://doi.org/10.1081/PDE-120002790
  • [160] L. Friedlander, On the spectrum of a class of second order periodic elliptic differential operators, Comm. Math. Phys. 229 (2002), no. 1, 49-55. MR 1917673 (2003k:35179), https://doi.org/10.1007/s00220-002-0675-6
  • [161] L. Friedlander, Absolute continuity of the spectra of periodic waveguides, Waves in periodic and random media (South Hadley, MA, 2002) Contemp. Math., vol. 339, Amer. Math. Soc., Providence, RI, 2003, pp. 37-42. MR 2042530 (2005a:35211), https://doi.org/10.1090/conm/339/06098
  • [162] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof, $ L^{2}$-lower bounds to solutions of one-body Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), no. 1-2, 25-38. MR 723095 (86a:35044), https://doi.org/10.1017/S0308210500015778
  • [163] J. Garnett and E Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators, Comment. Math. Helv. 59 (1984), no. 2, 258-312. MR 749109 (85i:34004), https://doi.org/10.1007/BF02566350
  • [164] J. Garnett and E. Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators. II, Comment. Math. Helv. 62 (1987), no. 1, 18-37. MR 882963 (88g:34028), https://doi.org/10.1007/BF02564436
  • [165] M. Gavrila, Atomic structure and decay in high-frequency fields, in atoms in intense laser fields, Atoms in Intense Laser Fields, Academic Press, 1992, pp. 435-510.
  • [166] I. M. Gelfand, Expansion into eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR (N.S.) 73 (1950), 1117-1120.
  • [167] C. Gérard, Resonance theory for periodic Schrödinger operators, Bull. Soc. Math. France 118 (1990), no. 1, 27-54 (English, with French summary). MR 1077086 (91h:35231)
  • [168] C. Gérard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254 (2008), no. 11, 2707-2724. MR 2414218 (2009e:47028), https://doi.org/10.1016/j.jfa.2008.02.015
  • [169] C. Gérard and F. Nier, The Mourre theory for analytically fibered operators, J. Funct. Anal. 152 (1998), no. 1, 202-219. MR 1600082 (99b:47030), https://doi.org/10.1006/jfan.1997.3154
  • [170] C. Gérard and F. Nier, Scattering theory for the perturbations of periodic Schrödinger operators, J. Math. Kyoto Univ. 38 (1998), no. 4, 595-634. MR 1669979 (2000e:47023)
  • [171] A. Ghoreishi and R. Logan, Positive solutions to a system of periodic parabolic partial differential equations, Differential Integral Equations 9 (1996), no. 3, 607-618. MR 1371711 (97b:35089)
  • [172] D. Gieseker, H. Knörrer, and E. Trubowitz, An overview of the geometry of algebraic Fermi curves, Algebraic geometry: Sundance 1988, Contemp. Math., vol. 116, Amer. Math. Soc., Providence, RI, 1991, pp. 19-46. MR 1108630 (92i:14026), https://doi.org/10.1090/conm/116/1108630
  • [173] D. Gieseker, H. Knörrer, and E. Trubowitz, The geometry of algebraic Fermi curves, Perspectives in Mathematics, vol. 14, Academic Press Inc., Boston, MA, 1993. MR 1184395 (95b:14019)
  • [174] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Translated from the Russian by the IPST staff, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. MR 0190800 (32 #8210)
  • [175] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142 (39 #7447)
  • [176] C. S. Gordon, P. Guerini, T. Kappeler, and D. L. Webb, Inverse spectral results on even dimensional tori, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2445-2501 (English, with English and French summaries). MR 2498357 (2010d:58034)
  • [177] C. S. Gordon and T. Kappeler, On isospectral potentials on tori, Duke Math. J. 63 (1991), no. 1, 217-233. MR 1106944 (92f:58185), https://doi.org/10.1215/S0012-7094-91-06310-6
  • [178] C. S. Gordon and T. Kappeler, On isospectral potentials on flat tori. II, Comm. Partial Differential Equations 20 (1995), no. 3-4, 709-728. MR 1318086 (96a:58197), https://doi.org/10.1080/03605309508821109
  • [179] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273 (German). MR 0098199 (20 #4661)
  • [180] H. Grauert and R. Remmert, Theory of Stein spaces, Classics in Mathematics, Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckleberry; Reprint of the 1979 translation. MR 2029201 (2004k:32015)
  • [181] E. L. Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-Georgia Institute of Technology. MR 2686892
  • [182] E. L. Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Differential Equations 133 (1997), no. 1, 15-29. MR 1426755 (97k:58168), https://doi.org/10.1006/jdeq.1996.3204
  • [183] M. J. Gruber, Noncommutative Bloch theory, J. Math. Phys. 42 (2001), no. 6, 2438-2465. MR 1821870 (2002j:81289), https://doi.org/10.1063/1.1369122
  • [184] M. J. Gruber, Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators, Math. Nachr. 233/234 (2002), 111-127. MR 1879867 (2002m:81049), https://doi.org/10.1002/1522-2616(200201)233:1$ \langle $111::AID-MANA111$ \rangle $3.3.CO;2-L
  • [185] M. J. Gruber, Positive measure spectrum for Schrödinger operators with periodic magnetic fields, J. Math. Phys. 44 (2003), no. 4, 1584-1595. MR 1963090 (2004f:81072), https://doi.org/10.1063/1.1556551
  • [186] V. V. Grushin, Application of the multiparameter theory of perturbations of Fredholm operators to Bloch functions, Mat. Zametki 86 (2009), no. 6, 819-828 (Russian, with Russian summary); English transl., Math. Notes 86 (2009), no. 5-6, 767-774. MR 2643450 (2011b:47032), https://doi.org/10.1134/S0001434609110194
  • [187] V. Guillemin, Spectral theory on $ S^{2}$: some open questions, Adv. in Math. 42 (1981), no. 3, 283-298. MR 642394 (83d:58070), https://doi.org/10.1016/0001-8708(81)90043-8
  • [188] V. Guillemin, Inverse spectral results on two-dimensional tori, J. Amer. Math. Soc. 3 (1990), no. 2, 375-387. MR 1035414 (90m:58214), https://doi.org/10.2307/1990958
  • [189] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, AMS Chelsea Publishing, Providence, RI, 2009. Reprint of the 1965 original. MR 2568219 (2010j:32001)
  • [190] J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn, On occurrence of spectral edges for periodic operators inside the Brillouin zone, J. Phys. A 40 (2007), no. 27, 7597-7618. MR 2369966 (2008j:81039), https://doi.org/10.1088/1751-8113/40/27/011
  • [191] W. A. Harrison and M. B. Webb (eds.), The Fermi surface, John Wiley & Sons, New York, London, 1960.
  • [192] J. E. Heebner, R. W. Boyd, and Q. Park, Scissor solitons and other propagation effects in microresonator modified waveguides, JOSA B 19 (2002), 722-731.
  • [193] B. Helffer and T. Hoffmann-Ostenhof, Spectral theory for periodic Schrödinger operators with reflection symmetries, Comm. Math. Phys. 242 (2003), no. 3, 501-529. MR 2020278 (2005e:35041), https://doi.org/10.1007/s00220-003-0953-y
  • [194] B. Helffer and A. Mohamed, Asymptotic of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J. 92 (1998), no. 1, 1-60. MR 1609321 (99e:35166), https://doi.org/10.1215/S0012-7094-98-09201-8
  • [195] R. Hempel and I. Herbst, Bands and gaps for periodic magnetic Hamiltonians, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory Adv. Appl., vol. 78, Birkhäuser, Basel, 1995, pp. 175-184. MR 1365330 (97d:35158)
  • [196] R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1445-1470. MR 1765136 (2001h:47074), https://doi.org/10.1080/03605300008821555
  • [197] R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high contrast: an overview, Progress in analysis, Vol. I, II (Berlin, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 577-587. MR 2032728 (2004k:35281)
  • [198] P. Hess, Positive solutions of periodic-parabolic problems and stability, Nonlinear parabolic equations: qualitative properties of solutions (Rome, 1985) Pitman Res. Notes Math. Ser., vol. 149, Longman Sci. Tech., Harlow, 1987, pp. 129-136. MR 901101
  • [199] Y. Higuchi and T. Shirai, Some spectral and geometric properties for infinite graphs, Discrete geometric analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 29-56. MR 2077029 (2006f:47040), https://doi.org/10.1090/conm/347/06265
  • [200] V. Hoang and M. Radosz, Absence of bound states for waveguides in two-dimensional periodic structures, J. Math. Phys. 55 (2014), no. 3, 033506, 20. MR 3221271, https://doi.org/10.1063/1.4868480
  • [201] J. S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J. 28 (1979), no. 3, 471-494. MR 529679 (80e:47008), https://doi.org/10.1512/iumj.1979.28.28033
  • [202] J. S. Howland, Floquet operators with singular spectrum. I, II, Ann. Inst. H. Poincaré Phys. Théor. 50 (1989), no. 3, 309-323, 325-334 (English, with French summary). MR 1017967 (91i:81018)
  • [203] J. S. Howland, Quantum stability, Schrödinger operators (Aarhus, 1991) Lecture Notes in Phys., vol. 403, Springer, Berlin, 1992, pp. 100-122. MR 1181243 (94b:81026), https://doi.org/10.1007/3-540-55490-4_7
  • [204] J. S. Howland, Floquet operators with singular spectrum. III, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 2, 265-273 (English, with English and French summaries). MR 1638899 (99i:81037)
  • [205] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifyan]. MR 1329546 (96h:35003b)
  • [206] J. D. Joannopoulos, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light, 2nd ed., Princeton University Press, Princeton, N.J., 2008.
  • [207] I. Kachkovskiĭ and N. Filonov, Absolute continuity of the spectrum of a periodic Schrödinger operator in a multidimensional cylinder, Algebra i Analiz 21 (2009), no. 1, 133-152 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 21 (2010), no. 1, 95-109. MR 2553054 (2010i:35054), https://doi.org/10.1090/S1061-0022-09-01087-5
  • [208] I. Kachkovskiĭ and N. Filonov, Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), no. Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 41, 69-81, 235 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 178 (2011), no. 3, 274-281. MR 2749370 (2011k:35032), https://doi.org/10.1007/s10958-011-0547-8
  • [209] T. Kappeler, On isospectral periodic potentials on a discrete lattice. I, Duke Math. J. 57 (1988), no. 1, 135-150. MR 952228 (90b:39010a), https://doi.org/10.1215/S0012-7094-88-05705-5
  • [210] T. Kappeler, On isospectral potentials on a discrete lattice. II, Adv. in Appl. Math. 9 (1988), no. 4, 428-438. MR 968676 (90b:39010b), https://doi.org/10.1016/0196-8858(88)90021-8
  • [211] T. Kappeler, Isospectral potentials on a discrete lattice. III, Trans. Amer. Math. Soc. 314 (1989), no. 2, 815-824. MR 961624 (90b:39010c), https://doi.org/10.2307/2001410
  • [212] T. Kappeler, B. Schaad, and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 243-284. MR 2985321, https://doi.org/10.1090/pspum/084/1360
  • [213] Y. E. Karpeshina, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Mathematics, vol. 1663, Springer-Verlag, Berlin, 1997. MR 1472485 (2000i:35002)
  • [214] Y. E. Karpeshina, On the density of states for the periodic Schrödinger operator, Ark. Mat. 38 (2000), no. 1, 111-137. MR 1749362 (2001g:47088), https://doi.org/10.1007/BF02384494
  • [215] Y. Karpeshina, Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case, Comm. Math. Phys. 251 (2004), no. 3, 473-514. MR 2102328 (2005m:81096), https://doi.org/10.1007/s00220-004-1129-0
  • [216] Y. Karpeshina and Y.-R. Lee, Absolutely continuous spectrum of a polyharmonic operator with a limit periodic potential in dimension two, Comm. Partial Differential Equations 33 (2008), no. 7-9, 1711-1728. MR 2450178 (2009g:35046), https://doi.org/10.1080/03605300802289220
  • [217] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452 (96a:47025)
  • [218] M. I. Katsnelson, Graphene: carbon in two dimensions, Cambridge Univ. Press, 2012.
  • [219] M. Kha, Green's function asymptotics of periodic elliptic operators on abelian coverings of compact manifolds, submitted, preprint arXiv:1511.00276.
  • [220] M. Kha, P. Kuchment, and A. Raich, Green's function asymptotics near the internal edges of spectra of periodic elliptic operators: spectral gap interior, J. Spectral Theory (to appear), arXiv:1508.06703, (2015).
  • [221] A. Khrabustovskyi, Periodic elliptic operators with asymptotically preassigned spectrum, Asymptot. Anal. 82 (2013), no. 1-2, 1-37. MR 3088339
  • [222] A. Khrabustovskyi, Opening up and control of spectral gaps of the Laplacian in periodic domains, J. Math. Phys. 55 (2014), no. 12, 121502, 23. MR 3390523, https://doi.org/10.1063/1.4902935
  • [223] A. Khrabustovskyi and E. Khruslov, Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps, Math. Methods Appl. Sci. 38 (2015), no. 1, 11-26. MR 3291299, https://doi.org/10.1002/mma.3046
  • [224] W. Kirsch and B. Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal. 75 (1987), no. 2, 396-410. MR 916759 (89b:35127), https://doi.org/10.1016/0022-1236(87)90103-0
  • [225] C. Kittel, Introduction to solid state physics, Wiley, New York, 1976.
  • [226] A. Klein, A. Koines, and M. Seifert, Generalized eigenfunctions for waves in inhomogeneous media, J. Funct. Anal. 190 (2002), no. 1, 255-291. Special issue dedicated to the memory of I. E. Segal. MR 1895534 (2004a:35165), https://doi.org/10.1006/jfan.2001.3887
  • [227] F. Klopp, Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential, Math. Ann. 347 (2010), no. 3, 675-687. MR 2640047 (2011g:47106), https://doi.org/10.1007/s00208-009-0452-3
  • [228] F. Klopp and J. Ralston, Endpoints of the spectrum of periodic operators are generically simple, Methods Appl. Anal. 7 (2000), no. 3, 459-463 (English, with English and French summaries). Cathleen Morawetz: a great mathematician. MR 1869296 (2002i:47055)
  • [229] H. Knörrer and E. Trubowitz, A directional compactification of the complex Bloch variety, Comment. Math. Helv. 65 (1990), no. 1, 114-149. MR 1036133 (91k:58134), https://doi.org/10.1007/BF02566598
  • [230] T. Kobayashi, K. Ono, and T. Sunada, Periodic Schrödinger operators on a manifold, Forum Math. 1 (1989), no. 1, 69-79. MR 978976 (89k:58288), https://doi.org/10.1515/form.1989.1.69
  • [231] W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Rev. (2) 115 (1959), 809-821. MR 0108284 (21 #7000)
  • [232] Y. A. Kordyukov, Spectral gaps for periodic Schrödinger operators with strong magnetic fields, Comm. Math. Phys. 253 (2005), no. 2, 371-384. MR 2140253 (2006h:81079), https://doi.org/10.1007/s00220-004-1134-3
  • [233] Y. A. Kordyukov, Semiclassical asymptotics and spectral gaps for periodic magnetic Schrödinger operators on covering manifolds, $ C^\ast $-algebras and elliptic theory, Trends Math., Birkhäuser, Basel, 2006, pp. 129-150. MR 2276917 (2008f:58034), https://doi.org/10.1007/978-3-7643-7687-1_6
  • [234] E. Korotyaev and I. Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri Poincaré 8 (2007), no. 6, 1151-1176. MR 2355344 (2008g:81076), https://doi.org/10.1007/s00023-007-0331-y
  • [235] E. Korotyaev and A. Pushnitski, On the high-energy asymptotics of the integrated density of states, Bull. London Math. Soc. 35 (2003), no. 6, 770-776. MR 2000023 (2004h:35046), https://doi.org/10.1112/S0024609303002467
  • [236] S. G. Krantz and H. R. Parks, A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1916029 (2003f:26045)
  • [237] K. Krupchyk and G. Uhlmann, Absolute continuity of the periodic schrödinger operator in transversal geometry, arXiv:1312.2989.
  • [238] P. Kuchment, Representations of solutions of invariant differential equations on some symmetric spaces, Dokl. Akad. Nauk SSSR 259 (1981), no. 3, 532-535 (Russian). MR 625758 (82i:43008)
  • [239] P. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3-52, 240 (Russian). MR 667973 (84b:35018)
  • [240] P. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3-52, 240 (Russian). MR 667973 (84b:35018)
  • [241] P. Kuchment, Spectral synthesis in spaces of solutions of differential equations invariant with respect to groups of transformations, Application of topology in modern analysis (Russian), Novoe Global. Anal., Voronezh. Gos. Univ., Voronezh, 1985, pp. 87-105, 176 (Russian). MR 831671 (87e:58216)
  • [242] P. Kuchment, Spherical representation of solutions of invariant differential equations on a Riemannian symmetric space of noncompact type, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 6, 1260-1273, 1343 (Russian). MR 816856 (87d:58157)
  • [243] P. Kuchment, On the Floquet theory of periodic difference equations, Geometrical and algebraical aspects in several complex variables (Cetraro, 1989) Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 201-209. MR 1222215 (94k:39001)
  • [244] P. Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60, Birkhäuser Verlag, Basel, 1993. MR 1232660 (94h:35002)
  • [245] P. Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math., vol. 22, SIAM, Philadelphia, PA, 2001, pp. 207-272. MR 1831334 (2002k:78002)
  • [246] P. Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A 38 (2005), no. 22, 4887-4900. MR 2148631 (2006a:81035), https://doi.org/10.1088/0305-4470/38/22/013
  • [247] P. Kuchment, Integral representations of solutions of periodic elliptic equations, Probability and mathematical physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 323-339. MR 2352277 (2008k:35077)
  • [248] P. Kuchment, On Sunada's no gap conjecture, unpublished (2007).
  • [249] P. Kuchment, Tight frames of exponentially decaying Wannier functions, J. Phys. A 42 (2009), no. 2, 025203, 16. MR 2525287 (2011d:81103), https://doi.org/10.1088/1751-8113/42/2/025203
  • [250] P. Kuchment, Introduction to periodic operators, video at +http://www.newton.ac.uk/event/+ +pepw01/timetable+, 2015.
  • [251] P. Kuchment and L. A. Kunyansky, Spectral properties of high contrast band-gap materials and operators on graphs, Experiment. Math. 8 (1999), no. 1, 1-28. MR 1685034 (2000c:78027)
  • [252] P. Kuchment and S. Levendorskiî, On the structure of spectra of periodic elliptic operators, Trans. Amer. Math. Soc. 354 (2002), no. 2, 537-569. MR 1862558 (2002g:35163), https://doi.org/10.1090/S0002-9947-01-02878-1
  • [253] P. Kuchment and Y. Pinchover, Integral representations and Liouville theorems for solutions of periodic elliptic equations, J. Funct. Anal. 181 (2001), no. 2, 402-446. MR 1821702 (2001m:35067), https://doi.org/10.1006/jfan.2000.3727
  • [254] P. Kuchment and Y. Pinchover, Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5777-5815. MR 2336306 (2008h:58037), https://doi.org/10.1090/S0002-9947-07-04196-7
  • [255] P. Kuchment and O. Post, On the spectra of carbon nano-structures, Comm. Math. Phys. 275 (2007), no. 3, 805-826. MR 2336365 (2008j:81041), https://doi.org/10.1007/s00220-007-0316-1
  • [256] P. Kuchment and A. Raich, Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case, Math. Nachr. 285 (2012), no. 14-15, 1880-1894. MR 2988010, https://doi.org/10.1002/mana.201100272
  • [257] P. Kuchment and B. Vainberg, On embedded eigenvalues of perturbed periodic Schrödinger operators, Spectral and scattering theory (Newark, DE, 1997) Plenum, New York, 1998, pp. 67-75. MR 1625271 (99e:35032)
  • [258] P. Kuchment and B. Vainberg, On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1809-1826. MR 1778781 (2001i:47074), https://doi.org/10.1080/03605300008821568
  • [259] P. Kuchment and B. Vainberg, On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators, Comm. Math. Phys. 268 (2006), no. 3, 673-686. MR 2259210 (2007h:39034), https://doi.org/10.1007/s00220-006-0105-2
  • [260] P. Kuchment and L. Zelenko, On the floquet representations of exponentially increasing solutions of elliptic equations with periodic coefficients, Soviet Math. Dokl. 19 (1978), no. 2, 506-507.
  • [261] I. S. Lapin, One version of the Bethe-Sommerfeld conjecture, J. Math. Sci. (N. Y.) 117 (2003), no. 3, 4157-4166. Nonlinear problems and function theory. MR 2027452 (2004k:81114), https://doi.org/10.1023/A:1024812419240
  • [262] P. D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975), 141-188. MR 0369963 (51 #6192)
  • [263] M. Lee, Conic dispersion surfaces for point scatterers on a honeycomb lattice, 2014, +arXiv:+ +1402.5179+.
  • [264] S. Z. Levendorskiĭ, Magnetic Floquet theory and spectral asymptotics for Schrödinger operators, Funktsional. Anal. i Prilozhen. 30 (1996), no. 4, 77-80 (Russian); English transl., Funct. Anal. Appl. 30 (1996), no. 4, 282-285 (1997). MR 1444468 (98d:35169), https://doi.org/10.1007/BF02509625
  • [265] S. Z. Levendorskiĭ, Floquet's theory for the Schrödinger operator with perturbed periodic potential, and exact spectral asymptotics, Dokl. Akad. Nauk 355 (1997), no. 1, 21-24 (Russian). MR 1482093 (99b:47067)
  • [266] P. Li, Curvature and function theory on Riemannian manifolds, Surveys in differential geometry, Surv. Differ. Geom., VII, Int. Press, Somerville, MA, 2000, pp. 375-432. MR 1919432 (2003g:53047), https://doi.org/10.4310/SDG.2002.v7.n1.a13
  • [267] P. Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012. MR 2962229
  • [268] V. B. Lidskii, Eigenfunction expansions for equations with periodic coefficients, Appendix VIII to the Russian (1961) edition of Titchmarsh' book.
  • [269] V. Ya. Lin and Y. Pinchover, Manifolds with group actions and elliptic operators, Mem. Amer. Math. Soc. 112 (1994), no. 540, vi+78. MR 1230774 (95d:58119), https://doi.org/10.1090/memo/0540
  • [270] F. Lledó and O. Post, Existence of spectral gaps, covering manifolds and residually finite groups, Rev. Math. Phys. 20 (2008), no. 2, 199-231. MR 2400010 (2008m:58072), https://doi.org/10.1142/S0129055X08003286
  • [271] S. Łojasiewicz, Stratification des ensembles analytiques avec les propriétés (A) et (B) de Whitney, Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. C.N.R.S. No. 208, Paris, 1972) Gauthier-Villars, Paris, 1974, pp. 116-130. ``Agora Mathematica'', No. 1 (French). MR 0457772 (56 #15976)
  • [272] S. Łojasiewicz, Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991. Translated from the Polish by Maciej Klimek. MR 1131081 (92g:32002)
  • [273] A. M. Lyapunov, Sur une série relative a la theorie des equations differentielles lineaires a coefficients periodiques, Compt. Rend. 123 (1896), no. 26, 1248-1252.
  • [274] A. M. Lyapunov, Sur une equation transcendante et les equations differentielles lineaires du second ordre a coefficients periodiques, Compt. Rend. 128 (1899), no. 18, 1085-1088.
  • [275] W. Magnus and S. Winkler, Hill's equation, Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons New York-London-Sydney, 1966. MR 0197830 (33 #5991)
  • [276] V. A. Marčenko and I. V. Ostrovskiĭ, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540-606, 633-634 (Russian). MR 0409965 (53 #13717)
  • [277] V. A. Marchenko and Ĭ. V. Ostrovskiĭ, Approximation of periodic potentials by finite zone potentials, Vestnik Kharkov. Gos. Univ. 205 (1980), 4-40, 139 (Russian). MR 643352 (84b:34032)
  • [278] V. A. Marchenko and I. V. Ostrovsky, Corrections to the article: ``Approximation of periodic by finite-zone potentials'' [Selecta Math. Soviet. 6 (1987), no. 2, 101-136; see MR0910538 (88f:00011)], Selecta Math. Soviet. 7 (1988), no. 1, 99-100. Selected translations. MR 967083 (89j:34033)
  • [279] N. Marzari, I Souza, I., and D. Vanderbilt, An introduction to maximally-localized wannier functions, Highlight of the Month, Psi-K Newsletter 57 (2003), no. 4, 129-168.
  • [280] N. Marzari and D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands, Phys. Rev. B 56 (1997, NUMBER = 20, PAGES = 12847-12865,).
  • [281] V. Mathai and M. Shubin, Semiclassical asymptotics and gaps in the spectra of magnetic Schrödinger operators, Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), 2002, pp. 155-173. MR 1919898 (2004f:58040), https://doi.org/10.1023/A:1016245930716
  • [282] H. P. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143-226. MR 0427731 (55 #761)
  • [283] H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), no. 3, 217-274. MR 0397076 (53 #936)
  • [284] V. Z. Meshkov, On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb. 182 (1991), no. 3, 364-383 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 343-361. MR 1110071 (92d:35032)
  • [285] A. I. Miloslavskiĭ, Floquet solutions, and the reducibility of a certain class of differential equations in a Banach space, Izv. Severo-Kavkaz. Naučn. Centra Vysš. Školy Ser. Estestv. Nauk. 4 (1975), 82-87, 118 (Russian). MR 0470395 (57 #10149)
  • [286] A. I. Miloslavskiĭ, The decay of the solutions of an abstract parabolic equation with a periodic operator coefficient, Izv. Severo-Kavkaz. Naučn. Centra Vysš. Školy Ser. Estestv. Nauk. 2 (1976), 12-15, 116 (Russian). MR 0435541 (55 #8500)
  • [287] A. I. Miloslavskiĭ, Floquet theory for abstract parabolic equations with periodic coefficients, Ph.D. thesis, Rostov State University. Russia, 1976.
  • [288] A. I. Miloslavskiĭ, On the Floquet theory for parabolic equations, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 80-81 (Russian). MR 0473390 (57 #13057)
  • [289] A. I. Miloslavskiĭ, On the Floquet theory for parabolic equations, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. (1979), no. 31, 98-102, 168. MR 548296 (80k:34086)
  • [290] A. I. Miloslavskiĭ, Asymptotic behavior of the solutions of abstract integro-differential equations with periodic coefficients, Funktsional. Anal. i Prilozhen. 22 (1988), no. 3, 77-78 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 3, 234-235 (1989). MR 961767 (89j:45007), https://doi.org/10.1007/BF01077633
  • [291] A. I. Miloslavskiĭ, An abstract integro-differential equation with a periodic coefficient. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 53 (1990), 100-108 (Russian); English transl., J. Soviet Math. 58 (1992), no. 6, 563-568. MR 1077229 (91k:47126a), https://doi.org/10.1007/BF01109699
  • [292] A. I. Miloslavskiĭ, An abstract integro-differential equation with a periodic coefficient. II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 54 (1990), 57-68 (Russian); English transl., J. Soviet Math. 58 (1992), no. 4, 333-342. MR 1080726 (91k:47126b), https://doi.org/10.1007/BF01097285
  • [293] B. Mityagin, The zero set of a real analytic function, arXiv:1512.07276 (2015).
  • [294] A. Mohamed, Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys. 38 (1997), no. 8, 4023-4051. MR 1459642 (99d:81036), https://doi.org/10.1063/1.532105
  • [295] A. Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media, J. Math. Phys. 41 (2000), no. 10, 7099-7108. MR 1781426 (2001h:82103), https://doi.org/10.1063/1.1288794
  • [296] S. Morozov, L. Parnovski, and I. Pchelintseva, Lower bound on the density of states for periodic Schrödinger operators, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, vol. 231, Amer. Math. Soc., Providence, RI, 2010, pp. 161-171. MR 2757529 (2012e:35179)
  • [297] S. Morozov, L. Parnovski, and I. Pchelintseva, Lower bound on the density of states for periodic Schrödinger operators, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, vol. 231, Amer. Math. Soc., Providence, RI, 2010, pp. 161-171. MR 2757529 (2012e:35179)
  • [298] S. Morozov, L. Parnovski, and R. Shterenberg, Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators, Ann. Henri Poincaré 15 (2014), no. 2, 263-312. MR 3159982, https://doi.org/10.1007/s00023-013-0246-8
  • [299] J. Moser and M. Struwe, On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 1-20. MR 1203171 (94b:35051), https://doi.org/10.1007/BF02584809
  • [300] M. Murata and T. Tsuchida, Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients, J. Differential Equations 195 (2003), no. 1, 82-118. MR 2019244 (2004k:35067), https://doi.org/10.1016/S0022-0396(03)00192-X
  • [301] M. Murata and T. Tsuchida, Asymptotics of Green functions and the limiting absorption principle for elliptic operators with periodic coefficients, J. Math. Kyoto Univ. 46 (2006), no. 4, 713-754. MR 2320348 (2008d:35002)
  • [302] G. Nenciu, Existence of the exponentially localised Wannier functions, Comm. Math. Phys. 91 (1983), no. 1, 81-85. MR 719812 (84j:81146)
  • [303] O. A. Nielsen, Direct integral theory, Lecture Notes in Pure and Applied Mathematics, vol. 61, Marcel Dekker, Inc., New York, 1980. MR 591683 (82e:46081)
  • [304] S. P. Novikov, Bloch functions in the magnetic field and vector bundles. Typical dispersion relations and their quantum numbers, Dokl. Akad. Nauk SSSR 257 (1981), no. 3, 538-543 (Russian). MR 610347 (82h:81111)
  • [305] S. P. Novikov, Two-dimensional Schrödinger operators in periodic fields, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 3-32 (Russian). MR 734312 (85i:81020)
  • [306] S. P. Novikov, Solitons and geometry, Lezioni Fermiane. [Fermi Lectures], Published for the Scuola Normale Superiore, Pisa; by Cambridge University Press, Cambridge, 1994. MR 1272686 (95i:58091)
  • [307] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467 (86k:35142)
  • [308] F. Odeh and J. B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Mathematical Phys. 5 (1964), 1499-1504. MR 0168924 (29 #6180)
  • [309] B. S. Ong, Spectral problems of optical waveguides and quantum graphs, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)-Texas A&M University. MR 2709215
  • [310] V. P. Palamodov, Lineinye differentsialnye operatory s postoyaannymi koeffitsientami, Izdat. ``Nauka'', Moscow, 1967 (Russian). MR 0243193 (39 #4517)
  • [311] V. P. Palamodov, Linear differential operators with constant coefficients, Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970. MR 0264197 (41 #8793)
  • [312] V. P. Palamodov, Harmonic synthesis of solutions of elliptic equation with periodic coefficients, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 3, 751-768 (English, with English and French summaries). MR 1242614 (95f:35037)
  • [313] G. Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré 8 (2007), no. 5, 995-1011. MR 2342883 (2008d:81074), https://doi.org/10.1007/s00023-007-0326-8
  • [314] G. Panati and A. Pisante, Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions, Comm. Math. Phys. 322 (2013), no. 3, 835-875. MR 3079333, https://doi.org/10.1007/s00220-013-1741-y
  • [315] V. Papanicolaou, Private communication.
  • [316] V. Papanicolaou, Some results on ordinary differential operators with periodic coefficients, Complex Analysis and Operator Theory 9 (2015), no. 7.
  • [317] L. Parnovski, Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), no. 3, 457-508. MR 2419769 (2009f:81068), https://doi.org/10.1007/s00023-008-0364-x
  • [318] L. Parnovski and R. Shterenberg, Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator, Invent. Math. 176 (2009), no. 2, 275-323. MR 2495765 (2010d:35048), https://doi.org/10.1007/s00222-008-0164-4
  • [319] L. Parnovski and R. Shterenberg, Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator, Invent. Math. 176 (2009), no. 2, 275-323. MR 2495765 (2010d:35048), https://doi.org/10.1007/s00222-008-0164-4
  • [320] L. Parnovski and R. Shterenberg, Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators, Ann. of Math. (2) 176 (2012), no. 2, 1039-1096. MR 2950770, https://doi.org/10.4007/annals.2012.176.2.8
  • [321] L. Parnovski and N. Sidorova, Critical dimensions for counting lattice points in Euclidean annuli, Math. Model. Nat. Phenom. 5 (2010), no. 4, 293-316. MR 2662460 (2011e:11162), https://doi.org/10.1051/mmnp/20105413
  • [322] L. Parnovski and A. V. Sobolev, On the Bethe-Sommerfeld conjecture, Journées ``Équations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000) Univ. Nantes, Nantes, 2000, pp. Exp. No. XVII, 13. MR 1775693 (2002i:35137)
  • [323] L. Parnovski and A. V. Sobolev, Bethe-Sommerfeld conjecture for periodic operators with strong perturbations, Invent. Math. 181 (2010), no. 3, 467-540. MR 2660451 (2011f:35242), https://doi.org/10.1007/s00222-010-0251-1
  • [324] L. Parnovskii and R. Shterenberg, Personal communication, Unpublished (2015).
  • [325] B. S. Pavlov, The theory of extensions, and explicitly solvable models, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 99-131, 247 (Russian). MR 933997 (89b:47009)
  • [326] Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains, Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987) Pitman Res. Notes Math. Ser., vol. 175, Longman Sci. Tech., Harlow, 1988, pp. 218-230. MR 963470 (89k:35021)
  • [327] Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J. 57 (1988), no. 3, 955-980. MR 975130 (90c:35023), https://doi.org/10.1215/S0012-7094-88-05743-2
  • [328] R. G. Pinsky, Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions, J. Funct. Anal. 129 (1995), no. 1, 80-107. MR 1322643 (96b:35038), https://doi.org/10.1006/jfan.1995.1043
  • [329] A. Pliś, Non-uniqueness in Cauchy's problem for differential equations of elliptic type, J. Math. Mech. 9 (1960), 557-562. MR 0121568 (22 #12305)
  • [330] V. N. Popov and M. M. Skriganov, Remark on the structure of the spectrum of a two-dimensional Schrödinger operator with periodic potential, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 109 (1981), 131-133, 181, 183-184 (Russian, with English summary). Differential geometry, Lie groups and mechanics, IV. MR 629118 (83a:35074)
  • [331] O. Post, Periodic manifolds with spectral gaps, J. Differential Equations 187 (2003), no. 1, 23-45. MR 1946544 (2003m:58047), https://doi.org/10.1016/S0022-0396(02)00006-2
  • [332] M. Reed and B. Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959 (85e:46002)
  • [333] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. (2) 155 (2002), no. 1, 157-187. MR 1888797 (2003c:05145), https://doi.org/10.2307/3062153
  • [334] F. S. Rofe-Beketov, On the spectrum of non-selfadjoint differential operators with periodic coefficients, Dokl. Akad. Nauk SSSR 152 (1963), 1312-1315 (Russian). MR 0157033 (28 #274)
  • [335] F. S. Rofe-Beketov, A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential, Dokl. Akad. Nauk SSSR 156 (1964), 515-518 (Russian). MR 0160967 (28 #4176)
  • [336] F. S. Rofe-Beketov, A perturbation of a Hill's operator, that has a first moment and a non-zero integral, introduces a single discrete level into each of the distant spectral lacunae, Mathematical physics and functional analysis, No. 4 (Russian), Fiz.-Tehn. Inst. Nizkih Temperatur, Akad. Nauk Ukrain. SSR, Kharkov, 1973, pp. 158-159, 163 (Russian). MR 0477257 (57 #16798)
  • [337] F. S. Rofe-Beketov, Spectrum perturbations, the knezer-type constants and the effective mass of zones-type potentials, Constructive Theory of Functions 1984 (Sofia), 1984, Proceedings of the International Conference on Constructive Function Theory, Varna 1984, pp. 757-766.
  • [338] B. Scarpellini, Stability, instability, and direct integrals, Chapman & Hall/CRC Research Notes in Mathematics, vol. 402, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1682260 (2000j:35023)
  • [339] J. H. Schenker and M. Aizenman, The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), no. 3, 253-262. MR 1808253 (2001k:47008), https://doi.org/10.1023/A:1011032212489
  • [340] Z. Shen, Absolute continuity of generalized periodic Schrödinger operators, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 113-126. MR 1840430 (2002j:35078), https://doi.org/10.1090/conm/277/04541
  • [341] Z. Shen, On absolute continuity of the periodic Schrödinger operators, Internat. Math. Res. Notices (2001), no. 1, 1-31. MR 1809495 (2002a:47078)
  • [342] Z. Shen, On the Bethe-Sommerfeld conjecture for higher-order elliptic operators, Math. Ann. 326 (2003), no. 1, 19-41. MR 1981610 (2004c:35299), https://doi.org/10.1007/s00208-003-0395-z
  • [343] Z. Shen and P. Zhao, Uniform Sobolev inequalities and absolute continuity of periodic operators, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1741-1758. MR 2366961 (2010j:35095), https://doi.org/10.1090/S0002-9947-07-04545-X
  • [344] D. Shenk and M. A. Shubin, Asymptotic expansion of state density and the spectral function of the Hill operator, Mat. Sb. (N.S.) 128(170) (1985), no. 4, 474-491, 575 (Russian). MR 820398 (87h:34078)
  • [345] S. P. Shipman, Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators, Comm. Math. Phys. 332 (2014), no. 2, 605-626. MR 3257657, https://doi.org/10.1007/s00220-014-2113-y
  • [346] È. È. Shnol', On the behavior of the eigenfunctions of Schrödinger's equation, Mat. Sb. (N.S.) 42 (84) (1957), no. 3, 273-286. MR 0125315 (23:A2618)
  • [347] R. G. Shterenberg, Absolute continuity of a two-dimensional magnetic periodic Schrödinger operator with electric potential of measure derivative type, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271 (2000), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31, 276-312, 318 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 115 (2003), no. 6, 2862-2882. MR 1810620 (2002m:35171), https://doi.org/10.1023/A:1023334206109
  • [348] R. G. Shterenberg, The Schrödinger operator in a periodic waveguide on a plane and quasiconformal mappings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 295 (2003), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 33, 204-243, 247 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 127 (2005), no. 2, 1936-1956. MR 1983118 (2004e:78030), https://doi.org/10.1007/s10958-005-0152-9
  • [349] R. G. Shterenberg, An example of a periodic magnetic Schrödinger operator with a degenerate lower edge of the spectrum, Algebra i Analiz 16 (2004), no. 2, 177-185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 2, 417-422. MR 2068347 (2005d:35220), https://doi.org/10.1090/S1061-0022-05-00858-7
  • [350] R. G. Shterenberg, On the structure of the lower edge of the spectrum of a periodic magnetic Schrödinger operator with small magnetic potential, Algebra i Analiz 17 (2005), no. 5, 232-243 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 5, 865-873. MR 2241429 (2007f:35046), https://doi.org/10.1090/S1061-0022-06-00933-2
  • [351] T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces, Algebra i Analiz 13 (2001), no. 5, 197-240 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 5, 859-891. MR 1882869 (2002m:35172)
  • [352] M. A. Shubin, Spectral theory and the index of elliptic operators with almost-periodic coefficients, Uspekhi Mat. Nauk 34 (1979), no. 2(206), 95-135 (Russian). MR 535710 (81f:35090)
  • [353] M. A. Shubin, Weak Bloch property and weight estimates for elliptic operators, Séminaire sur les Équations aux Dérivées Partielles, 1989-1990, École Polytech., Palaiseau, 1990, pp. Exp. No. V, 36. With an appendix by Shubin and J. Sjöstrand. MR 1073180 (92f:58167)
  • [354] B. Simon, On the genericity of nonvanishing instability intervals in Hill's equation, Ann. Inst. H. Poincaré Sect. A (N.S.) 24 (1976), no. 1, 91-93. MR 0473321 (57 #12992)
  • [355] B. Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153 (2006f:47086)
  • [356] B. Simon, Szego's theorem and its descendants, spectral theory for $ l^2$ perturbations of orthogonal polynomials, Princeton University Press, Princeton, NJ, 2011.
  • [357] J. Sjöstrand, Microlocal analysis for the periodic magnetic Schrödinger equation and related questions, Microlocal analysis and applications (Montecatini Terme, 1989) Lecture Notes in Math., vol. 1495, Springer, Berlin, 1991, pp. 237-332. MR 1178559 (94f:35119), https://doi.org/10.1007/BFb0085125
  • [358] M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985), 122 (Russian). MR 798454 (87h:47110)
  • [359] M. M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math. 80 (1985), no. 1, 107-121. MR 784531 (86i:35107), https://doi.org/10.1007/BF01388550
  • [360] M. M. Skriganov and A. V. Sobolev, Asymptotic estimates for spectral bands of periodic Schrödinger operators, Algebra i Analiz 17 (2005), no. 1, 276-288 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 1, 207-216. MR 2140682 (2005m:35205), https://doi.org/10.1090/S1061-0022-06-00900-9
  • [361] V. P. Smyshlyaev and P. Kuchment, Slowing down and transmission of waves in high contrast periodic media via ``non-classical'' homogenization, unpublished (2007).
  • [362] A. V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math. 137 (1999), no. 1, 85-112. MR 1703339 (2000g:35028), https://doi.org/10.1007/s002220050324
  • [363] A. V. Sobolev, High energy asymptotics of the density of states for certain periodic pseudo-differential operators in dimension one, Waves in periodic and random media (South Hadley, MA, 2002) Contemp. Math., vol. 339, Amer. Math. Soc., Providence, RI, 2003, pp. 171-184. MR 2042537 (2005a:35216), https://doi.org/10.1090/conm/339/06105
  • [364] A. V. Sobolev, Integrated density of states for the periodic Schrödinger operator in dimension two, Ann. Henri Poincaré 6 (2005), no. 1, 31-84. MR 2119355 (2006b:35056), https://doi.org/10.1007/s00023-005-0198-8
  • [365] A. V. Sobolev, Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one, Rev. Mat. Iberoam. 22 (2006), no. 1, 55-92. MR 2267313 (2007i:35260), https://doi.org/10.4171/RMI/449
  • [366] A. V. Sobolev, Recent results on the Bethe-Sommerfeld conjecture, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 383-398. MR 2310211 (2009d:35245)
  • [367] A. V. Sobolev, The gauge transform method in the theory of periodic operators, Lectures at the Isaac Newton Institute, Cambridge (January 2015).
  • [368] A. V. Sobolev and J. Walthoe, Absolute continuity in periodic waveguides, Proc. London Math. Soc. (3) 85 (2002), no. 3, 717-741. MR 1936818 (2003j:35240), https://doi.org/10.1112/S0024611502013631
  • [369] S. Stigler, Stigler's law of eponymy, Trans. NY Acad. Sci. 39 (1980), no. 1, 147-157.
  • [370] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169-186. MR 782558 (86h:58141), https://doi.org/10.2307/1971195
  • [371] T. Sunada, Fundamental groups and Laplacians, Geometry and analysis on manifolds (Katata/Kyoto, 1987), Lecture Notes in Math., vol. 1339, Springer, Berlin, 1988, pp. 248-277. MR 961485 (89i:58151)
  • [372] T. Sunada, A periodic Schrödinger operator on an abelian cover, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 3, 575-583. MR 1080871 (92e:58222)
  • [373] T. Sunada, Group $ C^*$-algebras and the spectrum of a periodic Schrödinger operator on a manifold, Canad. J. Math. 44 (1992), no. 1, 180-193. MR 1152674 (93c:58223), https://doi.org/10.4153/CJM-1992-011-3
  • [374] T. Sunada, Discrete geometric analysis, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 51-83. MR 2459864 (2010h:05006), https://doi.org/10.1090/pspum/077/2459864
  • [375] T. A. Suslina, On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer, Russ. J. Math. Phys. 8 (2001), no. 4, 463-486. MR 1932011 (2003k:81057)
  • [376] T. A. Suslina, Absolute continuity of the spectrum of the periodic Maxwell operator in a layer, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 232-255, 274 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 123 (2004), no. 6, 4654-4667. MR 1923552 (2003e:35224), https://doi.org/10.1023/B:JOTH.0000041481.09722.86
  • [377] T. A. Suslina and A. A. Kharin, Homogenization with corrector for a periodic elliptic operator near an edge of inner gap, J. Math. Sci. (N. Y.) 159 (2009), no. 2, 264-280. Problems in mathematical analysis. No. 41. MR 2544039 (2010h:35025), https://doi.org/10.1007/s10958-009-9437-8
  • [378] T. A. Suslina and A. A. Kharin, Homogenization with corrector for a multidimensional periodic elliptic operator near an edge of an inner gap, J. Math. Sci. (N. Y.) 177 (2011), no. 1, 208-227. Problems in mathematical analysis. No. 59. MR 2838992 (2012k:35041), https://doi.org/10.1007/s10958-011-0453-0
  • [379] T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide, Algebra i Analiz 14 (2002), no. 2, 159-206 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 2, 305-343. MR 1925885 (2003h:35185)
  • [380] V. V. Sviridov, On the completeness of quasienergetic states, Dokl. Akad. Nauk SSSR 274 (1984), no. 6, 1366-1367 (Russian). MR 740452 (85i:35040)
  • [381] V. V. Sviridov, Some problems of the theory of differential equations with periodic coefficients, Ph.D. thesis, 1986.
  • [382] L. E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335-343. MR 0334766 (48 #13084)
  • [383] D. J. Thouless, Wannier functions for magnetic sub-bands, J. Phys. C: Solid State Phys. 17 (1984), L325-7.
  • [384] M. Tikhomirov and N. Filonov, Absolute continuity of an ``even'' periodic Schrödinger operator with nonsmooth coefficients, Algebra i Analiz 16 (2004), no. 3, 201-210 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 3, 583-589. MR 2083570 (2005f:35056), https://doi.org/10.1090/S1061-0022-05-00866-6
  • [385] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, Second Edition, Clarendon Press, Oxford, 1962. MR 0176151 (31 #426)
  • [386] P. van Moerbeke, About isospectral deformations of discrete Laplacians, Global analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978) Lecture Notes in Math., vol. 755, Springer, Berlin, 1979, pp. 313-370. MR 564908 (81g:58018)
  • [387] O. A. Veliev, The spectrum of multidimensional periodic operators, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 49 (1988), 17-34, 123 (Russian); English transl., J. Soviet Math. 49 (1990), no. 4, 1045-1058. MR 963619 (89j:35102), https://doi.org/10.1007/BF02216095
  • [388] O. A. Veliev, Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe-Sommerfeld conjecture, Int. J. Contemp. Math. Sci. 2 (2007), no. 1-4, 19-87. MR 2292470 (2009b:47080)
  • [389] O. Veliev, Multidimensional periodic Schrödinger operator, Springer Tracts in Modern Physics, vol. 263, Springer, Cham, 2015. Perturbation theory and applications. MR 3328527
  • [390] J. Von Neumann and E. P. Wigner, Über merkwürdige diskrete eigenwerte, Z. Phys. 30 (1929), 465-467.
  • [391] M. Vorobets, On the Bethe-Sommerfeld conjecture for certain periodic Maxwell operators, J. Math. Anal. Appl. 377 (2011), no. 1, 370-383. MR 2754836 (2012f:35527), https://doi.org/10.1016/j.jmaa.2010.10.067
  • [392] P. R. Wallace, The band theory of graphite, Phys. Rev. 71 (1947), 622.
  • [393] A. Waters, Isospectral periodic Torii in dimension 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 6, 1173-1188. MR 3425258, https://doi.org/10.1016/j.anihpc.2014.06.001
  • [394] C. H. Wilcox, Theory of Bloch waves, J. Analyse Math. 33 (1978), 146-167. MR 516045 (82b:82068), https://doi.org/10.1007/BF02790171
  • [395] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100 (2001k:60006)
  • [396] K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan 29 (1977), no. 4, 729-743. MR 0470525 (57 #10276)
  • [397] K. Yajima, Large time behaviors of time-periodic quantum systems, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 589-597. MR 799400 (86k:81042), https://doi.org/10.1016/S0304-0208(08)73745-9
  • [398] K. Yajima, Quantum dynamics of time periodic systems, Phys. A 124 (1984), no. 1-3, 613-619. Mathematical physics, VII (Boulder, Colo., 1983). MR 759208, https://doi.org/10.1016/0378-4371(84)90277-2
  • [399] V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients. 1, 2, Halsted Press [John Wiley & Sons] New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, 1975. Translated from Russian by D. Louvish. MR 0364740 (51 #994)
  • [400] A. Yariv, Yong Xu, R. Lee, and A. Scherer, Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24 (1999), 711-713.
  • [401] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 0431040 (55 #4042)
  • [402] V. I. Yudovich, The linearization method in the stability problem for periodic flows of low viscosity fluids, Proceedings of the VI- th winter school on mathematical programming and related problems, Drogobych 1973: Functional analysis and its applications. (In Russian) (1975), 44-113.
  • [403] V. I. Yudovich, The linearization method in hydrodynamical stability theory, Translations of Mathematical Monographs, vol. 74, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by J. R. Schulenberger. MR 1003607 (90h:76001)
  • [404] M. G. Zaĭdenberg, S. G. Kreĭn, P. Kučment, and A. A. Pankov, Banach bundles and linear operators, Uspehi Mat. Nauk 30 (1975), no. 5(185), 101-157 (Russian). MR 0415661 (54 #3741)
  • [405] J. Zak, Magnetic translaion group: II. Irreducible representations, Phys. Rev. (2) 134 (1964), A1602-A1606. MR 0177769 (31 #2031)
  • [406] Ya. B. Zeldovich, Scattering and emission of a quantum system in a strong electromagnetic wave, Soviet Physics Uspekhi 16 (1973), 427-433.
  • [407] V. V. Zhikov, Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients, Algebra i Analiz 16 (2004), no. 5, 34-58 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 5, 773-790. MR 2106666 (2006a:35053), https://doi.org/10.1090/S1061-0022-05-00878-2
  • [408] J. M. Ziman, Electrons in metals. A short guide to the Fermi surface, Taylor & Francis, London, 1962.
  • [409] J. M. Ziman, Principles of the theory of solids, Cambridge University Press, New York, 1964.
  • [410] N. A. Zimbovskaya, Local geometry of the Fermi surface, and high-frequency phenomena in metals, Springer Verlag, New York, 2001.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 35B27, 35J10, 35J15, 35Q40, 35Q60, 47F05, 58J05, 81Q10, 32C99, 35C15, 47A53, 58J50, 78M40

Retrieve articles in all journals with MSC (2010): 35B27, 35J10, 35J15, 35Q40, 35Q60, 47F05, 58J05, 81Q10, 32C99, 35C15, 47A53, 58J50, 78M40


Additional Information

Peter Kuchment
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
Email: kuchment@math.tamu.edu

DOI: https://doi.org/10.1090/bull/1528
Received by editor(s): October 2, 2015
Published electronically: April 6, 2016
Additional Notes: This article contains an extended exposition of the lectures given at Isaac Newton Institute for Mathematical Sciences in January 2015. The work was also partially supported by the NSF grant DMS # 1517938. The author expresses his gratitude to the INI and NSF for the support.
Dedicated: Dedicated to the memory of mathematicians and dear friends M. Birman, L. Ehrenpreis, S. Krein, V. Meshkov, and M. Novitskii
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society